]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/arm64/kvm/arm.c
a4a0063df456ca0f963f62ece504e9991edcf5da
[mirror_ubuntu-kernels.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73 return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78 return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82 struct kvm_enable_cap *cap)
83 {
84 int r;
85
86 if (cap->flags)
87 return -EINVAL;
88
89 switch (cap->cap) {
90 case KVM_CAP_ARM_NISV_TO_USER:
91 r = 0;
92 kvm->arch.return_nisv_io_abort_to_user = true;
93 break;
94 case KVM_CAP_ARM_MTE:
95 mutex_lock(&kvm->lock);
96 if (!system_supports_mte() || kvm->created_vcpus) {
97 r = -EINVAL;
98 } else {
99 r = 0;
100 kvm->arch.mte_enabled = true;
101 }
102 mutex_unlock(&kvm->lock);
103 break;
104 default:
105 r = -EINVAL;
106 break;
107 }
108
109 return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119 /*
120 * The default is to expose CSV2 == 1 if the HW isn't affected.
121 * Although this is a per-CPU feature, we make it global because
122 * asymmetric systems are just a nuisance.
123 *
124 * Userspace can override this as long as it doesn't promise
125 * the impossible.
126 */
127 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128 kvm->arch.pfr0_csv2 = 1;
129 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134 * kvm_arch_init_vm - initializes a VM data structure
135 * @kvm: pointer to the KVM struct
136 */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139 int ret;
140
141 ret = kvm_arm_setup_stage2(kvm, type);
142 if (ret)
143 return ret;
144
145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146 if (ret)
147 return ret;
148
149 ret = kvm_share_hyp(kvm, kvm + 1);
150 if (ret)
151 goto out_free_stage2_pgd;
152
153 kvm_vgic_early_init(kvm);
154
155 /* The maximum number of VCPUs is limited by the host's GIC model */
156 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158 set_default_spectre(kvm);
159
160 return ret;
161 out_free_stage2_pgd:
162 kvm_free_stage2_pgd(&kvm->arch.mmu);
163 return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 bitmap_free(kvm->arch.pmu_filter);
179
180 kvm_vgic_destroy(kvm);
181
182 kvm_destroy_vcpus(kvm);
183
184 kvm_unshare_hyp(kvm, kvm + 1);
185 }
186
187 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 {
189 int r;
190 switch (ext) {
191 case KVM_CAP_IRQCHIP:
192 r = vgic_present;
193 break;
194 case KVM_CAP_IOEVENTFD:
195 case KVM_CAP_DEVICE_CTRL:
196 case KVM_CAP_USER_MEMORY:
197 case KVM_CAP_SYNC_MMU:
198 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
199 case KVM_CAP_ONE_REG:
200 case KVM_CAP_ARM_PSCI:
201 case KVM_CAP_ARM_PSCI_0_2:
202 case KVM_CAP_READONLY_MEM:
203 case KVM_CAP_MP_STATE:
204 case KVM_CAP_IMMEDIATE_EXIT:
205 case KVM_CAP_VCPU_EVENTS:
206 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207 case KVM_CAP_ARM_NISV_TO_USER:
208 case KVM_CAP_ARM_INJECT_EXT_DABT:
209 case KVM_CAP_SET_GUEST_DEBUG:
210 case KVM_CAP_VCPU_ATTRIBUTES:
211 case KVM_CAP_PTP_KVM:
212 r = 1;
213 break;
214 case KVM_CAP_SET_GUEST_DEBUG2:
215 return KVM_GUESTDBG_VALID_MASK;
216 case KVM_CAP_ARM_SET_DEVICE_ADDR:
217 r = 1;
218 break;
219 case KVM_CAP_NR_VCPUS:
220 /*
221 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
222 * architectures, as it does not always bound it to
223 * KVM_CAP_MAX_VCPUS. It should not matter much because
224 * this is just an advisory value.
225 */
226 r = min_t(unsigned int, num_online_cpus(),
227 kvm_arm_default_max_vcpus());
228 break;
229 case KVM_CAP_MAX_VCPUS:
230 case KVM_CAP_MAX_VCPU_ID:
231 if (kvm)
232 r = kvm->arch.max_vcpus;
233 else
234 r = kvm_arm_default_max_vcpus();
235 break;
236 case KVM_CAP_MSI_DEVID:
237 if (!kvm)
238 r = -EINVAL;
239 else
240 r = kvm->arch.vgic.msis_require_devid;
241 break;
242 case KVM_CAP_ARM_USER_IRQ:
243 /*
244 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
245 * (bump this number if adding more devices)
246 */
247 r = 1;
248 break;
249 case KVM_CAP_ARM_MTE:
250 r = system_supports_mte();
251 break;
252 case KVM_CAP_STEAL_TIME:
253 r = kvm_arm_pvtime_supported();
254 break;
255 case KVM_CAP_ARM_EL1_32BIT:
256 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
257 break;
258 case KVM_CAP_GUEST_DEBUG_HW_BPS:
259 r = get_num_brps();
260 break;
261 case KVM_CAP_GUEST_DEBUG_HW_WPS:
262 r = get_num_wrps();
263 break;
264 case KVM_CAP_ARM_PMU_V3:
265 r = kvm_arm_support_pmu_v3();
266 break;
267 case KVM_CAP_ARM_INJECT_SERROR_ESR:
268 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
269 break;
270 case KVM_CAP_ARM_VM_IPA_SIZE:
271 r = get_kvm_ipa_limit();
272 break;
273 case KVM_CAP_ARM_SVE:
274 r = system_supports_sve();
275 break;
276 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
277 case KVM_CAP_ARM_PTRAUTH_GENERIC:
278 r = system_has_full_ptr_auth();
279 break;
280 default:
281 r = 0;
282 }
283
284 return r;
285 }
286
287 long kvm_arch_dev_ioctl(struct file *filp,
288 unsigned int ioctl, unsigned long arg)
289 {
290 return -EINVAL;
291 }
292
293 struct kvm *kvm_arch_alloc_vm(void)
294 {
295 size_t sz = sizeof(struct kvm);
296
297 if (!has_vhe())
298 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
299
300 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
301 }
302
303 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
304 {
305 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
306 return -EBUSY;
307
308 if (id >= kvm->arch.max_vcpus)
309 return -EINVAL;
310
311 return 0;
312 }
313
314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315 {
316 int err;
317
318 /* Force users to call KVM_ARM_VCPU_INIT */
319 vcpu->arch.target = -1;
320 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
321
322 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
323
324 /* Set up the timer */
325 kvm_timer_vcpu_init(vcpu);
326
327 kvm_pmu_vcpu_init(vcpu);
328
329 kvm_arm_reset_debug_ptr(vcpu);
330
331 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
332
333 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
334
335 err = kvm_vgic_vcpu_init(vcpu);
336 if (err)
337 return err;
338
339 return kvm_share_hyp(vcpu, vcpu + 1);
340 }
341
342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
343 {
344 }
345
346 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
347 {
348 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
349 static_branch_dec(&userspace_irqchip_in_use);
350
351 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
352 kvm_timer_vcpu_terminate(vcpu);
353 kvm_pmu_vcpu_destroy(vcpu);
354
355 kvm_arm_vcpu_destroy(vcpu);
356 }
357
358 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
359 {
360 return kvm_timer_is_pending(vcpu);
361 }
362
363 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
364 {
365
366 }
367
368 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
369 {
370
371 }
372
373 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
374 {
375 struct kvm_s2_mmu *mmu;
376 int *last_ran;
377
378 mmu = vcpu->arch.hw_mmu;
379 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
380
381 /*
382 * We guarantee that both TLBs and I-cache are private to each
383 * vcpu. If detecting that a vcpu from the same VM has
384 * previously run on the same physical CPU, call into the
385 * hypervisor code to nuke the relevant contexts.
