]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
ALSA: usb-audio: Fix the missing ctl name suffix at parsing SU
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/types.h>
19 #include <linux/jump_label.h>
20
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/fpsimd.h>
25
26 static bool __hyp_text __fpsimd_enabled_nvhe(void)
27 {
28 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
29 }
30
31 static bool __hyp_text __fpsimd_enabled_vhe(void)
32 {
33 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
34 }
35
36 static hyp_alternate_select(__fpsimd_is_enabled,
37 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
38 ARM64_HAS_VIRT_HOST_EXTN);
39
40 bool __hyp_text __fpsimd_enabled(void)
41 {
42 return __fpsimd_is_enabled()();
43 }
44
45 static void __hyp_text __activate_traps_vhe(void)
46 {
47 u64 val;
48
49 val = read_sysreg(cpacr_el1);
50 val |= CPACR_EL1_TTA;
51 val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
52 write_sysreg(val, cpacr_el1);
53
54 write_sysreg(__kvm_hyp_vector, vbar_el1);
55 }
56
57 static void __hyp_text __activate_traps_nvhe(void)
58 {
59 u64 val;
60
61 val = CPTR_EL2_DEFAULT;
62 val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
63 write_sysreg(val, cptr_el2);
64 }
65
66 static hyp_alternate_select(__activate_traps_arch,
67 __activate_traps_nvhe, __activate_traps_vhe,
68 ARM64_HAS_VIRT_HOST_EXTN);
69
70 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
71 {
72 u64 val;
73
74 /*
75 * We are about to set CPTR_EL2.TFP to trap all floating point
76 * register accesses to EL2, however, the ARM ARM clearly states that
77 * traps are only taken to EL2 if the operation would not otherwise
78 * trap to EL1. Therefore, always make sure that for 32-bit guests,
79 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
80 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
81 * it will cause an exception.
82 */
83 val = vcpu->arch.hcr_el2;
84
85 if (!(val & HCR_RW) && system_supports_fpsimd()) {
86 write_sysreg(1 << 30, fpexc32_el2);
87 isb();
88 }
89
90 if (val & HCR_RW) /* for AArch64 only: */
91 val |= HCR_TID3; /* TID3: trap feature register accesses */
92
93 write_sysreg(val, hcr_el2);
94
95 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
96 write_sysreg(1 << 15, hstr_el2);
97 /*
98 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
99 * PMSELR_EL0 to make sure it never contains the cycle
100 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
101 * EL1 instead of being trapped to EL2.
102 */
103 write_sysreg(0, pmselr_el0);
104 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
105 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
106 __activate_traps_arch()();
107 }
108
109 static void __hyp_text __deactivate_traps_vhe(void)
110 {
111 extern char vectors[]; /* kernel exception vectors */
112 u64 mdcr_el2 = read_sysreg(mdcr_el2);
113
114 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
115 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
116 MDCR_EL2_TPMS;
117
118 write_sysreg(mdcr_el2, mdcr_el2);
119 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
120 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
121 write_sysreg(vectors, vbar_el1);
122 }
123
124 static void __hyp_text __deactivate_traps_nvhe(void)
125 {
126 u64 mdcr_el2 = read_sysreg(mdcr_el2);
127
128 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
129 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
130
131 write_sysreg(mdcr_el2, mdcr_el2);
132 write_sysreg(HCR_RW, hcr_el2);
133 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
134 }
135
136 static hyp_alternate_select(__deactivate_traps_arch,
137 __deactivate_traps_nvhe, __deactivate_traps_vhe,
138 ARM64_HAS_VIRT_HOST_EXTN);
139
140 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
141 {
142 /*
143 * If we pended a virtual abort, preserve it until it gets
144 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
145 * the crucial bit is "On taking a vSError interrupt,
146 * HCR_EL2.VSE is cleared to 0."
