]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/arm64/kernel/traps.c
Merge branch 'next-smack' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-focal-kernel.git] / arch / arm64 / kernel / traps.c
1 /*
2 * Based on arch/arm/kernel/traps.c
3 *
4 * Copyright (C) 1995-2009 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/bug.h>
21 #include <linux/signal.h>
22 #include <linux/personality.h>
23 #include <linux/kallsyms.h>
24 #include <linux/spinlock.h>
25 #include <linux/uaccess.h>
26 #include <linux/hardirq.h>
27 #include <linux/kdebug.h>
28 #include <linux/module.h>
29 #include <linux/kexec.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/debug.h>
34 #include <linux/sched/task_stack.h>
35 #include <linux/sizes.h>
36 #include <linux/syscalls.h>
37 #include <linux/mm_types.h>
38 #include <linux/kasan.h>
39
40 #include <asm/atomic.h>
41 #include <asm/bug.h>
42 #include <asm/cpufeature.h>
43 #include <asm/daifflags.h>
44 #include <asm/debug-monitors.h>
45 #include <asm/esr.h>
46 #include <asm/insn.h>
47 #include <asm/traps.h>
48 #include <asm/smp.h>
49 #include <asm/stack_pointer.h>
50 #include <asm/stacktrace.h>
51 #include <asm/exception.h>
52 #include <asm/system_misc.h>
53 #include <asm/sysreg.h>
54
55 static const char *handler[]= {
56 "Synchronous Abort",
57 "IRQ",
58 "FIQ",
59 "Error"
60 };
61
62 int show_unhandled_signals = 0;
63
64 static void dump_backtrace_entry(unsigned long where)
65 {
66 printk(" %pS\n", (void *)where);
67 }
68
69 static void __dump_instr(const char *lvl, struct pt_regs *regs)
70 {
71 unsigned long addr = instruction_pointer(regs);
72 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
73 int i;
74
75 for (i = -4; i < 1; i++) {
76 unsigned int val, bad;
77
78 bad = get_user(val, &((u32 *)addr)[i]);
79
80 if (!bad)
81 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
82 else {
83 p += sprintf(p, "bad PC value");
84 break;
85 }
86 }
87 printk("%sCode: %s\n", lvl, str);
88 }
89
90 static void dump_instr(const char *lvl, struct pt_regs *regs)
91 {
92 if (!user_mode(regs)) {
93 mm_segment_t fs = get_fs();
94 set_fs(KERNEL_DS);
95 __dump_instr(lvl, regs);
96 set_fs(fs);
97 } else {
98 __dump_instr(lvl, regs);
99 }
100 }
101
102 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
103 {
104 struct stackframe frame;
105 int skip = 0;
106
107 pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
108
109 if (regs) {
110 if (user_mode(regs))
111 return;
112 skip = 1;
113 }
114
115 if (!tsk)
116 tsk = current;
117
118 if (!try_get_task_stack(tsk))
119 return;
120
121 if (tsk == current) {
122 frame.fp = (unsigned long)__builtin_frame_address(0);
123 frame.pc = (unsigned long)dump_backtrace;
124 } else {
125 /*
126 * task blocked in __switch_to
127 */
128 frame.fp = thread_saved_fp(tsk);
129 frame.pc = thread_saved_pc(tsk);
130 }
131 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
132 frame.graph = 0;
133 #endif
134
135 printk("Call trace:\n");
136 do {
137 /* skip until specified stack frame */
138 if (!skip) {
139 dump_backtrace_entry(frame.pc);
140 } else if (frame.fp == regs->regs[29]) {
141 skip = 0;
142 /*
143 * Mostly, this is the case where this function is
144 * called in panic/abort. As exception handler's
145 * stack frame does not contain the corresponding pc
146 * at which an exception has taken place, use regs->pc
147 * instead.
