]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/topology.c
Merge tag 'topic/atomic-core-2015-01-05' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / topology.c
1 /*
2 * arch/arm64/kernel/topology.c
3 *
4 * Copyright (C) 2011,2013,2014 Linaro Limited.
5 *
6 * Based on the arm32 version written by Vincent Guittot in turn based on
7 * arch/sh/kernel/topology.c
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/init.h>
17 #include <linux/percpu.h>
18 #include <linux/node.h>
19 #include <linux/nodemask.h>
20 #include <linux/of.h>
21 #include <linux/sched.h>
22
23 #include <asm/cputype.h>
24 #include <asm/topology.h>
25
26 static int __init get_cpu_for_node(struct device_node *node)
27 {
28 struct device_node *cpu_node;
29 int cpu;
30
31 cpu_node = of_parse_phandle(node, "cpu", 0);
32 if (!cpu_node)
33 return -1;
34
35 for_each_possible_cpu(cpu) {
36 if (of_get_cpu_node(cpu, NULL) == cpu_node) {
37 of_node_put(cpu_node);
38 return cpu;
39 }
40 }
41
42 pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
43
44 of_node_put(cpu_node);
45 return -1;
46 }
47
48 static int __init parse_core(struct device_node *core, int cluster_id,
49 int core_id)
50 {
51 char name[10];
52 bool leaf = true;
53 int i = 0;
54 int cpu;
55 struct device_node *t;
56
57 do {
58 snprintf(name, sizeof(name), "thread%d", i);
59 t = of_get_child_by_name(core, name);
60 if (t) {
61 leaf = false;
62 cpu = get_cpu_for_node(t);
63 if (cpu >= 0) {
64 cpu_topology[cpu].cluster_id = cluster_id;
65 cpu_topology[cpu].core_id = core_id;
66 cpu_topology[cpu].thread_id = i;
67 } else {
68 pr_err("%s: Can't get CPU for thread\n",
69 t->full_name);
70 of_node_put(t);
71 return -EINVAL;
72 }
73 of_node_put(t);
74 }
75 i++;
76 } while (t);
77
78 cpu = get_cpu_for_node(core);
79 if (cpu >= 0) {
80 if (!leaf) {
81 pr_err("%s: Core has both threads and CPU\n",
82 core->full_name);
83 return -EINVAL;
84 }
85
86 cpu_topology[cpu].cluster_id = cluster_id;
87 cpu_topology[cpu].core_id = core_id;
88 } else if (leaf) {
89 pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
90 return -EINVAL;
91 }
92
93 return 0;
94 }
95
96 static int __init parse_cluster(struct device_node *cluster, int depth)
97 {
98 char name[10];
99 bool leaf = true;
100 bool has_cores = false;
101 struct device_node *c;
102 static int cluster_id __initdata;
103 int core_id = 0;
104 int i, ret;
105
106 /*
107 * First check for child clusters; we currently ignore any
108 * information about the nesting of clusters and present the
109 * scheduler with a flat list of them.
110 */
111 i = 0;
112 do {
113 snprintf(name, sizeof(name), "cluster%d", i);
114 c = of_get_child_by_name(cluster, name);
115 if (c) {
116 leaf = false;
117 ret = parse_cluster(c, depth + 1);
118 of_node_put(c);
119 if (ret != 0)
120 return ret;
121 }
122 i++;
123 } while (c);
124
125 /* Now check for cores */
126 i = 0;
127 do {
128 snprintf(name, sizeof(name), "core%d", i);
129 c = of_get_child_by_name(cluster, name);
130 if (c) {
131 has_cores = true;
132
133 if (depth == 0) {
134 pr_err("%s: cpu-map children should be clusters\n",
135 c->full_name);
136 of_node_put(c);
137 return -EINVAL;
138 }
139
140 if (leaf) {
141 ret = parse_core(c, cluster_id, core_id++);
142 } else {
143 pr_err("%s: Non-leaf cluster with core %s\n",
144 cluster->full_name, name);
145 ret = -EINVAL;
146 }
147
148 of_node_put(c);
149 if (ret != 0)
150 return ret;
151 }
152 i++;
153 } while (c);
154
155 if (leaf && !has_cores)
156 pr_warn("%s: empty cluster\n", cluster->full_name);
157
158 if (leaf)
159 cluster_id++;
160
161 return 0;
162 }
163
164 static int __init parse_dt_topology(void)
165 {
166 struct device_node *cn, *map;
167 int ret = 0;
168 int cpu;
169
170 cn = of_find_node_by_path("/cpus");
171 if (!cn) {
172 pr_err("No CPU information found in DT\n");
173 return 0;
174 }
175
176 /*
177 * When topology is provided cpu-map is essentially a root
178 * cluster with restricted subnodes.