147 */
148 if (vcpu->arch.hcr_el2 & HCR_VSE)
149 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
150
151 __deactivate_traps_arch()();
152 write_sysreg(0, hstr_el2);
153 write_sysreg(0, pmuserenr_el0);
154 }
155
156 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
157 {
158 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
159 write_sysreg(kvm->arch.vttbr, vttbr_el2);
160 }
161
162 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
163 {
164 write_sysreg(0, vttbr_el2);
165 }
166
167 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
168 {
169 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
170 __vgic_v3_save_state(vcpu);
171 else
172 __vgic_v2_save_state(vcpu);
173
174 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
175 }
176
177 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
178 {
179 u64 val;
180
181 val = read_sysreg(hcr_el2);
182 val |= HCR_INT_OVERRIDE;
183 val |= vcpu->arch.irq_lines;
184 write_sysreg(val, hcr_el2);
185
186 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
187 __vgic_v3_restore_state(vcpu);
188 else
189 __vgic_v2_restore_state(vcpu);
190 }
191
192 static bool __hyp_text __true_value(void)
193 {
194 return true;
195 }
196
197 static bool __hyp_text __false_value(void)
198 {
199 return false;
200 }
201
202 static hyp_alternate_select(__check_arm_834220,
203 __false_value, __true_value,
204 ARM64_WORKAROUND_834220);
205
206 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
207 {
208 u64 par, tmp;
209
210 /*
211 * Resolve the IPA the hard way using the guest VA.
212 *
213 * Stage-1 translation already validated the memory access
214 * rights. As such, we can use the EL1 translation regime, and
215 * don't have to distinguish between EL0 and EL1 access.
216 *
217 * We do need to save/restore PAR_EL1 though, as we haven't
218 * saved the guest context yet, and we may return early...
219 */
220 par = read_sysreg(par_el1);
221 asm volatile("at s1e1r, %0" : : "r" (far));
222 isb();
223
224 tmp = read_sysreg(par_el1);
225 write_sysreg(par, par_el1);
226
227 if (unlikely(tmp & 1))
228 return false; /* Translation failed, back to guest */
229
230 /* Convert PAR to HPFAR format */
231 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
232 return true;
233 }
234
235 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
236 {
237 u64 esr = read_sysreg_el2(esr);
238 u8 ec = ESR_ELx_EC(esr);
239 u64 hpfar, far;
240
241 vcpu->arch.fault.esr_el2 = esr;
242
243 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
244 return true;
245
246 far = read_sysreg_el2(far);
247
248 /*
249 * The HPFAR can be invalid if the stage 2 fault did not
250 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
251 * bit is clear) and one of the two following cases are true:
252 * 1. The fault was due to a permission fault
253 * 2. The processor carries errata 834220
254 *
255 * Therefore, for all non S1PTW faults where we either have a
256 * permission fault or the errata workaround is enabled, we
257 * resolve the IPA using the AT instruction.
258 */
259 if (!(esr & ESR_ELx_S1PTW) &&
260 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
261 if (!__translate_far_to_hpfar(far, &hpfar))
262 return false;
263 } else {
264 hpfar = read_sysreg(hpfar_el2);
265 }
266
267 vcpu->arch.fault.far_el2 = far;
268 vcpu->arch.fault.hpfar_el2 = hpfar;
269 return true;
270 }
271
272 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
273 {
274 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
275
276 if (vcpu_mode_is_32bit(vcpu)) {
277 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
278 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
279 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
280 } else {
281 *vcpu_pc(vcpu) += 4;
282 }
283
284 write_sysreg_el2(*vcpu_pc(vcpu), elr);
285 }
286
287 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
288 {
289 struct kvm_cpu_context *host_ctxt;
290 struct kvm_cpu_context *guest_ctxt;
291 bool fp_enabled;
292 u64 exit_code;
293
294 vcpu = kern_hyp_va(vcpu);
295 write_sysreg(vcpu, tpidr_el2);
296
297 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
298 guest_ctxt = &vcpu->arch.ctxt;
299
300 __sysreg_save_host_state(host_ctxt);
301 __debug_cond_save_host_state(vcpu);
302
303 __activate_traps(vcpu);
304 __activate_vm(vcpu);
305
306 __vgic_restore_state(vcpu);
307 __timer_enable_traps(vcpu);
308
309 /*
310 * We must restore the 32-bit state before the sysregs, thanks
311 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
312 */
313 __sysreg32_restore_state(vcpu);
314 __sysreg_restore_guest_state(guest_ctxt);
315 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
316
317 /* Jump in the fire! */
318 again:
319 exit_code = __guest_enter(vcpu, host_ctxt);
320 /* And we're baaack! */
321
322 /*
323 * We're using the raw exception code in order to only process
324 * the trap if no SError is pending. We will come back to the
325 * same PC once the SError has been injected, and replay the
326 * trapping instruction.
