]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm64/kernel/topology.c
d844b5317d2d9510874ad1e72111facf0659cca3
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kernel / topology.c
1 /*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 u64 mpidr;
29
30 if (cpuid_topo->package_id != -1)
31 goto topology_populated;
32
33 mpidr = read_cpuid_mpidr();
34
35 /* Uniprocessor systems can rely on default topology values */
36 if (mpidr & MPIDR_UP_BITMASK)
37 return;
38
39 /*
40 * This would be the place to create cpu topology based on MPIDR.
41 *
42 * However, it cannot be trusted to depict the actual topology; some
43 * pieces of the architecture enforce an artificial cap on Aff0 values
44 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 * having absolutely no relationship to the actual underlying system
47 * topology, and cannot be reasonably used as core / package ID.
48 *
49 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 * we still wouldn't be able to obtain a sane core ID. This means we
51 * need to entirely ignore MPIDR for any topology deduction.
52 */
53 cpuid_topo->thread_id = -1;
54 cpuid_topo->core_id = cpuid;
55 cpuid_topo->package_id = cpu_to_node(cpuid);
56
57 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 cpuid_topo->thread_id, mpidr);
60
61 topology_populated:
62 update_siblings_masks(cpuid);
63 }
64
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69
70 /*
71 * if the PPTT doesn't have thread information, assume a homogeneous
72 * machine and return the current CPU's thread state.
73 */
74 if (is_threaded < 0)
75 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76
77 return !!is_threaded;
78 }
79
80 /*
81 * Propagate the topology information of the processor_topology_node tree to the
82 * cpu_topology array.
83 */
84 int __init parse_acpi_topology(void)
85 {
86 int cpu, topology_id;
87
88 if (acpi_disabled)
89 return 0;
90
91 for_each_possible_cpu(cpu) {
92 int i, cache_id;
93
94 topology_id = find_acpi_cpu_topology(cpu, 0);
95 if (topology_id < 0)
96 return topology_id;
97
98 if (acpi_cpu_is_threaded(cpu)) {
99 cpu_topology[cpu].thread_id = topology_id;
100 topology_id = find_acpi_cpu_topology(cpu, 1);
101 cpu_topology[cpu].core_id = topology_id;
102 } else {
103 cpu_topology[cpu].thread_id = -1;
104 cpu_topology[cpu].core_id = topology_id;
105 }
106 topology_id = find_acpi_cpu_topology_package(cpu);
107 cpu_topology[cpu].package_id = topology_id;
108
109 i = acpi_find_last_cache_level(cpu);
110
111 if (i > 0) {
112 /*
113 * this is the only part of cpu_topology that has
114 * a direct relationship with the cache topology
115 */
116 cache_id = find_acpi_cpu_cache_topology(cpu, i);
117 if (cache_id > 0)
118 cpu_topology[cpu].llc_id = cache_id;
119 }
120 }
121
122 return 0;
123 }
124 #endif
125
126 #ifdef CONFIG_ARM64_AMU_EXTN
127 #define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
128 #define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
129 #else
130 #define read_corecnt() (0UL)
131 #define read_constcnt() (0UL)
132 #endif
133
134 #undef pr_fmt
135 #define pr_fmt(fmt) "AMU: " fmt
136
137 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
138 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
139 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
140 static cpumask_var_t amu_fie_cpus;
141
142 void update_freq_counters_refs(void)
143 {
144 this_cpu_write(arch_core_cycles_prev, read_corecnt());
145 this_cpu_write(arch_const_cycles_prev, read_constcnt());
146 }
147
148 static inline bool freq_counters_valid(int cpu)
149 {
150 if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
151 return false;
152
153 if (!cpu_has_amu_feat(cpu)) {
154 pr_debug("CPU%d: counters are not supported.\n", cpu);
155 return false;
156 }
157
158 if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
159 !per_cpu(arch_core_cycles_prev, cpu))) {
160 pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
161 return false;
162 }
163
164 return true;
165 }
166
167 static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate)
168 {
169 u64 ratio;
170
171 if (unlikely(!max_rate || !ref_rate)) {
172 pr_debug("CPU%d: invalid maximum or reference frequency.\n",
173 cpu);
174 return -EINVAL;
175 }
176
177 /*
178 * Pre-compute the fixed ratio between the frequency of the constant
179 * reference counter and the maximum frequency of the CPU.
180 *
181 * ref_rate
182 * arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALEĀ²
183 * max_rate
184 *
185 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ²
186 * in order to ensure a good resolution for arch_max_freq_scale for
187 * very low reference frequencies (down to the KHz range which should
188 * be unlikely).