386 *
387 * We might get preempted before the vCPU actually runs, but
388 * over-invalidation doesn't affect correctness.
389 */
390 if (*last_ran != vcpu->vcpu_id) {
391 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
392 *last_ran = vcpu->vcpu_id;
393 }
394
395 vcpu->cpu = cpu;
396
397 kvm_vgic_load(vcpu);
398 kvm_timer_vcpu_load(vcpu);
399 if (has_vhe())
400 kvm_vcpu_load_sysregs_vhe(vcpu);
401 kvm_arch_vcpu_load_fp(vcpu);
402 kvm_vcpu_pmu_restore_guest(vcpu);
403 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
404 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
405
406 if (single_task_running())
407 vcpu_clear_wfx_traps(vcpu);
408 else
409 vcpu_set_wfx_traps(vcpu);
410
411 if (vcpu_has_ptrauth(vcpu))
412 vcpu_ptrauth_disable(vcpu);
413 kvm_arch_vcpu_load_debug_state_flags(vcpu);
414 }
415
416 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
417 {
418 kvm_arch_vcpu_put_debug_state_flags(vcpu);
419 kvm_arch_vcpu_put_fp(vcpu);
420 if (has_vhe())
421 kvm_vcpu_put_sysregs_vhe(vcpu);
422 kvm_timer_vcpu_put(vcpu);
423 kvm_vgic_put(vcpu);
424 kvm_vcpu_pmu_restore_host(vcpu);
425
426 vcpu->cpu = -1;
427 }
428
429 static void vcpu_power_off(struct kvm_vcpu *vcpu)
430 {
431 vcpu->arch.power_off = true;
432 kvm_make_request(KVM_REQ_SLEEP, vcpu);
433 kvm_vcpu_kick(vcpu);
434 }
435
436 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
437 struct kvm_mp_state *mp_state)
438 {
439 if (vcpu->arch.power_off)
440 mp_state->mp_state = KVM_MP_STATE_STOPPED;
441 else
442 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
443
444 return 0;
445 }
446
447 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
448 struct kvm_mp_state *mp_state)
449 {
450 int ret = 0;
451
452 switch (mp_state->mp_state) {
453 case KVM_MP_STATE_RUNNABLE:
454 vcpu->arch.power_off = false;
455 break;
456 case KVM_MP_STATE_STOPPED:
457 vcpu_power_off(vcpu);
458 break;
459 default:
460 ret = -EINVAL;
461 }
462
463 return ret;
464 }
465
466 /**
467 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
468 * @v: The VCPU pointer
469 *
470 * If the guest CPU is not waiting for interrupts or an interrupt line is
471 * asserted, the CPU is by definition runnable.
472 */
473 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
474 {
475 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
476 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
477 && !v->arch.power_off && !v->arch.pause);
478 }
479
480 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
481 {
482 return vcpu_mode_priv(vcpu);
483 }
484
485 #ifdef CONFIG_GUEST_PERF_EVENTS
486 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
487 {
488 return *vcpu_pc(vcpu);
489 }
490 #endif
491
492 /* Just ensure a guest exit from a particular CPU */
493 static void exit_vm_noop(void *info)
494 {
495 }
496
497 void force_vm_exit(const cpumask_t *mask)
498 {
499 preempt_disable();
500 smp_call_function_many(mask, exit_vm_noop, NULL, true);
501 preempt_enable();
502 }
503
504 /**
505 * need_new_vmid_gen - check that the VMID is still valid
506 * @vmid: The VMID to check
507 *
508 * return true if there is a new generation of VMIDs being used
509 *
510 * The hardware supports a limited set of values with the value zero reserved
511 * for the host, so we check if an assigned value belongs to a previous
512 * generation, which requires us to assign a new value. If we're the first to
513 * use a VMID for the new generation, we must flush necessary caches and TLBs
514 * on all CPUs.
515 */
516 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517 {
518 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
519 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 }
522
523 /**
524 * update_vmid - Update the vmid with a valid VMID for the current generation
525 * @vmid: The stage-2 VMID information struct
526 */
527 static void update_vmid(struct kvm_vmid *vmid)
528 {
529 if (!need_new_vmid_gen(vmid))
530 return;
531
532 spin_lock(&kvm_vmid_lock);
533
534 /*
535 * We need to re-check the vmid_gen here to ensure that if another vcpu
536 * already allocated a valid vmid for this vm, then this vcpu should
537 * use the same vmid.
538 */
539 if (!need_new_vmid_gen(vmid)) {
540 spin_unlock(&kvm_vmid_lock);
541 return;
542 }
543
544 /* First user of a new VMID generation? */
545 if (unlikely(kvm_next_vmid == 0)) {
546 atomic64_inc(&kvm_vmid_gen);
547 kvm_next_vmid = 1;
548
549 /*
550 * On SMP we know no other CPUs can use this CPU's or each
551 * other's VMID after force_vm_exit returns since the
552 * kvm_vmid_lock blocks them from reentry to the guest.
553 */
554 force_vm_exit(cpu_all_mask);
555 /*
556 * Now broadcast TLB + ICACHE invalidation over the inner
557 * shareable domain to make sure all data structures are
558 * clean.
559 */
560 kvm_call_hyp(__kvm_flush_vm_context);
561 }
562
563 WRITE_ONCE(vmid->vmid, kvm_next_vmid);
564 kvm_next_vmid++;
565 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566
567 smp_wmb();
568 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569
570 spin_unlock(&kvm_vmid_lock);
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575 return vcpu->arch.target >= 0;
576 }
577
578 /*
579 * Handle both the initialisation that is being done when the vcpu is
580 * run for the first time, as well as the updates that must be
581 * performed each time we get a new thread dealing with this vcpu.
582 */
583 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
584 {
585 struct kvm *kvm = vcpu->kvm;
586 int ret;
587
588 if (!kvm_vcpu_initialized(vcpu))
589 return -ENOEXEC;
590
591 if (!kvm_arm_vcpu_is_finalized(vcpu))
592 return -EPERM;
593
594 ret = kvm_arch_vcpu_run_map_fp(vcpu);
595 if (ret)
596 return ret;
597
598 if (likely(vcpu_has_run_once(vcpu)))
599 return 0;
600
601 kvm_arm_vcpu_init_debug(vcpu);
602
603 if (likely(irqchip_in_kernel(kvm))) {
604 /*
605 * Map the VGIC hardware resources before running a vcpu the
606 * first time on this VM.
607 */
608 ret = kvm_vgic_map_resources(kvm);
609 if (ret)
610 return ret;
611 }
612
613 ret = kvm_timer_enable(vcpu);
614 if (ret)
615 return ret;
616
617 ret = kvm_arm_pmu_v3_enable(vcpu);
618 if (ret)
619 return ret;
620
621 if (!irqchip_in_kernel(kvm)) {
622 /*
623 * Tell the rest of the code that there are userspace irqchip
624 * VMs in the wild.
