]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
arm64: KVM: Add ARCH_WORKAROUND_2 support for guests
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/fpsimd.h>
29 #include <asm/debug-monitors.h>
30
31 static bool __hyp_text __fpsimd_enabled_nvhe(void)
32 {
33 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
34 }
35
36 static bool __hyp_text __fpsimd_enabled_vhe(void)
37 {
38 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
39 }
40
41 static hyp_alternate_select(__fpsimd_is_enabled,
42 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
43 ARM64_HAS_VIRT_HOST_EXTN);
44
45 bool __hyp_text __fpsimd_enabled(void)
46 {
47 return __fpsimd_is_enabled()();
48 }
49
50 static void __hyp_text __activate_traps_vhe(void)
51 {
52 u64 val;
53
54 val = read_sysreg(cpacr_el1);
55 val |= CPACR_EL1_TTA;
56 val &= ~(CPACR_EL1_FPEN | CPACR_EL1_ZEN);
57 write_sysreg(val, cpacr_el1);
58
59 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
60 }
61
62 static void __hyp_text __activate_traps_nvhe(void)
63 {
64 u64 val;
65
66 val = CPTR_EL2_DEFAULT;
67 val |= CPTR_EL2_TTA | CPTR_EL2_TFP | CPTR_EL2_TZ;
68 write_sysreg(val, cptr_el2);
69 }
70
71 static hyp_alternate_select(__activate_traps_arch,
72 __activate_traps_nvhe, __activate_traps_vhe,
73 ARM64_HAS_VIRT_HOST_EXTN);
74
75 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
76 {
77 u64 val;
78
79 /*
80 * We are about to set CPTR_EL2.TFP to trap all floating point
81 * register accesses to EL2, however, the ARM ARM clearly states that
82 * traps are only taken to EL2 if the operation would not otherwise
83 * trap to EL1. Therefore, always make sure that for 32-bit guests,
84 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
85 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
86 * it will cause an exception.
87 */
88 val = vcpu->arch.hcr_el2;
89
90 if (!(val & HCR_RW) && system_supports_fpsimd()) {
91 write_sysreg(1 << 30, fpexc32_el2);
92 isb();
93 }
94
95 if (val & HCR_RW) /* for AArch64 only: */
96 val |= HCR_TID3; /* TID3: trap feature register accesses */
97
98 write_sysreg(val, hcr_el2);
99
100 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (val & HCR_VSE))
101 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
102
103 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
104 write_sysreg(1 << 15, hstr_el2);
105 /*
106 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
107 * PMSELR_EL0 to make sure it never contains the cycle
108 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
109 * EL1 instead of being trapped to EL2.
110 */
111 write_sysreg(0, pmselr_el0);
112 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
113 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
114 __activate_traps_arch()();
115 }
116
117 static void __hyp_text __deactivate_traps_vhe(void)
118 {
119 extern char vectors[]; /* kernel exception vectors */
120 u64 mdcr_el2 = read_sysreg(mdcr_el2);
121
122 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
123 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
124 MDCR_EL2_TPMS;
125
126 write_sysreg(mdcr_el2, mdcr_el2);
127 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
128 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
129 write_sysreg(vectors, vbar_el1);
130 }
131
132 static void __hyp_text __deactivate_traps_nvhe(void)
133 {
134 u64 mdcr_el2 = read_sysreg(mdcr_el2);
135
136 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
137 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
138
139 write_sysreg(mdcr_el2, mdcr_el2);
140 write_sysreg(HCR_RW, hcr_el2);
141 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
142 }
143
144 static hyp_alternate_select(__deactivate_traps_arch,
145 __deactivate_traps_nvhe, __deactivate_traps_vhe,
146 ARM64_HAS_VIRT_HOST_EXTN);
147
148 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
149 {
150 /*
151 * If we pended a virtual abort, preserve it until it gets
152 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
153 * the crucial bit is "On taking a vSError interrupt,
154 * HCR_EL2.VSE is cleared to 0."
155 */
156 if (vcpu->arch.hcr_el2 & HCR_VSE)
157 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
158
159 __deactivate_traps_arch()();
160 write_sysreg(0, hstr_el2);
161 write_sysreg(0, pmuserenr_el0);
162 }
163
164 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
165 {
166 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
167 write_sysreg(kvm->arch.vttbr, vttbr_el2);
168 }
169
170 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
171 {
172 write_sysreg(0, vttbr_el2);
173 }
174
175 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
176 {
177 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
178 __vgic_v3_save_state(vcpu);
179 else
180 __vgic_v2_save_state(vcpu);
181
182 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
183 }
184
185 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
186 {
187 u64 val;
188
189 val = read_sysreg(hcr_el2);
190 val |= HCR_INT_OVERRIDE;
191 val |= vcpu->arch.irq_lines;
192 write_sysreg(val, hcr_el2);
193
194 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
195 __vgic_v3_restore_state(vcpu);
196 else
197 __vgic_v2_restore_state(vcpu);
198 }
199
200 static bool __hyp_text __true_value(void)
201 {
202 return true;
203 }
204
205 static bool __hyp_text __false_value(void)
206 {
207 return false;
208 }
209
210 static hyp_alternate_select(__check_arm_834220,
211 __false_value, __true_value,
212 ARM64_WORKAROUND_834220);
213
214 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
215 {
216 u64 par, tmp;
217
218 /*
219 * Resolve the IPA the hard way using the guest VA.