148 */
149 dump_backtrace_entry(regs->pc);
150 }
151 } while (!unwind_frame(tsk, &frame));
152
153 put_task_stack(tsk);
154 }
155
156 void show_stack(struct task_struct *tsk, unsigned long *sp)
157 {
158 dump_backtrace(NULL, tsk);
159 barrier();
160 }
161
162 #ifdef CONFIG_PREEMPT
163 #define S_PREEMPT " PREEMPT"
164 #else
165 #define S_PREEMPT ""
166 #endif
167 #define S_SMP " SMP"
168
169 static int __die(const char *str, int err, struct pt_regs *regs)
170 {
171 struct task_struct *tsk = current;
172 static int die_counter;
173 int ret;
174
175 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
176 str, err, ++die_counter);
177
178 /* trap and error numbers are mostly meaningless on ARM */
179 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
180 if (ret == NOTIFY_STOP)
181 return ret;
182
183 print_modules();
184 pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n",
185 TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk),
186 end_of_stack(tsk));
187 show_regs(regs);
188
189 if (!user_mode(regs))
190 dump_instr(KERN_EMERG, regs);
191
192 return ret;
193 }
194
195 static DEFINE_RAW_SPINLOCK(die_lock);
196
197 /*
198 * This function is protected against re-entrancy.
199 */
200 void die(const char *str, struct pt_regs *regs, int err)
201 {
202 int ret;
203 unsigned long flags;
204
205 raw_spin_lock_irqsave(&die_lock, flags);
206
207 oops_enter();
208
209 console_verbose();
210 bust_spinlocks(1);
211 ret = __die(str, err, regs);
212
213 if (regs && kexec_should_crash(current))
214 crash_kexec(regs);
215
216 bust_spinlocks(0);
217 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
218 oops_exit();
219
220 if (in_interrupt())
221 panic("Fatal exception in interrupt");
222 if (panic_on_oops)
223 panic("Fatal exception");
224
225 raw_spin_unlock_irqrestore(&die_lock, flags);
226
227 if (ret != NOTIFY_STOP)
228 do_exit(SIGSEGV);
229 }
230
231 static void arm64_show_signal(int signo, const char *str)
232 {
233 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
234 DEFAULT_RATELIMIT_BURST);
235 struct task_struct *tsk = current;
236 unsigned int esr = tsk->thread.fault_code;
237 struct pt_regs *regs = task_pt_regs(tsk);
238
239 /* Leave if the signal won't be shown */
240 if (!show_unhandled_signals ||
241 !unhandled_signal(tsk, signo) ||
242 !__ratelimit(&rs))
243 return;
244
245 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
246 if (esr)
247 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
248
249 pr_cont("%s", str);
250 print_vma_addr(KERN_CONT " in ", regs->pc);
251 pr_cont("\n");
252 __show_regs(regs);
253 }
254
255 void arm64_force_sig_fault(int signo, int code, void __user *addr,
256 const char *str)
257 {
258 arm64_show_signal(signo, str);
259 force_sig_fault(signo, code, addr, current);
260 }
261
262 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
263 const char *str)
264 {
265 arm64_show_signal(SIGBUS, str);
266 force_sig_mceerr(code, addr, lsb, current);
267 }
268
269 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
270 const char *str)
271 {
272 arm64_show_signal(SIGTRAP, str);
273 force_sig_ptrace_errno_trap(errno, addr);
274 }
275
276 void arm64_notify_die(const char *str, struct pt_regs *regs,
277 int signo, int sicode, void __user *addr,
278 int err)
279 {
280 if (user_mode(regs)) {
281 WARN_ON(regs != current_pt_regs());
282 current->thread.fault_address = 0;
283 current->thread.fault_code = err;
284
285 arm64_force_sig_fault(signo, sicode, addr, str);
286 } else {
287 die(str, regs, err);
288 }
289 }
290
291 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
292 {
293 regs->pc += size;
294
295 /*
296 * If we were single stepping, we want to get the step exception after
297 * we return from the trap.