179 */
180 map = of_get_child_by_name(cn, "cpu-map");
181 if (!map)
182 goto out;
183
184 ret = parse_cluster(map, 0);
185 if (ret != 0)
186 goto out_map;
187
188 /*
189 * Check that all cores are in the topology; the SMP code will
190 * only mark cores described in the DT as possible.
191 */
192 for_each_possible_cpu(cpu)
193 if (cpu_topology[cpu].cluster_id == -1)
194 ret = -EINVAL;
195
196 out_map:
197 of_node_put(map);
198 out:
199 of_node_put(cn);
200 return ret;
201 }
202
203 /*
204 * cpu topology table
205 */
206 struct cpu_topology cpu_topology[NR_CPUS];
207 EXPORT_SYMBOL_GPL(cpu_topology);
208
209 const struct cpumask *cpu_coregroup_mask(int cpu)
210 {
211 return &cpu_topology[cpu].core_sibling;
212 }
213
214 static void update_siblings_masks(unsigned int cpuid)
215 {
216 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
217 int cpu;
218
219 /* update core and thread sibling masks */
220 for_each_possible_cpu(cpu) {
221 cpu_topo = &cpu_topology[cpu];
222
223 if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
224 continue;
225
226 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
227 if (cpu != cpuid)
228 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
229
230 if (cpuid_topo->core_id != cpu_topo->core_id)
231 continue;
232
233 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
234 if (cpu != cpuid)
235 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
236 }
237 }
238
239 void store_cpu_topology(unsigned int cpuid)
240 {
241 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
242 u64 mpidr;
243
244 if (cpuid_topo->cluster_id != -1)
245 goto topology_populated;
246
247 mpidr = read_cpuid_mpidr();
248
249 /* Uniprocessor systems can rely on default topology values */
250 if (mpidr & MPIDR_UP_BITMASK)
251 return;
252
253 /* Create cpu topology mapping based on MPIDR. */
254 if (mpidr & MPIDR_MT_BITMASK) {
255 /* Multiprocessor system : Multi-threads per core */
256 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
257 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
258 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
259 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
260 } else {
261 /* Multiprocessor system : Single-thread per core */
262 cpuid_topo->thread_id = -1;
263 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
264 cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
265 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
266 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
267 }
268
269 pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
270 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
271 cpuid_topo->thread_id, mpidr);
272
273 topology_populated:
274 update_siblings_masks(cpuid);
275 }
276
277 static void __init reset_cpu_topology(void)
278 {
279 unsigned int cpu;
280
281 for_each_possible_cpu(cpu) {
282 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
283
284 cpu_topo->thread_id = -1;
285 cpu_topo->core_id = 0;
286 cpu_topo->cluster_id = -1;
287
288 cpumask_clear(&cpu_topo->core_sibling);
289 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
290 cpumask_clear(&cpu_topo->thread_sibling);
291 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
292 }
293 }
294
295 void __init init_cpu_topology(void)
296 {
297 reset_cpu_topology();
298
299 /*
300 * Discard anything that was parsed if we hit an error so we
301 * don't use partial information.
302 */
303 if (parse_dt_topology())
304 reset_cpu_topology();
305 }