220 *
221 * Stage-1 translation already validated the memory access
222 * rights. As such, we can use the EL1 translation regime, and
223 * don't have to distinguish between EL0 and EL1 access.
224 *
225 * We do need to save/restore PAR_EL1 though, as we haven't
226 * saved the guest context yet, and we may return early...
227 */
228 par = read_sysreg(par_el1);
229 asm volatile("at s1e1r, %0" : : "r" (far));
230 isb();
231
232 tmp = read_sysreg(par_el1);
233 write_sysreg(par, par_el1);
234
235 if (unlikely(tmp & 1))
236 return false; /* Translation failed, back to guest */
237
238 /* Convert PAR to HPFAR format */
239 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
240 return true;
241 }
242
243 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
244 {
245 u8 ec;
246 u64 esr;
247 u64 hpfar, far;
248
249 esr = vcpu->arch.fault.esr_el2;
250 ec = ESR_ELx_EC(esr);
251
252 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
253 return true;
254
255 far = read_sysreg_el2(far);
256
257 /*
258 * The HPFAR can be invalid if the stage 2 fault did not
259 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
260 * bit is clear) and one of the two following cases are true:
261 * 1. The fault was due to a permission fault
262 * 2. The processor carries errata 834220
263 *
264 * Therefore, for all non S1PTW faults where we either have a
265 * permission fault or the errata workaround is enabled, we
266 * resolve the IPA using the AT instruction.
267 */
268 if (!(esr & ESR_ELx_S1PTW) &&
269 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
270 if (!__translate_far_to_hpfar(far, &hpfar))
271 return false;
272 } else {
273 hpfar = read_sysreg(hpfar_el2);
274 }
275
276 vcpu->arch.fault.far_el2 = far;
277 vcpu->arch.fault.hpfar_el2 = hpfar;
278 return true;
279 }
280
281 /* Skip an instruction which has been emulated. Returns true if
282 * execution can continue or false if we need to exit hyp mode because
283 * single-step was in effect.
284 */
285 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
286 {
287 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
288
289 if (vcpu_mode_is_32bit(vcpu)) {
290 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
291 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
292 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
293 } else {
294 *vcpu_pc(vcpu) += 4;
295 }
296
297 write_sysreg_el2(*vcpu_pc(vcpu), elr);
298
299 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
300 vcpu->arch.fault.esr_el2 =
301 (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
302 return false;
303 } else {
304 return true;
305 }
306 }
307
308 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
309 {
310 if (!cpus_have_const_cap(ARM64_SSBD))
311 return false;
312
313 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
314 }
315
316 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
317 {
318 #ifdef CONFIG_ARM64_SSBD
319 /*
320 * The host runs with the workaround always present. If the
321 * guest wants it disabled, so be it...
322 */
323 if (__needs_ssbd_off(vcpu) &&
324 __hyp_this_cpu_read(arm64_ssbd_callback_required))
325 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
326 #endif
327 }
328
329 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
330 {
331 #ifdef CONFIG_ARM64_SSBD
332 /*
333 * If the guest has disabled the workaround, bring it back on.
334 */
335 if (__needs_ssbd_off(vcpu) &&
336 __hyp_this_cpu_read(arm64_ssbd_callback_required))
337 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
338 #endif
339 }
340
341 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
342 {
343 struct kvm_cpu_context *host_ctxt;
344 struct kvm_cpu_context *guest_ctxt;
345 bool fp_enabled;
346 u64 exit_code;
347
348 vcpu = kern_hyp_va(vcpu);
349
350 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
351 host_ctxt->__hyp_running_vcpu = vcpu;
352 guest_ctxt = &vcpu->arch.ctxt;
353
354 __sysreg_save_host_state(host_ctxt);
355 __debug_cond_save_host_state(vcpu);
356
357 __activate_traps(vcpu);
358 __activate_vm(vcpu);
359
360 __vgic_restore_state(vcpu);
361 __timer_enable_traps(vcpu);
362
363 /*
364 * We must restore the 32-bit state before the sysregs, thanks
365 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
366 */
367 __sysreg32_restore_state(vcpu);
368 __sysreg_restore_guest_state(guest_ctxt);
369 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
370
371 __set_guest_arch_workaround_state(vcpu);
372
373 /* Jump in the fire! */
374 again:
375 exit_code = __guest_enter(vcpu, host_ctxt);
376 /* And we're baaack! */
377
378 if (ARM_EXCEPTION_CODE(exit_code) != ARM_EXCEPTION_IRQ)
379 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
380 /*
381 * We're using the raw exception code in order to only process
382 * the trap if no SError is pending. We will come back to the
383 * same PC once the SError has been injected, and replay the
384 * trapping instruction.