625 */
626 static_branch_inc(&userspace_irqchip_in_use);
627 }
628
629 /*
630 * Initialize traps for protected VMs.
631 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
632 * the code is in place for first run initialization at EL2.
633 */
634 if (kvm_vm_is_protected(kvm))
635 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
636
637 return ret;
638 }
639
640 bool kvm_arch_intc_initialized(struct kvm *kvm)
641 {
642 return vgic_initialized(kvm);
643 }
644
645 void kvm_arm_halt_guest(struct kvm *kvm)
646 {
647 unsigned long i;
648 struct kvm_vcpu *vcpu;
649
650 kvm_for_each_vcpu(i, vcpu, kvm)
651 vcpu->arch.pause = true;
652 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
653 }
654
655 void kvm_arm_resume_guest(struct kvm *kvm)
656 {
657 unsigned long i;
658 struct kvm_vcpu *vcpu;
659
660 kvm_for_each_vcpu(i, vcpu, kvm) {
661 vcpu->arch.pause = false;
662 __kvm_vcpu_wake_up(vcpu);
663 }
664 }
665
666 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
667 {
668 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
669
670 rcuwait_wait_event(wait,
671 (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
672 TASK_INTERRUPTIBLE);
673
674 if (vcpu->arch.power_off || vcpu->arch.pause) {
675 /* Awaken to handle a signal, request we sleep again later. */
676 kvm_make_request(KVM_REQ_SLEEP, vcpu);
677 }
678
679 /*
680 * Make sure we will observe a potential reset request if we've
681 * observed a change to the power state. Pairs with the smp_wmb() in
682 * kvm_psci_vcpu_on().
683 */
684 smp_rmb();
685 }
686
687 /**
688 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
689 * @vcpu: The VCPU pointer
690 *
691 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
692 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
693 * on when a wake event arrives, e.g. there may already be a pending wake event.
694 */
695 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
696 {
697 /*
698 * Sync back the state of the GIC CPU interface so that we have
699 * the latest PMR and group enables. This ensures that
700 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
701 * we have pending interrupts, e.g. when determining if the
702 * vCPU should block.
703 *
704 * For the same reason, we want to tell GICv4 that we need
705 * doorbells to be signalled, should an interrupt become pending.
706 */
707 preempt_disable();
708 kvm_vgic_vmcr_sync(vcpu);
709 vgic_v4_put(vcpu, true);
710 preempt_enable();
711
712 kvm_vcpu_halt(vcpu);
713 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
714
715 preempt_disable();
716 vgic_v4_load(vcpu);
717 preempt_enable();
718 }
719
720 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
721 {
722 if (kvm_request_pending(vcpu)) {
723 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
724 vcpu_req_sleep(vcpu);
725
726 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
727 kvm_reset_vcpu(vcpu);
728
729 /*
730 * Clear IRQ_PENDING requests that were made to guarantee
731 * that a VCPU sees new virtual interrupts.
732 */
733 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
734
735 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
736 kvm_update_stolen_time(vcpu);
737
738 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
739 /* The distributor enable bits were changed */
740 preempt_disable();
741 vgic_v4_put(vcpu, false);
742 vgic_v4_load(vcpu);
743 preempt_enable();
744 }
745
746 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
747 kvm_pmu_handle_pmcr(vcpu,
748 __vcpu_sys_reg(vcpu, PMCR_EL0));
749 }
750 }
751
752 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
753 {
754 if (likely(!vcpu_mode_is_32bit(vcpu)))
755 return false;
756
757 return !system_supports_32bit_el0() ||
758 static_branch_unlikely(&arm64_mismatched_32bit_el0);
759 }
760
761 /**
762 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
763 * @vcpu: The VCPU pointer
764 * @ret: Pointer to write optional return code
765 *
766 * Returns: true if the VCPU needs to return to a preemptible + interruptible
767 * and skip guest entry.
768 *
769 * This function disambiguates between two different types of exits: exits to a
770 * preemptible + interruptible kernel context and exits to userspace. For an
771 * exit to userspace, this function will write the return code to ret and return
772 * true. For an exit to preemptible + interruptible kernel context (i.e. check
773 * for pending work and re-enter), return true without writing to ret.
774 */
775 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
776 {
777 struct kvm_run *run = vcpu->run;
778
779 /*
780 * If we're using a userspace irqchip, then check if we need
781 * to tell a userspace irqchip about timer or PMU level
782 * changes and if so, exit to userspace (the actual level
783 * state gets updated in kvm_timer_update_run and
784 * kvm_pmu_update_run below).
785 */
786 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
787 if (kvm_timer_should_notify_user(vcpu) ||
788 kvm_pmu_should_notify_user(vcpu)) {
789 *ret = -EINTR;
790 run->exit_reason = KVM_EXIT_INTR;
791 return true;
792 }
793 }
794
795 return kvm_request_pending(vcpu) ||
796 need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
797 xfer_to_guest_mode_work_pending();
798 }
799
800 /**
801 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
802 * @vcpu: The VCPU pointer
803 *
804 * This function is called through the VCPU_RUN ioctl called from user space. It
805 * will execute VM code in a loop until the time slice for the process is used
806 * or some emulation is needed from user space in which case the function will
807 * return with return value 0 and with the kvm_run structure filled in with the
808 * required data for the requested emulation.
809 */
810 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
811 {
812 struct kvm_run *run = vcpu->run;
813 int ret;
814
815 if (run->exit_reason == KVM_EXIT_MMIO) {
816 ret = kvm_handle_mmio_return(vcpu);
817 if (ret)
818 return ret;
819 }
820
821 vcpu_load(vcpu);
822
823 if (run->immediate_exit) {
824 ret = -EINTR;
825 goto out;
826 }
827
828 kvm_sigset_activate(vcpu);
829
830 ret = 1;
831 run->exit_reason = KVM_EXIT_UNKNOWN;
832 while (ret > 0) {
833 /*
834 * Check conditions before entering the guest
835 */
836 ret = xfer_to_guest_mode_handle_work(vcpu);
837 if (!ret)
838 ret = 1;
839
840 update_vmid(&vcpu->arch.hw_mmu->vmid);
841
842 check_vcpu_requests(vcpu);
843
844 /*
845 * Preparing the interrupts to be injected also
846 * involves poking the GIC, which must be done in a
847 * non-preemptible context.
848 */
849 preempt_disable();
850
851 kvm_pmu_flush_hwstate(vcpu);
852
853 local_irq_disable();
854
855 kvm_vgic_flush_hwstate(vcpu);
856
857 /*
858 * Ensure we set mode to IN_GUEST_MODE after we disable
859 * interrupts and before the final VCPU requests check.