189 */
190 ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
191 ratio = div64_u64(ratio, max_rate);
192 if (!ratio) {
193 WARN_ONCE(1, "Reference frequency too low.\n");
194 return -EINVAL;
195 }
196
197 per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
198
199 return 0;
200 }
201
202 static void amu_scale_freq_tick(void)
203 {
204 u64 prev_core_cnt, prev_const_cnt;
205 u64 core_cnt, const_cnt, scale;
206
207 prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
208 prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
209
210 update_freq_counters_refs();
211
212 const_cnt = this_cpu_read(arch_const_cycles_prev);
213 core_cnt = this_cpu_read(arch_core_cycles_prev);
214
215 if (unlikely(core_cnt <= prev_core_cnt ||
216 const_cnt <= prev_const_cnt))
217 return;
218
219 /*
220 * /\core arch_max_freq_scale
221 * scale = ------- * --------------------
222 * /\const SCHED_CAPACITY_SCALE
223 *
224 * See validate_cpu_freq_invariance_counters() for details on
225 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
226 */
227 scale = core_cnt - prev_core_cnt;
228 scale *= this_cpu_read(arch_max_freq_scale);
229 scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
230 const_cnt - prev_const_cnt);
231
232 scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
233 this_cpu_write(arch_freq_scale, (unsigned long)scale);
234 }
235
236 static struct scale_freq_data amu_sfd = {
237 .source = SCALE_FREQ_SOURCE_ARCH,
238 .set_freq_scale = amu_scale_freq_tick,
239 };
240
241 static void amu_fie_setup(const struct cpumask *cpus)
242 {
243 int cpu;
244
245 /* We are already set since the last insmod of cpufreq driver */
246 if (unlikely(cpumask_subset(cpus, amu_fie_cpus)))
247 return;
248
249 for_each_cpu(cpu, cpus) {
250 if (!freq_counters_valid(cpu) ||
251 freq_inv_set_max_ratio(cpu,
252 cpufreq_get_hw_max_freq(cpu) * 1000ULL,
253 arch_timer_get_rate()))
254 return;
255 }
256
257 cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
258
259 topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
260
261 pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
262 cpumask_pr_args(cpus));
263 }
264
265 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
266 void *data)
267 {
268 struct cpufreq_policy *policy = data;
269
270 if (val == CPUFREQ_CREATE_POLICY)
271 amu_fie_setup(policy->related_cpus);
272
273 /*
274 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
275 * counters don't have any dependency on cpufreq driver once we have
276 * initialized AMU support and enabled invariance. The AMU counters will
277 * keep on working just fine in the absence of the cpufreq driver, and
278 * for the CPUs for which there are no counters available, the last set
279 * value of arch_freq_scale will remain valid as that is the frequency
280 * those CPUs are running at.
281 */
282
283 return 0;
284 }
285
286 static struct notifier_block init_amu_fie_notifier = {
287 .notifier_call = init_amu_fie_callback,
288 };
289
290 static int __init init_amu_fie(void)
291 {
292 int ret;
293
294 if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL))
295 return -ENOMEM;
296
297 ret = cpufreq_register_notifier(&init_amu_fie_notifier,
298 CPUFREQ_POLICY_NOTIFIER);
299 if (ret)
300 free_cpumask_var(amu_fie_cpus);
301
302 return ret;
303 }
304 core_initcall(init_amu_fie);
305
306 #ifdef CONFIG_ACPI_CPPC_LIB
307 #include <acpi/cppc_acpi.h>
308
309 static void cpu_read_corecnt(void *val)
310 {
311 /*
312 * A value of 0 can be returned if the current CPU does not support AMUs
313 * or if the counter is disabled for this CPU. A return value of 0 at
314 * counter read is properly handled as an error case by the users of the
315 * counter.
316 */
317 *(u64 *)val = read_corecnt();
318 }
319
320 static void cpu_read_constcnt(void *val)
321 {
322 /*
323 * Return 0 if the current CPU is affected by erratum 2457168. A value
324 * of 0 is also returned if the current CPU does not support AMUs or if
325 * the counter is disabled. A return value of 0 at counter read is
326 * properly handled as an error case by the users of the counter.
327 */
328 *(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
329 0UL : read_constcnt();
330 }
331
332 static inline
333 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
334 {
335 /*
336 * Abort call on counterless CPU or when interrupts are
337 * disabled - can lead to deadlock in smp sync call.
338 */
339 if (!cpu_has_amu_feat(cpu))
340 return -EOPNOTSUPP;
341
342 if (WARN_ON_ONCE(irqs_disabled()))
343 return -EPERM;
344
345 smp_call_function_single(cpu, func, val, 1);
346
347 return 0;
348 }
349
350 /*
351 * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
352 * below.
353 */
354 bool cpc_ffh_supported(void)
355 {
356 int cpu = get_cpu_with_amu_feat();
357
358 /*
359 * FFH is considered supported if there is at least one present CPU that
360 * supports AMUs. Using FFH to read core and reference counters for CPUs
361 * that do not support AMUs, have counters disabled or that are affected
362 * by errata, will result in a return value of 0.
363 *
364 * This is done to allow any enabled and valid counters to be read
365 * through FFH, knowing that potentially returning 0 as counter value is
366 * properly handled by the users of these counters.
367 */
368 if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
369 return false;
370
371 return true;
372 }
373
374 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
375 {
376 int ret = -EOPNOTSUPP;
377
378 switch ((u64)reg->address) {
379 case 0x0:
380 ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
381 break;
382 case 0x1:
383 ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
384 break;
385 }
386
387 if (!ret) {
388 *val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
389 reg->bit_offset);
390 *val >>= reg->bit_offset;
391 }
392
393 return ret;
394 }
395
396 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
397 {
398 return -EOPNOTSUPP;
399 }
400 #endif /* CONFIG_ACPI_CPPC_LIB */