]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/types.h>
19 #include <linux/jump_label.h>
20 #include <uapi/linux/psci.h>
21
22 #include <asm/kvm_asm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27
28 static bool __hyp_text __fpsimd_enabled_nvhe(void)
29 {
30 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
31 }
32
33 static bool __hyp_text __fpsimd_enabled_vhe(void)
34 {
35 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
36 }
37
38 static hyp_alternate_select(__fpsimd_is_enabled,
39 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
40 ARM64_HAS_VIRT_HOST_EXTN);
41
42 bool __hyp_text __fpsimd_enabled(void)
43 {
44 return __fpsimd_is_enabled()();
45 }
46
47 static void __hyp_text __activate_traps_vhe(void)
48 {
49 u64 val;
50
51 val = read_sysreg(cpacr_el1);
52 val |= CPACR_EL1_TTA;
53 val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
54 write_sysreg(val, cpacr_el1);
55
56 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
57 }
58
59 static void __hyp_text __activate_traps_nvhe(void)
60 {
61 u64 val;
62
63 val = CPTR_EL2_DEFAULT;
64 val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
65 write_sysreg(val, cptr_el2);
66 }
67
68 static hyp_alternate_select(__activate_traps_arch,
69 __activate_traps_nvhe, __activate_traps_vhe,
70 ARM64_HAS_VIRT_HOST_EXTN);
71
72 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
73 {
74 u64 val;
75
76 /*
77 * We are about to set CPTR_EL2.TFP to trap all floating point
78 * register accesses to EL2, however, the ARM ARM clearly states that
79 * traps are only taken to EL2 if the operation would not otherwise
80 * trap to EL1. Therefore, always make sure that for 32-bit guests,
81 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
82 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
83 * it will cause an exception.
84 */
85 val = vcpu->arch.hcr_el2;
86
87 if (!(val & HCR_RW) && system_supports_fpsimd()) {
88 write_sysreg(1 << 30, fpexc32_el2);
89 isb();
90 }
91
92 if (val & HCR_RW) /* for AArch64 only: */
93 val |= HCR_TID3; /* TID3: trap feature register accesses */
94
95 write_sysreg(val, hcr_el2);
96
97 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (val & HCR_VSE))
98 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
99
100 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
101 write_sysreg(1 << 15, hstr_el2);
102 /*
103 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
104 * PMSELR_EL0 to make sure it never contains the cycle
105 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
106 * EL1 instead of being trapped to EL2.
107 */
108 write_sysreg(0, pmselr_el0);
109 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
110 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
111 __activate_traps_arch()();
112 }
113
114 static void __hyp_text __deactivate_traps_vhe(void)
115 {
116 extern char vectors[]; /* kernel exception vectors */
117 u64 mdcr_el2 = read_sysreg(mdcr_el2);
118
119 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
120 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
121 MDCR_EL2_TPMS;
122
123 write_sysreg(mdcr_el2, mdcr_el2);
124 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
125 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
126 write_sysreg(vectors, vbar_el1);
127 }
128
129 static void __hyp_text __deactivate_traps_nvhe(void)
130 {
131 u64 mdcr_el2 = read_sysreg(mdcr_el2);
132
133 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
134 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
135
136 write_sysreg(mdcr_el2, mdcr_el2);
137 write_sysreg(HCR_RW, hcr_el2);
138 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
139 }
140
141 static hyp_alternate_select(__deactivate_traps_arch,
142 __deactivate_traps_nvhe, __deactivate_traps_vhe,
143 ARM64_HAS_VIRT_HOST_EXTN);
144
145 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
146 {
147 /*
148 * If we pended a virtual abort, preserve it until it gets
149 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
150 * the crucial bit is "On taking a vSError interrupt,
151 * HCR_EL2.VSE is cleared to 0."
152 */
153 if (vcpu->arch.hcr_el2 & HCR_VSE)
154 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
155
156 __deactivate_traps_arch()();
157 write_sysreg(0, hstr_el2);
158 write_sysreg(0, pmuserenr_el0);
159 }
160
161 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
162 {
163 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
164 write_sysreg(kvm->arch.vttbr, vttbr_el2);
165 }
166
167 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
168 {
169 write_sysreg(0, vttbr_el2);
170 }
171
172 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
173 {
174 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
175 __vgic_v3_save_state(vcpu);
176 else
177 __vgic_v2_save_state(vcpu);
178
179 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
180 }
181
182 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
183 {
184 u64 val;
185
186 val = read_sysreg(hcr_el2);
187 val |= HCR_INT_OVERRIDE;
188 val |= vcpu->arch.irq_lines;
189 write_sysreg(val, hcr_el2);
190
191 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
192 __vgic_v3_restore_state(vcpu);
193 else
194 __vgic_v2_restore_state(vcpu);
195 }
196
197 static bool __hyp_text __true_value(void)
198 {
199 return true;
200 }
201
202 static bool __hyp_text __false_value(void)
203 {
204 return false;
205 }
206
207 static hyp_alternate_select(__check_arm_834220,
208 __false_value, __true_value,
209 ARM64_WORKAROUND_834220);
210
211 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
212 {
213 u64 par, tmp;
214
215 /*
216 * Resolve the IPA the hard way using the guest VA.