327 */
328 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
329 goto again;
330
331 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
332 exit_code == ARM_EXCEPTION_TRAP) {
333 bool valid;
334
335 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
336 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
337 kvm_vcpu_dabt_isvalid(vcpu) &&
338 !kvm_vcpu_dabt_isextabt(vcpu) &&
339 !kvm_vcpu_dabt_iss1tw(vcpu);
340
341 if (valid) {
342 int ret = __vgic_v2_perform_cpuif_access(vcpu);
343
344 if (ret == 1) {
345 __skip_instr(vcpu);
346 goto again;
347 }
348
349 if (ret == -1) {
350 /* Promote an illegal access to an SError */
351 __skip_instr(vcpu);
352 exit_code = ARM_EXCEPTION_EL1_SERROR;
353 }
354
355 /* 0 falls through to be handler out of EL2 */
356 }
357 }
358
359 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
360 exit_code == ARM_EXCEPTION_TRAP &&
361 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
362 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
363 int ret = __vgic_v3_perform_cpuif_access(vcpu);
364
365 if (ret == 1) {
366 __skip_instr(vcpu);
367 goto again;
368 }
369
370 /* 0 falls through to be handled out of EL2 */
371 }
372
373 fp_enabled = __fpsimd_enabled();
374
375 __sysreg_save_guest_state(guest_ctxt);
376 __sysreg32_save_state(vcpu);
377 __timer_disable_traps(vcpu);
378 __vgic_save_state(vcpu);
379
380 __deactivate_traps(vcpu);
381 __deactivate_vm(vcpu);
382
383 __sysreg_restore_host_state(host_ctxt);
384
385 if (fp_enabled) {
386 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
387 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
388 }
389
390 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
391 /*
392 * This must come after restoring the host sysregs, since a non-VHE
393 * system may enable SPE here and make use of the TTBRs.
394 */
395 __debug_cond_restore_host_state(vcpu);
396
397 return exit_code;
398 }
399
400 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
401
402 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
403 {
404 unsigned long str_va;
405
406 /*
407 * Force the panic string to be loaded from the literal pool,
408 * making sure it is a kernel address and not a PC-relative
409 * reference.
410 */
411 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
412
413 __hyp_do_panic(str_va,
414 spsr, elr,
415 read_sysreg(esr_el2), read_sysreg_el2(far),
416 read_sysreg(hpfar_el2), par,
417 (void *)read_sysreg(tpidr_el2));
418 }
419
420 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
421 {
422 panic(__hyp_panic_string,
423 spsr, elr,
424 read_sysreg_el2(esr), read_sysreg_el2(far),
425 read_sysreg(hpfar_el2), par,
426 (void *)read_sysreg(tpidr_el2));
427 }
428
429 static hyp_alternate_select(__hyp_call_panic,
430 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
431 ARM64_HAS_VIRT_HOST_EXTN);
432
433 void __hyp_text __noreturn __hyp_panic(void)
434 {
435 u64 spsr = read_sysreg_el2(spsr);
436 u64 elr = read_sysreg_el2(elr);
437 u64 par = read_sysreg(par_el1);
438
439 if (read_sysreg(vttbr_el2)) {
440 struct kvm_vcpu *vcpu;
441 struct kvm_cpu_context *host_ctxt;
442
443 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
444 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
445 __timer_disable_traps(vcpu);
446 __deactivate_traps(vcpu);
447 __deactivate_vm(vcpu);
448 __sysreg_restore_host_state(host_ctxt);
449 }
450
451 /* Call panic for real */
452 __hyp_call_panic()(spsr, elr, par);
453
454 unreachable();
455 }