]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/topology.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / topology.c
1 /*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14 #include <linux/arch_topology.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/sched/topology.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26
27 #include <asm/cpu.h>
28 #include <asm/cputype.h>
29 #include <asm/topology.h>
30
31 static int __init get_cpu_for_node(struct device_node *node)
32 {
33 struct device_node *cpu_node;
34 int cpu;
35
36 cpu_node = of_parse_phandle(node, "cpu", 0);
37 if (!cpu_node)
38 return -1;
39
40 for_each_possible_cpu(cpu) {
41 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
42 topology_parse_cpu_capacity(cpu_node, cpu);
43 of_node_put(cpu_node);
44 return cpu;
45 }
46 }
47
48 pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
49
50 of_node_put(cpu_node);
51 return -1;
52 }
53
54 static int __init parse_core(struct device_node *core, int cluster_id,
55 int core_id)
56 {
57 char name[10];
58 bool leaf = true;
59 int i = 0;
60 int cpu;
61 struct device_node *t;
62
63 do {
64 snprintf(name, sizeof(name), "thread%d", i);
65 t = of_get_child_by_name(core, name);
66 if (t) {
67 leaf = false;
68 cpu = get_cpu_for_node(t);
69 if (cpu >= 0) {
70 cpu_topology[cpu].cluster_id = cluster_id;
71 cpu_topology[cpu].core_id = core_id;
72 cpu_topology[cpu].thread_id = i;
73 } else {
74 pr_err("%s: Can't get CPU for thread\n",
75 t->full_name);
76 of_node_put(t);
77 return -EINVAL;
78 }
79 of_node_put(t);
80 }
81 i++;
82 } while (t);
83
84 cpu = get_cpu_for_node(core);
85 if (cpu >= 0) {
86 if (!leaf) {
87 pr_err("%s: Core has both threads and CPU\n",
88 core->full_name);
89 return -EINVAL;
90 }
91
92 cpu_topology[cpu].cluster_id = cluster_id;
93 cpu_topology[cpu].core_id = core_id;
94 } else if (leaf) {
95 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
96 return -EINVAL;
97 }
98
99 return 0;
100 }
101
102 static int __init parse_cluster(struct device_node *cluster, int depth)
103 {
104 char name[10];
105 bool leaf = true;
106 bool has_cores = false;
107 struct device_node *c;
108 static int cluster_id __initdata;
109 int core_id = 0;
110 int i, ret;
111
112 /*
113 * First check for child clusters; we currently ignore any
114 * information about the nesting of clusters and present the
115 * scheduler with a flat list of them.
116 */
117 i = 0;
118 do {
119 snprintf(name, sizeof(name), "cluster%d", i);
120 c = of_get_child_by_name(cluster, name);
121 if (c) {
122 leaf = false;
123 ret = parse_cluster(c, depth + 1);
124 of_node_put(c);
125 if (ret != 0)
126 return ret;
127 }
128 i++;
129 } while (c);
130
131 /* Now check for cores */
132 i = 0;
133 do {
134 snprintf(name, sizeof(name), "core%d", i);
135 c = of_get_child_by_name(cluster, name);
136 if (c) {
137 has_cores = true;
138
139 if (depth == 0) {
140 pr_err("%s: cpu-map children should be clusters\n",
141 c->full_name);
142 of_node_put(c);
143 return -EINVAL;
144 }
145
146 if (leaf) {
147 ret = parse_core(c, cluster_id, core_id++);
148 } else {
149 pr_err("%s: Non-leaf cluster with core %s\n",
150 cluster->full_name, name);
151 ret = -EINVAL;
152 }
153
154 of_node_put(c);
155 if (ret != 0)
156 return ret;
157 }
158 i++;
159 } while (c);
160
161 if (leaf && !has_cores)
162 pr_warn("%s: empty cluster\n", cluster->full_name);
163
164 if (leaf)
165 cluster_id++;
166
167 return 0;
168 }
169
170 static int __init parse_dt_topology(void)
171 {
172 struct device_node *cn, *map;
173 int ret = 0;
174 int cpu;
175
176 cn = of_find_node_by_path("/cpus");
177 if (!cn) {
178 pr_err("No CPU information found in DT\n");
179 return 0;
180 }
181
182 /*
183 * When topology is provided cpu-map is essentially a root
184 * cluster with restricted subnodes.
185 */
186 map = of_get_child_by_name(cn, "cpu-map");
187 if (!map)
188 goto out;
189
190 ret = parse_cluster(map, 0);
191 if (ret != 0)
192 goto out_map;
193
194 topology_normalize_cpu_scale();
195
196 /*
197 * Check that all cores are in the topology; the SMP code will
198 * only mark cores described in the DT as possible.
199 */
200 for_each_possible_cpu(cpu)
201 if (cpu_topology[cpu].cluster_id == -1)
202 ret = -EINVAL;
203
204 out_map:
205 of_node_put(map);
206 out:
207 of_node_put(cn);
208 return ret;
209 }
210
211 /*
212 * cpu topology table
213 */
214 struct cpu_topology cpu_topology[NR_CPUS];
215 EXPORT_SYMBOL_GPL(cpu_topology);
216
217 const struct cpumask *cpu_coregroup_mask(int cpu)
218 {
219 return &cpu_topology[cpu].core_sibling;
220 }
221
222 static void update_siblings_masks(unsigned int cpuid)
223 {
224 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
225 int cpu;
226
227 /* update core and thread sibling masks */
228 for_each_possible_cpu(cpu) {
229 cpu_topo = &cpu_topology[cpu];
230
231 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
232 continue;
233
234 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
235 if (cpu != cpuid)
236 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
237
238 if (cpuid_topo->core_id != cpu_topo->core_id)
239 continue;
240
241 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
242 if (cpu != cpuid)
243 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
244 }
245 }
246
247 void store_cpu_topology(unsigned int cpuid)
248 {
249 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
250 u64 mpidr;
251
252 if (cpuid_topo->cluster_id != -1)
253 goto topology_populated;
254
255 mpidr = read_cpuid_mpidr();
256
257 /* Uniprocessor systems can rely on default topology values */
258 if (mpidr & MPIDR_UP_BITMASK)
259 return;
260
261 /* Create cpu topology mapping based on MPIDR. */
262 if (mpidr & MPIDR_MT_BITMASK) {
263 /* Multiprocessor system : Multi-threads per core */
264 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
265 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
266 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
267 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
268 } else {
269 /* Multiprocessor system : Single-thread per core */
270 cpuid_topo->thread_id = -1;
271 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
272 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
273 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
274 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
275 }
276
277 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
278 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
279 cpuid_topo->thread_id, mpidr);
280
281 topology_populated:
282 update_siblings_masks(cpuid);
283 }
284
285 static void __init reset_cpu_topology(void)
286 {
287 unsigned int cpu;
288
289 for_each_possible_cpu(cpu) {
290 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
291
292 cpu_topo->thread_id = -1;
293 cpu_topo->core_id = 0;
294 cpu_topo->cluster_id = -1;
295
296 cpumask_clear(&cpu_topo->core_sibling);
297 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
298 cpumask_clear(&cpu_topo->thread_sibling);
299 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
300 }
301 }
302
303 void __init init_cpu_topology(void)
304 {
305 reset_cpu_topology();
306
307 /*
308 * Discard anything that was parsed if we hit an error so we
309 * don't use partial information.
310 */
311 if (of_have_populated_dt() && parse_dt_topology())
312 reset_cpu_topology();
313 }