860 * See the comment in kvm_vcpu_exiting_guest_mode() and
861 * Documentation/virt/kvm/vcpu-requests.rst
862 */
863 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
864
865 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
866 vcpu->mode = OUTSIDE_GUEST_MODE;
867 isb(); /* Ensure work in x_flush_hwstate is committed */
868 kvm_pmu_sync_hwstate(vcpu);
869 if (static_branch_unlikely(&userspace_irqchip_in_use))
870 kvm_timer_sync_user(vcpu);
871 kvm_vgic_sync_hwstate(vcpu);
872 local_irq_enable();
873 preempt_enable();
874 continue;
875 }
876
877 kvm_arm_setup_debug(vcpu);
878 kvm_arch_vcpu_ctxflush_fp(vcpu);
879
880 /**************************************************************
881 * Enter the guest
882 */
883 trace_kvm_entry(*vcpu_pc(vcpu));
884 guest_enter_irqoff();
885
886 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
887
888 vcpu->mode = OUTSIDE_GUEST_MODE;
889 vcpu->stat.exits++;
890 /*
891 * Back from guest
892 *************************************************************/
893
894 kvm_arm_clear_debug(vcpu);
895
896 /*
897 * We must sync the PMU state before the vgic state so
898 * that the vgic can properly sample the updated state of the
899 * interrupt line.
900 */
901 kvm_pmu_sync_hwstate(vcpu);
902
903 /*
904 * Sync the vgic state before syncing the timer state because
905 * the timer code needs to know if the virtual timer
906 * interrupts are active.
907 */
908 kvm_vgic_sync_hwstate(vcpu);
909
910 /*
911 * Sync the timer hardware state before enabling interrupts as
912 * we don't want vtimer interrupts to race with syncing the
913 * timer virtual interrupt state.
914 */
915 if (static_branch_unlikely(&userspace_irqchip_in_use))
916 kvm_timer_sync_user(vcpu);
917
918 kvm_arch_vcpu_ctxsync_fp(vcpu);
919
920 /*
921 * We may have taken a host interrupt in HYP mode (ie
922 * while executing the guest). This interrupt is still
923 * pending, as we haven't serviced it yet!
924 *
925 * We're now back in SVC mode, with interrupts
926 * disabled. Enabling the interrupts now will have
927 * the effect of taking the interrupt again, in SVC
928 * mode this time.
929 */
930 local_irq_enable();
931
932 /*
933 * We do local_irq_enable() before calling guest_exit() so
934 * that if a timer interrupt hits while running the guest we
935 * account that tick as being spent in the guest. We enable
936 * preemption after calling guest_exit() so that if we get
937 * preempted we make sure ticks after that is not counted as
938 * guest time.
939 */
940 guest_exit();
941 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
942
943 /* Exit types that need handling before we can be preempted */
944 handle_exit_early(vcpu, ret);
945
946 preempt_enable();
947
948 /*
949 * The ARMv8 architecture doesn't give the hypervisor
950 * a mechanism to prevent a guest from dropping to AArch32 EL0
951 * if implemented by the CPU. If we spot the guest in such
952 * state and that we decided it wasn't supposed to do so (like
953 * with the asymmetric AArch32 case), return to userspace with
954 * a fatal error.
955 */
956 if (vcpu_mode_is_bad_32bit(vcpu)) {
957 /*
958 * As we have caught the guest red-handed, decide that
959 * it isn't fit for purpose anymore by making the vcpu
960 * invalid. The VMM can try and fix it by issuing a
961 * KVM_ARM_VCPU_INIT if it really wants to.
962 */
963 vcpu->arch.target = -1;
964 ret = ARM_EXCEPTION_IL;
965 }
966
967 ret = handle_exit(vcpu, ret);
968 }
969
970 /* Tell userspace about in-kernel device output levels */
971 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
972 kvm_timer_update_run(vcpu);
973 kvm_pmu_update_run(vcpu);
974 }
975
976 kvm_sigset_deactivate(vcpu);
977
978 out:
979 /*
980 * In the unlikely event that we are returning to userspace
981 * with pending exceptions or PC adjustment, commit these
982 * adjustments in order to give userspace a consistent view of
983 * the vcpu state. Note that this relies on __kvm_adjust_pc()
984 * being preempt-safe on VHE.
985 */
986 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
987 KVM_ARM64_INCREMENT_PC)))
988 kvm_call_hyp(__kvm_adjust_pc, vcpu);
989
990 vcpu_put(vcpu);
991 return ret;
992 }
993
994 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
995 {
996 int bit_index;
997 bool set;
998 unsigned long *hcr;
999
1000 if (number == KVM_ARM_IRQ_CPU_IRQ)
1001 bit_index = __ffs(HCR_VI);
1002 else /* KVM_ARM_IRQ_CPU_FIQ */
1003 bit_index = __ffs(HCR_VF);
1004
1005 hcr = vcpu_hcr(vcpu);
1006 if (level)
1007 set = test_and_set_bit(bit_index, hcr);
1008 else
1009 set = test_and_clear_bit(bit_index, hcr);
1010
1011 /*
1012 * If we didn't change anything, no need to wake up or kick other CPUs
1013 */
1014 if (set == level)
1015 return 0;
1016
1017 /*
1018 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1019 * trigger a world-switch round on the running physical CPU to set the
1020 * virtual IRQ/FIQ fields in the HCR appropriately.
1021 */
1022 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1023 kvm_vcpu_kick(vcpu);
1024
1025 return 0;
1026 }
1027
1028 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1029 bool line_status)
1030 {
1031 u32 irq = irq_level->irq;
1032 unsigned int irq_type, vcpu_idx, irq_num;
1033 int nrcpus = atomic_read(&kvm->online_vcpus);
1034 struct kvm_vcpu *vcpu = NULL;
1035 bool level = irq_level->level;
1036
1037 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1038 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1039 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1040 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1041
1042 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1043
1044 switch (irq_type) {
1045 case KVM_ARM_IRQ_TYPE_CPU:
1046 if (irqchip_in_kernel(kvm))
1047 return -ENXIO;
1048
1049 if (vcpu_idx >= nrcpus)
1050 return -EINVAL;
1051
1052 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1053 if (!vcpu)
1054 return -EINVAL;
1055
1056 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1057 return -EINVAL;
1058
1059 return vcpu_interrupt_line(vcpu, irq_num, level);
1060 case KVM_ARM_IRQ_TYPE_PPI:
1061 if (!irqchip_in_kernel(kvm))
1062 return -ENXIO;
1063
1064 if (vcpu_idx >= nrcpus)
1065 return -EINVAL;
1066
1067 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1068 if (!vcpu)
1069 return -EINVAL;
1070
1071 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1072 return -EINVAL;
1073
1074 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1075 case KVM_ARM_IRQ_TYPE_SPI:
1076 if (!irqchip_in_kernel(kvm))
1077 return -ENXIO;
1078
1079 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1080 return -EINVAL;
1081
1082 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1083 }
1084
1085 return -EINVAL;
1086 }
1087
1088 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1089 const struct kvm_vcpu_init *init)
1090 {
1091 unsigned int i, ret;
1092 u32 phys_target = kvm_target_cpu();
1093
1094 if (init->target != phys_target)
1095 return -EINVAL;
1096
1097 /*
1098 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1099 * use the same target.
1100 */
1101 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1102 return -EINVAL;
1103
1104 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1105 for (i = 0; i < sizeof(init->features) * 8; i++) {
1106 bool set = (init->features[i / 32] & (1 << (i % 32)));
1107
1108 if (set && i >= KVM_VCPU_MAX_FEATURES)
1109 return -ENOENT;
1110
1111 /*
1112 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1113 * use the same feature set.