298 */
299 if (user_mode(regs))
300 user_fastforward_single_step(current);
301 }
302
303 static LIST_HEAD(undef_hook);
304 static DEFINE_RAW_SPINLOCK(undef_lock);
305
306 void register_undef_hook(struct undef_hook *hook)
307 {
308 unsigned long flags;
309
310 raw_spin_lock_irqsave(&undef_lock, flags);
311 list_add(&hook->node, &undef_hook);
312 raw_spin_unlock_irqrestore(&undef_lock, flags);
313 }
314
315 void unregister_undef_hook(struct undef_hook *hook)
316 {
317 unsigned long flags;
318
319 raw_spin_lock_irqsave(&undef_lock, flags);
320 list_del(&hook->node);
321 raw_spin_unlock_irqrestore(&undef_lock, flags);
322 }
323
324 static int call_undef_hook(struct pt_regs *regs)
325 {
326 struct undef_hook *hook;
327 unsigned long flags;
328 u32 instr;
329 int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
330 void __user *pc = (void __user *)instruction_pointer(regs);
331
332 if (!user_mode(regs)) {
333 __le32 instr_le;
334 if (probe_kernel_address((__force __le32 *)pc, instr_le))
335 goto exit;
336 instr = le32_to_cpu(instr_le);
337 } else if (compat_thumb_mode(regs)) {
338 /* 16-bit Thumb instruction */
339 __le16 instr_le;
340 if (get_user(instr_le, (__le16 __user *)pc))
341 goto exit;
342 instr = le16_to_cpu(instr_le);
343 if (aarch32_insn_is_wide(instr)) {
344 u32 instr2;
345
346 if (get_user(instr_le, (__le16 __user *)(pc + 2)))
347 goto exit;
348 instr2 = le16_to_cpu(instr_le);
349 instr = (instr << 16) | instr2;
350 }
351 } else {
352 /* 32-bit ARM instruction */
353 __le32 instr_le;
354 if (get_user(instr_le, (__le32 __user *)pc))
355 goto exit;
356 instr = le32_to_cpu(instr_le);
357 }
358
359 raw_spin_lock_irqsave(&undef_lock, flags);
360 list_for_each_entry(hook, &undef_hook, node)
361 if ((instr & hook->instr_mask) == hook->instr_val &&
362 (regs->pstate & hook->pstate_mask) == hook->pstate_val)
363 fn = hook->fn;
364
365 raw_spin_unlock_irqrestore(&undef_lock, flags);
366 exit:
367 return fn ? fn(regs, instr) : 1;
368 }
369
370 void force_signal_inject(int signal, int code, unsigned long address)
371 {
372 const char *desc;
373 struct pt_regs *regs = current_pt_regs();
374
375 if (WARN_ON(!user_mode(regs)))
376 return;
377
378 switch (signal) {
379 case SIGILL:
380 desc = "undefined instruction";
381 break;
382 case SIGSEGV:
383 desc = "illegal memory access";
384 break;
385 default:
386 desc = "unknown or unrecoverable error";
387 break;
388 }
389
390 /* Force signals we don't understand to SIGKILL */
391 if (WARN_ON(signal != SIGKILL &&
392 siginfo_layout(signal, code) != SIL_FAULT)) {
393 signal = SIGKILL;
394 }
395
396 arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0);
397 }
398
399 /*
400 * Set up process info to signal segmentation fault - called on access error.
