]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
75e83dd40d43b269a0ef7e6c398cb958a800b1bc
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/types.h>
19 #include <linux/jump_label.h>
20
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/fpsimd.h>
25
26 static bool __hyp_text __fpsimd_enabled_nvhe(void)
27 {
28 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
29 }
30
31 static bool __hyp_text __fpsimd_enabled_vhe(void)
32 {
33 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
34 }
35
36 static hyp_alternate_select(__fpsimd_is_enabled,
37 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
38 ARM64_HAS_VIRT_HOST_EXTN);
39
40 bool __hyp_text __fpsimd_enabled(void)
41 {
42 return __fpsimd_is_enabled()();
43 }
44
45 static void __hyp_text __activate_traps_vhe(void)
46 {
47 u64 val;
48
49 val = read_sysreg(cpacr_el1);
50 val |= CPACR_EL1_TTA;
51 val &= ~CPACR_EL1_FPEN;
52 write_sysreg(val, cpacr_el1);
53
54 write_sysreg(__kvm_hyp_vector, vbar_el1);
55 }
56
57 static void __hyp_text __activate_traps_nvhe(void)
58 {
59 u64 val;
60
61 val = CPTR_EL2_DEFAULT;
62 val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
63 write_sysreg(val, cptr_el2);
64 }
65
66 static hyp_alternate_select(__activate_traps_arch,
67 __activate_traps_nvhe, __activate_traps_vhe,
68 ARM64_HAS_VIRT_HOST_EXTN);
69
70 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
71 {
72 u64 val;
73
74 /*
75 * We are about to set CPTR_EL2.TFP to trap all floating point
76 * register accesses to EL2, however, the ARM ARM clearly states that
77 * traps are only taken to EL2 if the operation would not otherwise
78 * trap to EL1. Therefore, always make sure that for 32-bit guests,
79 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
80 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
81 * it will cause an exception.
82 */
83 val = vcpu->arch.hcr_el2;
84 if (!(val & HCR_RW) && system_supports_fpsimd()) {
85 write_sysreg(1 << 30, fpexc32_el2);
86 isb();
87 }
88 write_sysreg(val, hcr_el2);
89 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
90 write_sysreg(1 << 15, hstr_el2);
91 /*
92 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
93 * PMSELR_EL0 to make sure it never contains the cycle
94 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
95 * EL1 instead of being trapped to EL2.
96 */
97 write_sysreg(0, pmselr_el0);
98 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
99 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
100 __activate_traps_arch()();
101 }
102
103 static void __hyp_text __deactivate_traps_vhe(void)
104 {
105 extern char vectors[]; /* kernel exception vectors */
106
107 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
108 write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
109 write_sysreg(vectors, vbar_el1);
110 }
111
112 static void __hyp_text __deactivate_traps_nvhe(void)
113 {
114 write_sysreg(HCR_RW, hcr_el2);
115 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
116 }
117
118 static hyp_alternate_select(__deactivate_traps_arch,
119 __deactivate_traps_nvhe, __deactivate_traps_vhe,
120 ARM64_HAS_VIRT_HOST_EXTN);
121
122 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
123 {
124 /*
125 * If we pended a virtual abort, preserve it until it gets
126 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
127 * the crucial bit is "On taking a vSError interrupt,
128 * HCR_EL2.VSE is cleared to 0."
129 */
130 if (vcpu->arch.hcr_el2 & HCR_VSE)
131 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
132
133 __deactivate_traps_arch()();
134 write_sysreg(0, hstr_el2);
135 write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
136 write_sysreg(0, pmuserenr_el0);
137 }
138
139 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
140 {
141 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
142 write_sysreg(kvm->arch.vttbr, vttbr_el2);
143 }
144
145 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
146 {
147 write_sysreg(0, vttbr_el2);
148 }
149
150 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
151 {
152 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
153 __vgic_v3_save_state(vcpu);
154 else
155 __vgic_v2_save_state(vcpu);
156
157 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
158 }
159
160 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
161 {
162 u64 val;
163
164 val = read_sysreg(hcr_el2);
165 val |= HCR_INT_OVERRIDE;
166 val |= vcpu->arch.irq_lines;
167 write_sysreg(val, hcr_el2);
168
169 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
170 __vgic_v3_restore_state(vcpu);
171 else
172 __vgic_v2_restore_state(vcpu);
173 }
174
175 static bool __hyp_text __true_value(void)
176 {
177 return true;
178 }
179
180 static bool __hyp_text __false_value(void)
181 {
182 return false;
183 }
184
185 static hyp_alternate_select(__check_arm_834220,
186 __false_value, __true_value,
187 ARM64_WORKAROUND_834220);
188
189 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
190 {
191 u64 par, tmp;
192
193 /*
194 * Resolve the IPA the hard way using the guest VA.
195 *
196 * Stage-1 translation already validated the memory access
197 * rights. As such, we can use the EL1 translation regime, and
198 * don't have to distinguish between EL0 and EL1 access.
199 *
200 * We do need to save/restore PAR_EL1 though, as we haven't
201 * saved the guest context yet, and we may return early...