1114 */
1115 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1116 test_bit(i, vcpu->arch.features) != set)
1117 return -EINVAL;
1118
1119 if (set)
1120 set_bit(i, vcpu->arch.features);
1121 }
1122
1123 vcpu->arch.target = phys_target;
1124
1125 /* Now we know what it is, we can reset it. */
1126 ret = kvm_reset_vcpu(vcpu);
1127 if (ret) {
1128 vcpu->arch.target = -1;
1129 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1130 }
1131
1132 return ret;
1133 }
1134
1135 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1136 struct kvm_vcpu_init *init)
1137 {
1138 int ret;
1139
1140 ret = kvm_vcpu_set_target(vcpu, init);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Ensure a rebooted VM will fault in RAM pages and detect if the
1146 * guest MMU is turned off and flush the caches as needed.
1147 *
1148 * S2FWB enforces all memory accesses to RAM being cacheable,
1149 * ensuring that the data side is always coherent. We still
1150 * need to invalidate the I-cache though, as FWB does *not*
1151 * imply CTR_EL0.DIC.
1152 */
1153 if (vcpu_has_run_once(vcpu)) {
1154 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1155 stage2_unmap_vm(vcpu->kvm);
1156 else
1157 icache_inval_all_pou();
1158 }
1159
1160 vcpu_reset_hcr(vcpu);
1161 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1162
1163 /*
1164 * Handle the "start in power-off" case.
1165 */
1166 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1167 vcpu_power_off(vcpu);
1168 else
1169 vcpu->arch.power_off = false;
1170
1171 return 0;
1172 }
1173
1174 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1175 struct kvm_device_attr *attr)
1176 {
1177 int ret = -ENXIO;
1178
1179 switch (attr->group) {
1180 default:
1181 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1182 break;
1183 }
1184
1185 return ret;
1186 }
1187
1188 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1189 struct kvm_device_attr *attr)
1190 {
1191 int ret = -ENXIO;
1192
1193 switch (attr->group) {
1194 default:
1195 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1196 break;
1197 }
1198
1199 return ret;
1200 }
1201
1202 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1203 struct kvm_device_attr *attr)
1204 {
1205 int ret = -ENXIO;
1206
1207 switch (attr->group) {
1208 default:
1209 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1210 break;
1211 }
1212
1213 return ret;
1214 }
1215
1216 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1217 struct kvm_vcpu_events *events)
1218 {
1219 memset(events, 0, sizeof(*events));
1220
1221 return __kvm_arm_vcpu_get_events(vcpu, events);
1222 }
1223
1224 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1225 struct kvm_vcpu_events *events)
1226 {
1227 int i;
1228
1229 /* check whether the reserved field is zero */
1230 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1231 if (events->reserved[i])
1232 return -EINVAL;
1233
1234 /* check whether the pad field is zero */
1235 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1236 if (events->exception.pad[i])
1237 return -EINVAL;
1238
1239 return __kvm_arm_vcpu_set_events(vcpu, events);
1240 }
1241
1242 long kvm_arch_vcpu_ioctl(struct file *filp,
1243 unsigned int ioctl, unsigned long arg)
1244 {
1245 struct kvm_vcpu *vcpu = filp->private_data;
1246 void __user *argp = (void __user *)arg;
1247 struct kvm_device_attr attr;
1248 long r;
1249
1250 switch (ioctl) {
1251 case KVM_ARM_VCPU_INIT: {
1252 struct kvm_vcpu_init init;
1253
1254 r = -EFAULT;
1255 if (copy_from_user(&init, argp, sizeof(init)))
1256 break;
1257
1258 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1259 break;
1260 }
1261 case KVM_SET_ONE_REG:
1262 case KVM_GET_ONE_REG: {
1263 struct kvm_one_reg reg;
1264
1265 r = -ENOEXEC;
1266 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1267 break;
1268
1269 r = -EFAULT;
1270 if (copy_from_user(&reg, argp, sizeof(reg)))
1271 break;
1272
1273 /*
1274 * We could owe a reset due to PSCI. Handle the pending reset
1275 * here to ensure userspace register accesses are ordered after
1276 * the reset.
1277 */
1278 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1279 kvm_reset_vcpu(vcpu);
1280
1281 if (ioctl == KVM_SET_ONE_REG)
1282 r = kvm_arm_set_reg(vcpu, &reg);
1283 else
1284 r = kvm_arm_get_reg(vcpu, &reg);
1285 break;
1286 }
1287 case KVM_GET_REG_LIST: {
1288 struct kvm_reg_list __user *user_list = argp;
1289 struct kvm_reg_list reg_list;
1290 unsigned n;
1291
1292 r = -ENOEXEC;
1293 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1294 break;
1295
1296 r = -EPERM;
1297 if (!kvm_arm_vcpu_is_finalized(vcpu))
1298 break;
1299
1300 r = -EFAULT;
1301 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1302 break;
1303 n = reg_list.n;
1304 reg_list.n = kvm_arm_num_regs(vcpu);
1305 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1306 break;
1307 r = -E2BIG;
1308 if (n < reg_list.n)
1309 break;
1310 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1311 break;
1312 }
1313 case KVM_SET_DEVICE_ATTR: {
1314 r = -EFAULT;
1315 if (copy_from_user(&attr, argp, sizeof(attr)))
1316 break;
1317 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1318 break;
1319 }
1320 case KVM_GET_DEVICE_ATTR: {
1321 r = -EFAULT;
1322 if (copy_from_user(&attr, argp, sizeof(attr)))
1323 break;
1324 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1325 break;
1326 }
1327 case KVM_HAS_DEVICE_ATTR: {
1328 r = -EFAULT;
1329 if (copy_from_user(&attr, argp, sizeof(attr)))
1330 break;
1331 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1332 break;
1333 }
1334 case KVM_GET_VCPU_EVENTS: {
1335 struct kvm_vcpu_events events;
1336
1337 if (kvm_arm_vcpu_get_events(vcpu, &events))
1338 return -EINVAL;
1339
1340 if (copy_to_user(argp, &events, sizeof(events)))
1341 return -EFAULT;
1342
1343 return 0;
1344 }
1345 case KVM_SET_VCPU_EVENTS: {
1346 struct kvm_vcpu_events events;
1347
1348 if (copy_from_user(&events, argp, sizeof(events)))
1349 return -EFAULT;
1350
1351 return kvm_arm_vcpu_set_events(vcpu, &events);
1352 }
1353 case KVM_ARM_VCPU_FINALIZE: {
1354 int what;
1355
1356 if (!kvm_vcpu_initialized(vcpu))
1357 return -ENOEXEC;
1358
1359 if (get_user(what, (const int __user *)argp))
1360 return -EFAULT;
1361
1362 return kvm_arm_vcpu_finalize(vcpu, what);
1363 }
1364 default:
1365 r = -EINVAL;
1366 }
1367
1368 return r;
1369 }
1370
1371 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1372 {
1373
1374 }
1375
1376 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1377 const struct kvm_memory_slot *memslot)
1378 {
1379 kvm_flush_remote_tlbs(kvm);
1380 }
1381
1382 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1383 struct kvm_arm_device_addr *dev_addr)
1384 {
1385 unsigned long dev_id, type;
1386
1387 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1388 KVM_ARM_DEVICE_ID_SHIFT;
1389 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1390 KVM_ARM_DEVICE_TYPE_SHIFT;
1391
1392 switch (dev_id) {
1393 case KVM_ARM_DEVICE_VGIC_V2:
1394 if (!vgic_present)
1395 return -ENXIO;
1396 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1397 default:
1398 return -ENODEV;
1399 }
1400 }
1401
1402 long kvm_arch_vm_ioctl(struct file *filp,
1403 unsigned int ioctl, unsigned long arg)
1404 {
1405 struct kvm *kvm = filp->private_data;
1406 void __user *argp = (void __user *)arg;
1407
1408 switch (ioctl) {
1409 case KVM_CREATE_IRQCHIP: {
1410 int ret;
1411 if (!vgic_present)
1412 return -ENXIO;
1413 mutex_lock(&kvm->lock);
1414 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1415 mutex_unlock(&kvm->lock);
1416 return ret;
1417 }
1418 case KVM_ARM_SET_DEVICE_ADDR: {
1419 struct kvm_arm_device_addr dev_addr;
1420
1421 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1422 return -EFAULT;
1423 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1424 }