217 *
218 * Stage-1 translation already validated the memory access
219 * rights. As such, we can use the EL1 translation regime, and
220 * don't have to distinguish between EL0 and EL1 access.
221 *
222 * We do need to save/restore PAR_EL1 though, as we haven't
223 * saved the guest context yet, and we may return early...
224 */
225 par = read_sysreg(par_el1);
226 asm volatile("at s1e1r, %0" : : "r" (far));
227 isb();
228
229 tmp = read_sysreg(par_el1);
230 write_sysreg(par, par_el1);
231
232 if (unlikely(tmp & 1))
233 return false; /* Translation failed, back to guest */
234
235 /* Convert PAR to HPFAR format */
236 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
237 return true;
238 }
239
240 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
241 {
242 u8 ec;
243 u64 esr;
244 u64 hpfar, far;
245
246 esr = vcpu->arch.fault.esr_el2;
247 ec = ESR_ELx_EC(esr);
248
249 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
250 return true;
251
252 far = read_sysreg_el2(far);
253
254 /*
255 * The HPFAR can be invalid if the stage 2 fault did not
256 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
257 * bit is clear) and one of the two following cases are true:
258 * 1. The fault was due to a permission fault
259 * 2. The processor carries errata 834220
260 *
261 * Therefore, for all non S1PTW faults where we either have a
262 * permission fault or the errata workaround is enabled, we
263 * resolve the IPA using the AT instruction.
264 */
265 if (!(esr & ESR_ELx_S1PTW) &&
266 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
267 if (!__translate_far_to_hpfar(far, &hpfar))
268 return false;
269 } else {
270 hpfar = read_sysreg(hpfar_el2);
271 }
272
273 vcpu->arch.fault.far_el2 = far;
274 vcpu->arch.fault.hpfar_el2 = hpfar;
275 return true;
276 }
277
278 /* Skip an instruction which has been emulated. Returns true if
279 * execution can continue or false if we need to exit hyp mode because
280 * single-step was in effect.
281 */
282 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
283 {
284 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
285
286 if (vcpu_mode_is_32bit(vcpu)) {
287 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
288 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
289 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
290 } else {
291 *vcpu_pc(vcpu) += 4;
292 }
293
294 write_sysreg_el2(*vcpu_pc(vcpu), elr);
295
296 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
297 vcpu->arch.fault.esr_el2 =
298 (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
299 return false;
300 } else {
301 return true;
302 }
303 }
304
305 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
306 {
307 struct kvm_cpu_context *host_ctxt;
308 struct kvm_cpu_context *guest_ctxt;
309 bool fp_enabled;
310 u64 exit_code;
311
312 vcpu = kern_hyp_va(vcpu);
313
314 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
315 host_ctxt->__hyp_running_vcpu = vcpu;
316 guest_ctxt = &vcpu->arch.ctxt;
317
318 __sysreg_save_host_state(host_ctxt);
319 __debug_cond_save_host_state(vcpu);
320
321 __activate_traps(vcpu);
322 __activate_vm(vcpu);
323
324 __vgic_restore_state(vcpu);
325 __timer_enable_traps(vcpu);
326
327 /*
328 * We must restore the 32-bit state before the sysregs, thanks
329 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
330 */
331 __sysreg32_restore_state(vcpu);
332 __sysreg_restore_guest_state(guest_ctxt);
333 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
334
335 /* Jump in the fire! */
336 again:
337 exit_code = __guest_enter(vcpu, host_ctxt);
338 /* And we're baaack! */
339
340 if (ARM_EXCEPTION_CODE(exit_code) != ARM_EXCEPTION_IRQ)
341 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
342 /*
343 * We're using the raw exception code in order to only process
344 * the trap if no SError is pending. We will come back to the
345 * same PC once the SError has been injected, and replay the
346 * trapping instruction.