401 */
402 void arm64_notify_segfault(unsigned long addr)
403 {
404 int code;
405
406 down_read(&current->mm->mmap_sem);
407 if (find_vma(current->mm, addr) == NULL)
408 code = SEGV_MAPERR;
409 else
410 code = SEGV_ACCERR;
411 up_read(&current->mm->mmap_sem);
412
413 force_signal_inject(SIGSEGV, code, addr);
414 }
415
416 asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
417 {
418 /* check for AArch32 breakpoint instructions */
419 if (!aarch32_break_handler(regs))
420 return;
421
422 if (call_undef_hook(regs) == 0)
423 return;
424
425 BUG_ON(!user_mode(regs));
426 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
427 }
428
429 #define __user_cache_maint(insn, address, res) \
430 if (address >= user_addr_max()) { \
431 res = -EFAULT; \
432 } else { \
433 uaccess_ttbr0_enable(); \
434 asm volatile ( \
435 "1: " insn ", %1\n" \
436 " mov %w0, #0\n" \
437 "2:\n" \
438 " .pushsection .fixup,\"ax\"\n" \
439 " .align 2\n" \
440 "3: mov %w0, %w2\n" \
441 " b 2b\n" \
442 " .popsection\n" \
443 _ASM_EXTABLE(1b, 3b) \
444 : "=r" (res) \
445 : "r" (address), "i" (-EFAULT)); \
446 uaccess_ttbr0_disable(); \
447 }
448
449 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
450 {
451 unsigned long address;
452 int rt = ESR_ELx_SYS64_ISS_RT(esr);
453 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
454 int ret = 0;
455
456 address = untagged_addr(pt_regs_read_reg(regs, rt));
457
458 switch (crm) {
459 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
460 __user_cache_maint("dc civac", address, ret);
461 break;
462 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
463 __user_cache_maint("dc civac", address, ret);
464 break;
465 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */
466 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
467 break;
468 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */
469 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
470 break;
471 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
472 __user_cache_maint("dc civac", address, ret);
473 break;
474 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
475 __user_cache_maint("ic ivau", address, ret);
476 break;
477 default:
478 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
479 return;
480 }
481
482 if (ret)
483 arm64_notify_segfault(address);
484 else
485 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
486 }
487
488 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
489 {
490 int rt = ESR_ELx_SYS64_ISS_RT(esr);
491 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
492
493 pt_regs_write_reg(regs, rt, val);
494
495 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
496 }
497
498 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
499 {
500 int rt = ESR_ELx_SYS64_ISS_RT(esr);
501
502 pt_regs_write_reg(regs, rt, arch_timer_read_counter());
503 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
504 }
505
506 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
507 {
508 int rt = ESR_ELx_SYS64_ISS_RT(esr);
509
510 pt_regs_write_reg(regs, rt, arch_timer_get_rate());
511 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
512 }
513
514 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
515 {
516 u32 sysreg, rt;
517
518 rt = ESR_ELx_SYS64_ISS_RT(esr);
519 sysreg = esr_sys64_to_sysreg(esr);
520
521 if (do_emulate_mrs(regs, sysreg, rt) != 0)
522 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
523 }
524
525 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
526 {
527 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
528 }
529
530 struct sys64_hook {
531 unsigned int esr_mask;
532 unsigned int esr_val;
533 void (*handler)(unsigned int esr, struct pt_regs *regs);
534 };
535
536 static struct sys64_hook sys64_hooks[] = {
537 {
538 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
539 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
540 .handler = user_cache_maint_handler,
541 },
542 {
543 /* Trap read access to CTR_EL0 */
544 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
545 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
546 .handler = ctr_read_handler,
547 },
548 {
549 /* Trap read access to CNTVCT_EL0 */
550 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
551 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
552 .handler = cntvct_read_handler,
553 },
554 {
555 /* Trap read access to CNTFRQ_EL0 */
556 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
557 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
558 .handler = cntfrq_read_handler,
559 },
560 {
561 /* Trap read access to CPUID registers */
562 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
563 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
564 .handler = mrs_handler,
565 },
566 {
567 /* Trap WFI instructions executed in userspace */
568 .esr_mask = ESR_ELx_WFx_MASK,
569 .esr_val = ESR_ELx_WFx_WFI_VAL,
570 .handler = wfi_handler,
571 },
572 {},
573 };
574
575
576 #ifdef CONFIG_COMPAT
577 #define PSTATE_IT_1_0_SHIFT 25
578 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT)
579 #define PSTATE_IT_7_2_SHIFT 10
580 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT)
581
582 static u32 compat_get_it_state(struct pt_regs *regs)
583 {
584 u32 it, pstate = regs->pstate;
585
586 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
587 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
588
589 return it;
590 }
591
592 static void compat_set_it_state(struct pt_regs *regs, u32 it)
593 {
594 u32 pstate_it;
595
596 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
597 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
598
599 regs->pstate &= ~PSR_AA32_IT_MASK;
600 regs->pstate |= pstate_it;
601 }
602
603 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
604 {
605 int cond;
606
607 /* Only a T32 instruction can trap without CV being set */
608 if (!(esr & ESR_ELx_CV)) {
609 u32 it;
610
611 it = compat_get_it_state(regs);
612 if (!it)
613 return true;
614
615 cond = it >> 4;
616 } else {
617 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
618 }
619
620 return aarch32_opcode_cond_checks[cond](regs->pstate);
621 }
622
623 static void advance_itstate(struct pt_regs *regs)
624 {
625 u32 it;
626
627 /* ARM mode */
628 if (!(regs->pstate & PSR_AA32_T_BIT) ||
629 !(regs->pstate & PSR_AA32_IT_MASK))
630 return;
631
632 it = compat_get_it_state(regs);
633
634 /*
635 * If this is the last instruction of the block, wipe the IT
636 * state. Otherwise advance it.