1425 case KVM_ARM_PREFERRED_TARGET: {
1426 struct kvm_vcpu_init init;
1427
1428 kvm_vcpu_preferred_target(&init);
1429
1430 if (copy_to_user(argp, &init, sizeof(init)))
1431 return -EFAULT;
1432
1433 return 0;
1434 }
1435 case KVM_ARM_MTE_COPY_TAGS: {
1436 struct kvm_arm_copy_mte_tags copy_tags;
1437
1438 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1439 return -EFAULT;
1440 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1441 }
1442 default:
1443 return -EINVAL;
1444 }
1445 }
1446
1447 static unsigned long nvhe_percpu_size(void)
1448 {
1449 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1450 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1451 }
1452
1453 static unsigned long nvhe_percpu_order(void)
1454 {
1455 unsigned long size = nvhe_percpu_size();
1456
1457 return size ? get_order(size) : 0;
1458 }
1459
1460 /* A lookup table holding the hypervisor VA for each vector slot */
1461 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1462
1463 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1464 {
1465 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1466 }
1467
1468 static int kvm_init_vector_slots(void)
1469 {
1470 int err;
1471 void *base;
1472
1473 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1474 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1475
1476 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1477 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1478
1479 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1480 return 0;
1481
1482 if (!has_vhe()) {
1483 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1484 __BP_HARDEN_HYP_VECS_SZ, &base);
1485 if (err)
1486 return err;
1487 }
1488
1489 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1490 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1491 return 0;
1492 }
1493
1494 static void cpu_prepare_hyp_mode(int cpu)
1495 {
1496 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1497 unsigned long tcr;
1498
1499 /*
1500 * Calculate the raw per-cpu offset without a translation from the
1501 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1502 * so that we can use adr_l to access per-cpu variables in EL2.
1503 * Also drop the KASAN tag which gets in the way...
1504 */
1505 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1506 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1507
1508 params->mair_el2 = read_sysreg(mair_el1);
1509
1510 /*
1511 * The ID map may be configured to use an extended virtual address
1512 * range. This is only the case if system RAM is out of range for the
1513 * currently configured page size and VA_BITS, in which case we will
1514 * also need the extended virtual range for the HYP ID map, or we won't
1515 * be able to enable the EL2 MMU.
1516 *
1517 * However, at EL2, there is only one TTBR register, and we can't switch
1518 * between translation tables *and* update TCR_EL2.T0SZ at the same
1519 * time. Bottom line: we need to use the extended range with *both* our
1520 * translation tables.
1521 *
1522 * So use the same T0SZ value we use for the ID map.
1523 */
1524 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1525 tcr &= ~TCR_T0SZ_MASK;
1526 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1527 params->tcr_el2 = tcr;
1528
1529 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1530 params->pgd_pa = kvm_mmu_get_httbr();
1531 if (is_protected_kvm_enabled())
1532 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1533 else
1534 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1535 params->vttbr = params->vtcr = 0;
1536
1537 /*
1538 * Flush the init params from the data cache because the struct will
1539 * be read while the MMU is off.
1540 */
1541 kvm_flush_dcache_to_poc(params, sizeof(*params));
1542 }
1543
1544 static void hyp_install_host_vector(void)
1545 {
1546 struct kvm_nvhe_init_params *params;
1547 struct arm_smccc_res res;
1548
1549 /* Switch from the HYP stub to our own HYP init vector */
1550 __hyp_set_vectors(kvm_get_idmap_vector());
1551
1552 /*
1553 * Call initialization code, and switch to the full blown HYP code.
1554 * If the cpucaps haven't been finalized yet, something has gone very
1555 * wrong, and hyp will crash and burn when it uses any
1556 * cpus_have_const_cap() wrapper.
1557 */
1558 BUG_ON(!system_capabilities_finalized());
1559 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1560 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1561 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1562 }
1563
1564 static void cpu_init_hyp_mode(void)
1565 {
1566 hyp_install_host_vector();
1567
1568 /*
1569 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1570 * at EL2.
1571 */
1572 if (this_cpu_has_cap(ARM64_SSBS) &&
1573 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1574 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1575 }
1576 }
1577
1578 static void cpu_hyp_reset(void)
1579 {
1580 if (!is_kernel_in_hyp_mode())
1581 __hyp_reset_vectors();
1582 }
1583
1584 /*
1585 * EL2 vectors can be mapped and rerouted in a number of ways,
1586 * depending on the kernel configuration and CPU present:
1587 *
1588 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1589 * placed in one of the vector slots, which is executed before jumping
1590 * to the real vectors.
1591 *
1592 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1593 * containing the hardening sequence is mapped next to the idmap page,
1594 * and executed before jumping to the real vectors.
1595 *
1596 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1597 * empty slot is selected, mapped next to the idmap page, and
1598 * executed before jumping to the real vectors.
1599 *
1600 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1601 * VHE, as we don't have hypervisor-specific mappings. If the system
1602 * is VHE and yet selects this capability, it will be ignored.
1603 */
1604 static void cpu_set_hyp_vector(void)
1605 {
1606 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1607 void *vector = hyp_spectre_vector_selector[data->slot];
1608
1609 if (!is_protected_kvm_enabled())
1610 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1611 else
1612 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1613 }
1614
1615 static void cpu_hyp_init_context(void)
1616 {
1617 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1618
1619 if (!is_kernel_in_hyp_mode())
1620 cpu_init_hyp_mode();
1621 }
1622
1623 static void cpu_hyp_init_features(void)
1624 {
1625 cpu_set_hyp_vector();
1626 kvm_arm_init_debug();
1627
1628 if (is_kernel_in_hyp_mode())
1629 kvm_timer_init_vhe();
1630
1631 if (vgic_present)
1632 kvm_vgic_init_cpu_hardware();
1633 }
1634
1635 static void cpu_hyp_reinit(void)
1636 {
1637 cpu_hyp_reset();
1638 cpu_hyp_init_context();
1639 cpu_hyp_init_features();
1640 }
1641
1642 static void _kvm_arch_hardware_enable(void *discard)
1643 {
1644 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1645 cpu_hyp_reinit();
1646 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1647 }
1648 }
1649
1650 int kvm_arch_hardware_enable(void)
1651 {
1652 _kvm_arch_hardware_enable(NULL);
1653 return 0;
1654 }
1655
1656 static void _kvm_arch_hardware_disable(void *discard)
1657 {
1658 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1659 cpu_hyp_reset();
1660 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1661 }
1662 }
1663
1664 void kvm_arch_hardware_disable(void)
1665 {
1666 if (!is_protected_kvm_enabled())
1667 _kvm_arch_hardware_disable(NULL);
1668 }
1669
1670 #ifdef CONFIG_CPU_PM
1671 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1672 unsigned long cmd,
1673 void *v)
1674 {
1675 /*
1676 * kvm_arm_hardware_enabled is left with its old value over
1677 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1678 * re-enable hyp.