385 */
386 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
387 goto again;
388
389 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
390 exit_code == ARM_EXCEPTION_TRAP) {
391 bool valid;
392
393 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
394 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
395 kvm_vcpu_dabt_isvalid(vcpu) &&
396 !kvm_vcpu_dabt_isextabt(vcpu) &&
397 !kvm_vcpu_dabt_iss1tw(vcpu);
398
399 if (valid) {
400 int ret = __vgic_v2_perform_cpuif_access(vcpu);
401
402 if (ret == 1) {
403 if (__skip_instr(vcpu))
404 goto again;
405 else
406 exit_code = ARM_EXCEPTION_TRAP;
407 }
408
409 if (ret == -1) {
410 /* Promote an illegal access to an
411 * SError. If we would be returning
412 * due to single-step clear the SS
413 * bit so handle_exit knows what to
414 * do after dealing with the error.
415 */
416 if (!__skip_instr(vcpu))
417 *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
418 exit_code = ARM_EXCEPTION_EL1_SERROR;
419 }
420
421 /* 0 falls through to be handler out of EL2 */
422 }
423 }
424
425 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
426 exit_code == ARM_EXCEPTION_TRAP &&
427 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
428 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
429 int ret = __vgic_v3_perform_cpuif_access(vcpu);
430
431 if (ret == 1) {
432 if (__skip_instr(vcpu))
433 goto again;
434 else
435 exit_code = ARM_EXCEPTION_TRAP;
436 }
437
438 /* 0 falls through to be handled out of EL2 */
439 }
440
441 __set_host_arch_workaround_state(vcpu);
442
443 if (cpus_have_const_cap(ARM64_HARDEN_BP_POST_GUEST_EXIT)) {
444 u32 midr = read_cpuid_id();
445
446 /* Apply BTAC predictors mitigation to all Falkor chips */
447 if (((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR) ||
448 ((midr & MIDR_CPU_MODEL_MASK) == MIDR_QCOM_FALKOR_V1)) {
449 __qcom_hyp_sanitize_btac_predictors();
450 }
451 }
452
453 fp_enabled = __fpsimd_enabled();
454
455 __sysreg_save_guest_state(guest_ctxt);
456 __sysreg32_save_state(vcpu);
457 __timer_disable_traps(vcpu);
458 __vgic_save_state(vcpu);
459
460 __deactivate_traps(vcpu);
461 __deactivate_vm(vcpu);
462
463 __sysreg_restore_host_state(host_ctxt);
464
465 if (fp_enabled) {
466 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
467 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
468 }
469
470 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
471 /*
472 * This must come after restoring the host sysregs, since a non-VHE
473 * system may enable SPE here and make use of the TTBRs.
474 */
475 __debug_cond_restore_host_state(vcpu);
476
477 return exit_code;
478 }
479
480 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
481
482 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
483 struct kvm_vcpu *vcpu)
484 {
485 unsigned long str_va;
486
487 /*
488 * Force the panic string to be loaded from the literal pool,
489 * making sure it is a kernel address and not a PC-relative
490 * reference.
491 */
492 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
493
494 __hyp_do_panic(str_va,
495 spsr, elr,
496 read_sysreg(esr_el2), read_sysreg_el2(far),
497 read_sysreg(hpfar_el2), par, vcpu);
498 }
499
500 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
501 struct kvm_vcpu *vcpu)
502 {
503 panic(__hyp_panic_string,
504 spsr, elr,
505 read_sysreg_el2(esr), read_sysreg_el2(far),
506 read_sysreg(hpfar_el2), par, vcpu);
507 }
508
509 static hyp_alternate_select(__hyp_call_panic,
510 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
511 ARM64_HAS_VIRT_HOST_EXTN);
512
513 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
514 {
515 struct kvm_vcpu *vcpu = NULL;
516
517 u64 spsr = read_sysreg_el2(spsr);
518 u64 elr = read_sysreg_el2(elr);
519 u64 par = read_sysreg(par_el1);
520
521 if (read_sysreg(vttbr_el2)) {
522 vcpu = host_ctxt->__hyp_running_vcpu;
523 __timer_disable_traps(vcpu);
524 __deactivate_traps(vcpu);
525 __deactivate_vm(vcpu);
526 __sysreg_restore_host_state(host_ctxt);
527 }
528
529 /* Call panic for real */
530 __hyp_call_panic()(spsr, elr, par, vcpu);
531
532 unreachable();
533 }