637 */
638 if (!(it & 7))
639 it = 0;
640 else
641 it = (it & 0xe0) | ((it << 1) & 0x1f);
642
643 compat_set_it_state(regs, it);
644 }
645
646 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs,
647 unsigned int sz)
648 {
649 advance_itstate(regs);
650 arm64_skip_faulting_instruction(regs, sz);
651 }
652
653 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
654 {
655 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
656
657 pt_regs_write_reg(regs, reg, arch_timer_get_rate());
658 arm64_compat_skip_faulting_instruction(regs, 4);
659 }
660
661 static struct sys64_hook cp15_32_hooks[] = {
662 {
663 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
664 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
665 .handler = compat_cntfrq_read_handler,
666 },
667 {},
668 };
669
670 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
671 {
672 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
673 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
674 u64 val = arch_timer_read_counter();
675
676 pt_regs_write_reg(regs, rt, lower_32_bits(val));
677 pt_regs_write_reg(regs, rt2, upper_32_bits(val));
678 arm64_compat_skip_faulting_instruction(regs, 4);
679 }
680
681 static struct sys64_hook cp15_64_hooks[] = {
682 {
683 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
684 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
685 .handler = compat_cntvct_read_handler,
686 },
687 {},
688 };
689
690 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
691 {
692 struct sys64_hook *hook, *hook_base;
693
694 if (!cp15_cond_valid(esr, regs)) {
695 /*
696 * There is no T16 variant of a CP access, so we
697 * always advance PC by 4 bytes.
698 */
699 arm64_compat_skip_faulting_instruction(regs, 4);
700 return;
701 }
702
703 switch (ESR_ELx_EC(esr)) {
704 case ESR_ELx_EC_CP15_32:
705 hook_base = cp15_32_hooks;
706 break;
707 case ESR_ELx_EC_CP15_64:
708 hook_base = cp15_64_hooks;
709 break;
710 default:
711 do_undefinstr(regs);
712 return;
713 }
714
715 for (hook = hook_base; hook->handler; hook++)
716 if ((hook->esr_mask & esr) == hook->esr_val) {
717 hook->handler(esr, regs);
718 return;
719 }
720
721 /*
722 * New cp15 instructions may previously have been undefined at
723 * EL0. Fall back to our usual undefined instruction handler
724 * so that we handle these consistently.
725 */
726 do_undefinstr(regs);
727 }
728 #endif
729
730 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
731 {
732 struct sys64_hook *hook;
733
734 for (hook = sys64_hooks; hook->handler; hook++)
735 if ((hook->esr_mask & esr) == hook->esr_val) {
736 hook->handler(esr, regs);
737 return;
738 }
739
740 /*
741 * New SYS instructions may previously have been undefined at EL0. Fall
742 * back to our usual undefined instruction handler so that we handle
743 * these consistently.