1679 */
1680 switch (cmd) {
1681 case CPU_PM_ENTER:
1682 if (__this_cpu_read(kvm_arm_hardware_enabled))
1683 /*
1684 * don't update kvm_arm_hardware_enabled here
1685 * so that the hardware will be re-enabled
1686 * when we resume. See below.
1687 */
1688 cpu_hyp_reset();
1689
1690 return NOTIFY_OK;
1691 case CPU_PM_ENTER_FAILED:
1692 case CPU_PM_EXIT:
1693 if (__this_cpu_read(kvm_arm_hardware_enabled))
1694 /* The hardware was enabled before suspend. */
1695 cpu_hyp_reinit();
1696
1697 return NOTIFY_OK;
1698
1699 default:
1700 return NOTIFY_DONE;
1701 }
1702 }
1703
1704 static struct notifier_block hyp_init_cpu_pm_nb = {
1705 .notifier_call = hyp_init_cpu_pm_notifier,
1706 };
1707
1708 static void hyp_cpu_pm_init(void)
1709 {
1710 if (!is_protected_kvm_enabled())
1711 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1712 }
1713 static void hyp_cpu_pm_exit(void)
1714 {
1715 if (!is_protected_kvm_enabled())
1716 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1717 }
1718 #else
1719 static inline void hyp_cpu_pm_init(void)
1720 {
1721 }
1722 static inline void hyp_cpu_pm_exit(void)
1723 {
1724 }
1725 #endif
1726
1727 static void init_cpu_logical_map(void)
1728 {
1729 unsigned int cpu;
1730
1731 /*
1732 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1733 * Only copy the set of online CPUs whose features have been chacked
1734 * against the finalized system capabilities. The hypervisor will not
1735 * allow any other CPUs from the `possible` set to boot.
1736 */
1737 for_each_online_cpu(cpu)
1738 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1739 }
1740
1741 #define init_psci_0_1_impl_state(config, what) \
1742 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1743
1744 static bool init_psci_relay(void)
1745 {
1746 /*
1747 * If PSCI has not been initialized, protected KVM cannot install
1748 * itself on newly booted CPUs.
1749 */
1750 if (!psci_ops.get_version) {
1751 kvm_err("Cannot initialize protected mode without PSCI\n");
1752 return false;
1753 }
1754
1755 kvm_host_psci_config.version = psci_ops.get_version();
1756
1757 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1758 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1759 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1760 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1761 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1762 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1763 }
1764 return true;
1765 }
1766
1767 static int init_subsystems(void)
1768 {
1769 int err = 0;
1770
1771 /*
1772 * Enable hardware so that subsystem initialisation can access EL2.
1773 */
1774 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1775
1776 /*
1777 * Register CPU lower-power notifier
1778 */
1779 hyp_cpu_pm_init();
1780
1781 /*
1782 * Init HYP view of VGIC
1783 */
1784 err = kvm_vgic_hyp_init();
1785 switch (err) {
1786 case 0:
1787 vgic_present = true;
1788 break;
1789 case -ENODEV:
1790 case -ENXIO:
1791 vgic_present = false;
1792 err = 0;
1793 break;
1794 default:
1795 goto out;
1796 }
1797
1798 /*
1799 * Init HYP architected timer support
1800 */
1801 err = kvm_timer_hyp_init(vgic_present);
1802 if (err)
1803 goto out;
1804
1805 kvm_register_perf_callbacks(NULL);
1806
1807 kvm_sys_reg_table_init();
1808
1809 out:
1810 if (err || !is_protected_kvm_enabled())
1811 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1812
1813 return err;
1814 }
1815
1816 static void teardown_hyp_mode(void)
1817 {
1818 int cpu;
1819
1820 free_hyp_pgds();
1821 for_each_possible_cpu(cpu) {
1822 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1823 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1824 }
1825 }
1826
1827 static int do_pkvm_init(u32 hyp_va_bits)
1828 {
1829 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1830 int ret;
1831
1832 preempt_disable();
1833 cpu_hyp_init_context();
1834 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1835 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1836 hyp_va_bits);
1837 cpu_hyp_init_features();
1838
1839 /*
1840 * The stub hypercalls are now disabled, so set our local flag to
1841 * prevent a later re-init attempt in kvm_arch_hardware_enable().
1842 */
1843 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1844 preempt_enable();
1845
1846 return ret;
1847 }
1848
1849 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1850 {
1851 void *addr = phys_to_virt(hyp_mem_base);
1852 int ret;
1853
1854 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1855 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1856 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1857 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1858 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1859 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1860 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1861
1862 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1863 if (ret)
1864 return ret;
1865
1866 ret = do_pkvm_init(hyp_va_bits);
1867 if (ret)
1868 return ret;
1869
1870 free_hyp_pgds();
1871
1872 return 0;
1873 }
1874
1875 /**
1876 * Inits Hyp-mode on all online CPUs
1877 */
1878 static int init_hyp_mode(void)
1879 {
1880 u32 hyp_va_bits;
1881 int cpu;
1882 int err = -ENOMEM;
1883
1884 /*
1885 * The protected Hyp-mode cannot be initialized if the memory pool
1886 * allocation has failed.
1887 */
1888 if (is_protected_kvm_enabled() && !hyp_mem_base)
1889 goto out_err;
1890
1891 /*
1892 * Allocate Hyp PGD and setup Hyp identity mapping
1893 */
1894 err = kvm_mmu_init(&hyp_va_bits);
1895 if (err)
1896 goto out_err;
1897
1898 /*
1899 * Allocate stack pages for Hypervisor-mode
1900 */
1901 for_each_possible_cpu(cpu) {
1902 unsigned long stack_page;
1903
1904 stack_page = __get_free_page(GFP_KERNEL);
1905 if (!stack_page) {
1906 err = -ENOMEM;
1907 goto out_err;
1908 }
1909
1910 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1911 }
1912
1913 /*
1914 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1915 */
1916 for_each_possible_cpu(cpu) {
1917 struct page *page;
1918 void *page_addr;
1919
1920 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1921 if (!page) {
1922 err = -ENOMEM;
1923 goto out_err;
1924 }
1925
1926 page_addr = page_address(page);
1927 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1928 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1929 }
1930
1931 /*
1932 * Map the Hyp-code called directly from the host
1933 */
1934 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1935 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1936 if (err) {
1937 kvm_err("Cannot map world-switch code\n");
1938 goto out_err;
1939 }
1940
1941 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1942 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1943 if (err) {
1944 kvm_err("Cannot map .hyp.rodata section\n");
1945 goto out_err;
1946 }
1947
1948 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1949 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1950 if (err) {
1951 kvm_err("Cannot map rodata section\n");
1952 goto out_err;
1953 }
1954
1955 /*
1956 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1957 * section thanks to an assertion in the linker script. Map it RW and
1958 * the rest of .bss RO.