347 */
348 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
349 goto again;
350
351 if (exit_code == ARM_EXCEPTION_TRAP &&
352 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_HVC64 ||
353 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_HVC32) &&
354 vcpu_get_reg(vcpu, 0) == PSCI_0_2_FN_PSCI_VERSION) {
355 u64 val = PSCI_RET_NOT_SUPPORTED;
356 if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features))
357 val = 2;
358
359 vcpu_set_reg(vcpu, 0, val);
360 goto again;
361 }
362
363 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
364 exit_code == ARM_EXCEPTION_TRAP) {
365 bool valid;
366
367 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
368 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
369 kvm_vcpu_dabt_isvalid(vcpu) &&
370 !kvm_vcpu_dabt_isextabt(vcpu) &&
371 !kvm_vcpu_dabt_iss1tw(vcpu);
372
373 if (valid) {
374 int ret = __vgic_v2_perform_cpuif_access(vcpu);
375
376 if (ret == 1) {
377 if (__skip_instr(vcpu))
378 goto again;
379 else
380 exit_code = ARM_EXCEPTION_TRAP;
381 }
382
383 if (ret == -1) {
384 /* Promote an illegal access to an
385 * SError. If we would be returning
386 * due to single-step clear the SS
387 * bit so handle_exit knows what to
388 * do after dealing with the error.
389 */
390 if (!__skip_instr(vcpu))
391 *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
392 exit_code = ARM_EXCEPTION_EL1_SERROR;
393 }
394
395 /* 0 falls through to be handler out of EL2 */
396 }
397 }
398
399 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
400 exit_code == ARM_EXCEPTION_TRAP &&
401 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
402 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
403 int ret = __vgic_v3_perform_cpuif_access(vcpu);
404
405 if (ret == 1) {
406 if (__skip_instr(vcpu))
407 goto again;
408 else
409 exit_code = ARM_EXCEPTION_TRAP;
410 }
411
412 /* 0 falls through to be handled out of EL2 */
413 }
414
415 if (cpus_have_const_cap(ARM64_HARDEN_BP_POST_GUEST_EXIT)) {
416 u32 midr = read_cpuid_id();
417
418 /* Apply BTAC predictors mitigation to all Falkor chips */
419 if ((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1)
420 __qcom_hyp_sanitize_btac_predictors();
421 }
422
423 fp_enabled = __fpsimd_enabled();
424
425 __sysreg_save_guest_state(guest_ctxt);
426 __sysreg32_save_state(vcpu);
427 __timer_disable_traps(vcpu);
428 __vgic_save_state(vcpu);
429
430 __deactivate_traps(vcpu);
431 __deactivate_vm(vcpu);
432
433 __sysreg_restore_host_state(host_ctxt);
434
435 if (fp_enabled) {
436 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
437 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
438 }
439
440 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
441 /*
442 * This must come after restoring the host sysregs, since a non-VHE
443 * system may enable SPE here and make use of the TTBRs.
444 */
445 __debug_cond_restore_host_state(vcpu);
446
447 return exit_code;
448 }
449
450 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
451
452 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
453 struct kvm_vcpu *vcpu)
454 {
455 unsigned long str_va;
456
457 /*
458 * Force the panic string to be loaded from the literal pool,
459 * making sure it is a kernel address and not a PC-relative
460 * reference.
461 */
462 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
463
464 __hyp_do_panic(str_va,
465 spsr, elr,
466 read_sysreg(esr_el2), read_sysreg_el2(far),
467 read_sysreg(hpfar_el2), par, vcpu);
468 }
469
470 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
471 struct kvm_vcpu *vcpu)
472 {
473 panic(__hyp_panic_string,
474 spsr, elr,
475 read_sysreg_el2(esr), read_sysreg_el2(far),
476 read_sysreg(hpfar_el2), par, vcpu);
477 }
478
479 static hyp_alternate_select(__hyp_call_panic,
480 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
481 ARM64_HAS_VIRT_HOST_EXTN);
482
483 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *__host_ctxt)
484 {
485 struct kvm_vcpu *vcpu = NULL;
486
487 u64 spsr = read_sysreg_el2(spsr);
488 u64 elr = read_sysreg_el2(elr);
489 u64 par = read_sysreg(par_el1);
490
491 if (read_sysreg(vttbr_el2)) {
492 struct kvm_cpu_context *host_ctxt;
493
494 host_ctxt = kern_hyp_va(__host_ctxt);
495 vcpu = host_ctxt->__hyp_running_vcpu;
496 __timer_disable_traps(vcpu);
497 __deactivate_traps(vcpu);
498 __deactivate_vm(vcpu);
499 __sysreg_restore_host_state(host_ctxt);
500 }
501
502 /* Call panic for real */
503 __hyp_call_panic()(spsr, elr, par, vcpu);
504
505 unreachable();
506 }