744 */
745 do_undefinstr(regs);
746 }
747
748 static const char *esr_class_str[] = {
749 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
750 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
751 [ESR_ELx_EC_WFx] = "WFI/WFE",
752 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
753 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
754 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
755 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
756 [ESR_ELx_EC_FP_ASIMD] = "ASIMD",
757 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
758 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
759 [ESR_ELx_EC_ILL] = "PSTATE.IL",
760 [ESR_ELx_EC_SVC32] = "SVC (AArch32)",
761 [ESR_ELx_EC_HVC32] = "HVC (AArch32)",
762 [ESR_ELx_EC_SMC32] = "SMC (AArch32)",
763 [ESR_ELx_EC_SVC64] = "SVC (AArch64)",
764 [ESR_ELx_EC_HVC64] = "HVC (AArch64)",
765 [ESR_ELx_EC_SMC64] = "SMC (AArch64)",
766 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
767 [ESR_ELx_EC_SVE] = "SVE",
768 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
769 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
770 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
771 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
772 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
773 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
774 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
775 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
776 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
777 [ESR_ELx_EC_SERROR] = "SError",
778 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
779 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
780 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
781 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
782 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
783 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
784 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
785 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
786 [ESR_ELx_EC_BRK64] = "BRK (AArch64)",
787 };
788
789 const char *esr_get_class_string(u32 esr)
790 {
791 return esr_class_str[ESR_ELx_EC(esr)];
792 }
793
794 /*
795 * bad_mode handles the impossible case in the exception vector. This is always
796 * fatal.
797 */
798 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
799 {
800 console_verbose();
801
802 pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
803 handler[reason], smp_processor_id(), esr,
804 esr_get_class_string(esr));
805
806 local_daif_mask();
807 panic("bad mode");
808 }
809
810 /*
811 * bad_el0_sync handles unexpected, but potentially recoverable synchronous
812 * exceptions taken from EL0. Unlike bad_mode, this returns.
813 */
814 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
815 {
816 void __user *pc = (void __user *)instruction_pointer(regs);
817
818 current->thread.fault_address = 0;
819 current->thread.fault_code = esr;
820
821 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
822 "Bad EL0 synchronous exception");
823 }
824
825 #ifdef CONFIG_VMAP_STACK
826
827 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
828 __aligned(16);
829
830 asmlinkage void handle_bad_stack(struct pt_regs *regs)
831 {
832 unsigned long tsk_stk = (unsigned long)current->stack;
833 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
834 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
835 unsigned int esr = read_sysreg(esr_el1);
836 unsigned long far = read_sysreg(far_el1);
837
838 console_verbose();
839 pr_emerg("Insufficient stack space to handle exception!");
840
841 pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
842 pr_emerg("FAR: 0x%016lx\n", far);
843
844 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
845 tsk_stk, tsk_stk + THREAD_SIZE);
846 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n",
847 irq_stk, irq_stk + THREAD_SIZE);
848 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
849 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
850
851 __show_regs(regs);
852
853 /*
854 * We use nmi_panic to limit the potential for recusive overflows, and
855 * to get a better stack trace.
856 */
857 nmi_panic(NULL, "kernel stack overflow");
858 cpu_park_loop();
859 }
860 #endif
861
862 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
863 {
864 console_verbose();
865
866 pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
867 smp_processor_id(), esr, esr_get_class_string(esr));
868 if (regs)
869 __show_regs(regs);
870
871 nmi_panic(regs, "Asynchronous SError Interrupt");
872
873 cpu_park_loop();
874 unreachable();
875 }
876
877 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
878 {
879 u32 aet = arm64_ras_serror_get_severity(esr);
880
881 switch (aet) {
882 case ESR_ELx_AET_CE: /* corrected error */
883 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */
884 /*
885 * The CPU can make progress. We may take UEO again as
886 * a more severe error.
887 */
888 return false;
889
890 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */
891 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */
892 /*
893 * The CPU can't make progress. The exception may have
894 * been imprecise.