1959 */
1960 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1961 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1962 if (err) {
1963 kvm_err("Cannot map hyp bss section: %d\n", err);
1964 goto out_err;
1965 }
1966
1967 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1968 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1969 if (err) {
1970 kvm_err("Cannot map bss section\n");
1971 goto out_err;
1972 }
1973
1974 /*
1975 * Map the Hyp stack pages
1976 */
1977 for_each_possible_cpu(cpu) {
1978 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1979 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1980 PAGE_HYP);
1981
1982 if (err) {
1983 kvm_err("Cannot map hyp stack\n");
1984 goto out_err;
1985 }
1986 }
1987
1988 for_each_possible_cpu(cpu) {
1989 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1990 char *percpu_end = percpu_begin + nvhe_percpu_size();
1991
1992 /* Map Hyp percpu pages */
1993 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1994 if (err) {
1995 kvm_err("Cannot map hyp percpu region\n");
1996 goto out_err;
1997 }
1998
1999 /* Prepare the CPU initialization parameters */
2000 cpu_prepare_hyp_mode(cpu);
2001 }
2002
2003 if (is_protected_kvm_enabled()) {
2004 init_cpu_logical_map();
2005
2006 if (!init_psci_relay()) {
2007 err = -ENODEV;
2008 goto out_err;
2009 }
2010 }
2011
2012 if (is_protected_kvm_enabled()) {
2013 err = kvm_hyp_init_protection(hyp_va_bits);
2014 if (err) {
2015 kvm_err("Failed to init hyp memory protection\n");
2016 goto out_err;
2017 }
2018 }
2019
2020 return 0;
2021
2022 out_err:
2023 teardown_hyp_mode();
2024 kvm_err("error initializing Hyp mode: %d\n", err);
2025 return err;
2026 }
2027
2028 static void _kvm_host_prot_finalize(void *arg)
2029 {
2030 int *err = arg;
2031
2032 if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2033 WRITE_ONCE(*err, -EINVAL);
2034 }
2035
2036 static int pkvm_drop_host_privileges(void)
2037 {
2038 int ret = 0;
2039
2040 /*
2041 * Flip the static key upfront as that may no longer be possible
2042 * once the host stage 2 is installed.
2043 */
2044 static_branch_enable(&kvm_protected_mode_initialized);
2045 on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2046 return ret;
2047 }
2048
2049 static int finalize_hyp_mode(void)
2050 {
2051 if (!is_protected_kvm_enabled())
2052 return 0;
2053
2054 /*
2055 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2056 * at, which would end badly once the section is inaccessible.
2057 * None of other sections should ever be introspected.
2058 */
2059 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2060 return pkvm_drop_host_privileges();
2061 }
2062
2063 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2064 {
2065 struct kvm_vcpu *vcpu;
2066 unsigned long i;
2067
2068 mpidr &= MPIDR_HWID_BITMASK;
2069 kvm_for_each_vcpu(i, vcpu, kvm) {
2070 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2071 return vcpu;
2072 }
2073 return NULL;
2074 }
2075
2076 bool kvm_arch_has_irq_bypass(void)
2077 {
2078 return true;
2079 }
2080
2081 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2082 struct irq_bypass_producer *prod)
2083 {
2084 struct kvm_kernel_irqfd *irqfd =
2085 container_of(cons, struct kvm_kernel_irqfd, consumer);
2086
2087 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2088 &irqfd->irq_entry);
2089 }
2090 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2091 struct irq_bypass_producer *prod)
2092 {
2093 struct kvm_kernel_irqfd *irqfd =
2094 container_of(cons, struct kvm_kernel_irqfd, consumer);
2095
2096 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2097 &irqfd->irq_entry);
2098 }
2099
2100 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2101 {
2102 struct kvm_kernel_irqfd *irqfd =
2103 container_of(cons, struct kvm_kernel_irqfd, consumer);
2104
2105 kvm_arm_halt_guest(irqfd->kvm);
2106 }
2107
2108 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2109 {
2110 struct kvm_kernel_irqfd *irqfd =
2111 container_of(cons, struct kvm_kernel_irqfd, consumer);
2112
2113 kvm_arm_resume_guest(irqfd->kvm);
2114 }
2115
2116 /**
2117 * Initialize Hyp-mode and memory mappings on all CPUs.
2118 */
2119 int kvm_arch_init(void *opaque)
2120 {
2121 int err;
2122 bool in_hyp_mode;
2123
2124 if (!is_hyp_mode_available()) {
2125 kvm_info("HYP mode not available\n");
2126 return -ENODEV;
2127 }
2128
2129 if (kvm_get_mode() == KVM_MODE_NONE) {
2130 kvm_info("KVM disabled from command line\n");
2131 return -ENODEV;
2132 }
2133
2134 in_hyp_mode = is_kernel_in_hyp_mode();
2135
2136 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2137 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2138 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2139 "Only trusted guests should be used on this system.\n");
2140
2141 err = kvm_set_ipa_limit();
2142 if (err)
2143 return err;
2144
2145 err = kvm_arm_init_sve();
2146 if (err)
2147 return err;
2148
2149 if (!in_hyp_mode) {
2150 err = init_hyp_mode();
2151 if (err)
2152 goto out_err;
2153 }
2154
2155 err = kvm_init_vector_slots();
2156 if (err) {
2157 kvm_err("Cannot initialise vector slots\n");
2158 goto out_err;
2159 }
2160
2161 err = init_subsystems();
2162 if (err)
2163 goto out_hyp;
2164
2165 if (!in_hyp_mode) {
2166 err = finalize_hyp_mode();
2167 if (err) {
2168 kvm_err("Failed to finalize Hyp protection\n");
2169 goto out_hyp;
2170 }
2171 }
2172
2173 if (is_protected_kvm_enabled()) {
2174 kvm_info("Protected nVHE mode initialized successfully\n");
2175 } else if (in_hyp_mode) {
2176 kvm_info("VHE mode initialized successfully\n");
2177 } else {
2178 kvm_info("Hyp mode initialized successfully\n");
2179 }
2180
2181 return 0;
2182
2183 out_hyp:
2184 hyp_cpu_pm_exit();
2185 if (!in_hyp_mode)
2186 teardown_hyp_mode();
2187 out_err:
2188 return err;
2189 }
2190
2191 /* NOP: Compiling as a module not supported */
2192 void kvm_arch_exit(void)
2193 {
2194 kvm_unregister_perf_callbacks();
2195 }
2196
2197 static int __init early_kvm_mode_cfg(char *arg)
2198 {
2199 if (!arg)
2200 return -EINVAL;
2201
2202 if (strcmp(arg, "protected") == 0) {
2203 kvm_mode = KVM_MODE_PROTECTED;
2204 return 0;
2205 }
2206
2207 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2208 kvm_mode = KVM_MODE_DEFAULT;
2209 return 0;
2210 }
2211
2212 if (strcmp(arg, "none") == 0) {
2213 kvm_mode = KVM_MODE_NONE;
2214 return 0;
2215 }
2216
2217 return -EINVAL;
2218 }
2219 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2220
2221 enum kvm_mode kvm_get_mode(void)
2222 {
2223 return kvm_mode;
2224 }
2225
2226 static int arm_init(void)
2227 {
2228 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2229 return rc;
2230 }
2231
2232 module_init(arm_init);