202 */
203 par = read_sysreg(par_el1);
204 asm volatile("at s1e1r, %0" : : "r" (far));
205 isb();
206
207 tmp = read_sysreg(par_el1);
208 write_sysreg(par, par_el1);
209
210 if (unlikely(tmp & 1))
211 return false; /* Translation failed, back to guest */
212
213 /* Convert PAR to HPFAR format */
214 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
215 return true;
216 }
217
218 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
219 {
220 u64 esr = read_sysreg_el2(esr);
221 u8 ec = ESR_ELx_EC(esr);
222 u64 hpfar, far;
223
224 vcpu->arch.fault.esr_el2 = esr;
225
226 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
227 return true;
228
229 far = read_sysreg_el2(far);
230
231 /*
232 * The HPFAR can be invalid if the stage 2 fault did not
233 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
234 * bit is clear) and one of the two following cases are true:
235 * 1. The fault was due to a permission fault
236 * 2. The processor carries errata 834220
237 *
238 * Therefore, for all non S1PTW faults where we either have a
239 * permission fault or the errata workaround is enabled, we
240 * resolve the IPA using the AT instruction.
241 */
242 if (!(esr & ESR_ELx_S1PTW) &&
243 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
244 if (!__translate_far_to_hpfar(far, &hpfar))
245 return false;
246 } else {
247 hpfar = read_sysreg(hpfar_el2);
248 }
249
250 vcpu->arch.fault.far_el2 = far;
251 vcpu->arch.fault.hpfar_el2 = hpfar;
252 return true;
253 }
254
255 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
256 {
257 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
258
259 if (vcpu_mode_is_32bit(vcpu)) {
260 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
261 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
262 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
263 } else {
264 *vcpu_pc(vcpu) += 4;
265 }
266
267 write_sysreg_el2(*vcpu_pc(vcpu), elr);
268 }
269
270 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
271 {
272 struct kvm_cpu_context *host_ctxt;
273 struct kvm_cpu_context *guest_ctxt;
274 bool fp_enabled;
275 u64 exit_code;
276
277 vcpu = kern_hyp_va(vcpu);
278 write_sysreg(vcpu, tpidr_el2);
279
280 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
281 guest_ctxt = &vcpu->arch.ctxt;
282
283 __sysreg_save_host_state(host_ctxt);
284 __debug_cond_save_host_state(vcpu);
285
286 __activate_traps(vcpu);
287 __activate_vm(vcpu);
288
289 __vgic_restore_state(vcpu);
290 __timer_restore_state(vcpu);
291
292 /*
293 * We must restore the 32-bit state before the sysregs, thanks
294 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
295 */
296 __sysreg32_restore_state(vcpu);
297 __sysreg_restore_guest_state(guest_ctxt);
298 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
299
300 /* Jump in the fire! */
301 again:
302 exit_code = __guest_enter(vcpu, host_ctxt);
303 /* And we're baaack! */
304
305 /*
306 * We're using the raw exception code in order to only process
307 * the trap if no SError is pending. We will come back to the
308 * same PC once the SError has been injected, and replay the
309 * trapping instruction.
310 */
311 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
312 goto again;
313
314 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
315 exit_code == ARM_EXCEPTION_TRAP) {
316 bool valid;
317
318 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
319 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
320 kvm_vcpu_dabt_isvalid(vcpu) &&
321 !kvm_vcpu_dabt_isextabt(vcpu) &&
322 !kvm_vcpu_dabt_iss1tw(vcpu);
323
324 if (valid) {
325 int ret = __vgic_v2_perform_cpuif_access(vcpu);
326
327 if (ret == 1) {
328 __skip_instr(vcpu);
329 goto again;
330 }
331
332 if (ret == -1) {
333 /* Promote an illegal access to an SError */
334 __skip_instr(vcpu);
335 exit_code = ARM_EXCEPTION_EL1_SERROR;
336 }
337
338 /* 0 falls through to be handler out of EL2 */
339 }
340 }
341
342 fp_enabled = __fpsimd_enabled();
343
344 __sysreg_save_guest_state(guest_ctxt);
345 __sysreg32_save_state(vcpu);
346 __timer_save_state(vcpu);
347 __vgic_save_state(vcpu);
348
349 __deactivate_traps(vcpu);
350 __deactivate_vm(vcpu);
351
352 __sysreg_restore_host_state(host_ctxt);
353
354 if (fp_enabled) {
355 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
356 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
357 }
358
359 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
360 __debug_cond_restore_host_state(vcpu);
361
362 return exit_code;
363 }
364
365 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
366
367 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
368 {
369 unsigned long str_va;
370
371 /*
372 * Force the panic string to be loaded from the literal pool,
373 * making sure it is a kernel address and not a PC-relative
374 * reference.
375 */
376 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
377
378 __hyp_do_panic(str_va,
379 spsr, elr,
380 read_sysreg(esr_el2), read_sysreg_el2(far),
381 read_sysreg(hpfar_el2), par,
382 (void *)read_sysreg(tpidr_el2));
383 }
384
385 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
386 {
387 panic(__hyp_panic_string,
388 spsr, elr,
389 read_sysreg_el2(esr), read_sysreg_el2(far),
390 read_sysreg(hpfar_el2), par,
391 (void *)read_sysreg(tpidr_el2));
392 }
393
394 static hyp_alternate_select(__hyp_call_panic,
395 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
396 ARM64_HAS_VIRT_HOST_EXTN);
397
398 void __hyp_text __noreturn __hyp_panic(void)
399 {
400 u64 spsr = read_sysreg_el2(spsr);
401 u64 elr = read_sysreg_el2(elr);
402 u64 par = read_sysreg(par_el1);
403
404 if (read_sysreg(vttbr_el2)) {
405 struct kvm_vcpu *vcpu;
406 struct kvm_cpu_context *host_ctxt;
407
408 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
409 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
410 __deactivate_traps(vcpu);
411 __deactivate_vm(vcpu);
412 __sysreg_restore_host_state(host_ctxt);
413 }
414
415 /* Call panic for real */
416 __hyp_call_panic()(spsr, elr, par);
417
418 unreachable();
419 }