895 */
896 return true;
897
898 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */
899 default:
900 /* Error has been silently propagated */
901 arm64_serror_panic(regs, esr);
902 }
903 }
904
905 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
906 {
907 const bool was_in_nmi = in_nmi();
908
909 if (!was_in_nmi)
910 nmi_enter();
911
912 /* non-RAS errors are not containable */
913 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
914 arm64_serror_panic(regs, esr);
915
916 if (!was_in_nmi)
917 nmi_exit();
918 }
919
920 void __pte_error(const char *file, int line, unsigned long val)
921 {
922 pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
923 }
924
925 void __pmd_error(const char *file, int line, unsigned long val)
926 {
927 pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
928 }
929
930 void __pud_error(const char *file, int line, unsigned long val)
931 {
932 pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
933 }
934
935 void __pgd_error(const char *file, int line, unsigned long val)
936 {
937 pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
938 }
939
940 /* GENERIC_BUG traps */
941
942 int is_valid_bugaddr(unsigned long addr)
943 {
944 /*
945 * bug_handler() only called for BRK #BUG_BRK_IMM.
946 * So the answer is trivial -- any spurious instances with no
947 * bug table entry will be rejected by report_bug() and passed
948 * back to the debug-monitors code and handled as a fatal
949 * unexpected debug exception.
950 */
951 return 1;
952 }
953
954 static int bug_handler(struct pt_regs *regs, unsigned int esr)
955 {
956 switch (report_bug(regs->pc, regs)) {
957 case BUG_TRAP_TYPE_BUG:
958 die("Oops - BUG", regs, 0);
959 break;
960
961 case BUG_TRAP_TYPE_WARN:
962 break;
963
964 default:
965 /* unknown/unrecognised bug trap type */
966 return DBG_HOOK_ERROR;
967 }
968
969 /* If thread survives, skip over the BUG instruction and continue: */
970 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
971 return DBG_HOOK_HANDLED;
972 }
973
974 static struct break_hook bug_break_hook = {
975 .fn = bug_handler,
976 .imm = BUG_BRK_IMM,
977 };
978
979 #ifdef CONFIG_KASAN_SW_TAGS
980
981 #define KASAN_ESR_RECOVER 0x20
982 #define KASAN_ESR_WRITE 0x10
983 #define KASAN_ESR_SIZE_MASK 0x0f
984 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
985
986 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
987 {
988 bool recover = esr & KASAN_ESR_RECOVER;
989 bool write = esr & KASAN_ESR_WRITE;
990 size_t size = KASAN_ESR_SIZE(esr);
991 u64 addr = regs->regs[0];
992 u64 pc = regs->pc;
993
994 kasan_report(addr, size, write, pc);
995
996 /*
997 * The instrumentation allows to control whether we can proceed after
998 * a crash was detected. This is done by passing the -recover flag to
999 * the compiler. Disabling recovery allows to generate more compact
1000 * code.
1001 *
1002 * Unfortunately disabling recovery doesn't work for the kernel right
1003 * now. KASAN reporting is disabled in some contexts (for example when
1004 * the allocator accesses slab object metadata; this is controlled by
1005 * current->kasan_depth). All these accesses are detected by the tool,
1006 * even though the reports for them are not printed.
1007 *
1008 * This is something that might be fixed at some point in the future.
1009 */
1010 if (!recover)
1011 die("Oops - KASAN", regs, 0);
1012
1013 /* If thread survives, skip over the brk instruction and continue: */
1014 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1015 return DBG_HOOK_HANDLED;
1016 }
1017
1018 static struct break_hook kasan_break_hook = {
1019 .fn = kasan_handler,
1020 .imm = KASAN_BRK_IMM,
1021 .mask = KASAN_BRK_MASK,
1022 };
1023 #endif
1024
1025 /*
1026 * Initial handler for AArch64 BRK exceptions
1027 * This handler only used until debug_traps_init().
1028 */
1029 int __init early_brk64(unsigned long addr, unsigned int esr,
1030 struct pt_regs *regs)
1031 {
1032 #ifdef CONFIG_KASAN_SW_TAGS
1033 unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1034
1035 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1036 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1037 #endif
1038 return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1039 }
1040
1041 /* This registration must happen early, before debug_traps_init(). */
1042 void __init trap_init(void)
1043 {
1044 register_kernel_break_hook(&bug_break_hook);
1045 #ifdef CONFIG_KASAN_SW_TAGS
1046 register_kernel_break_hook(&kasan_break_hook);
1047 #endif
1048 }