]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
7b81e56111abd7051dff8a78ce349ba8028abba3
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/types.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_hyp.h>
21
22 static bool __hyp_text __fpsimd_enabled_nvhe(void)
23 {
24 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
25 }
26
27 static bool __hyp_text __fpsimd_enabled_vhe(void)
28 {
29 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
30 }
31
32 static hyp_alternate_select(__fpsimd_is_enabled,
33 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
34 ARM64_HAS_VIRT_HOST_EXTN);
35
36 bool __hyp_text __fpsimd_enabled(void)
37 {
38 return __fpsimd_is_enabled()();
39 }
40
41 static void __hyp_text __activate_traps_vhe(void)
42 {
43 u64 val;
44
45 val = read_sysreg(cpacr_el1);
46 val |= CPACR_EL1_TTA;
47 val &= ~CPACR_EL1_FPEN;
48 write_sysreg(val, cpacr_el1);
49
50 write_sysreg(__kvm_hyp_vector, vbar_el1);
51 }
52
53 static void __hyp_text __activate_traps_nvhe(void)
54 {
55 u64 val;
56
57 val = CPTR_EL2_DEFAULT;
58 val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
59 write_sysreg(val, cptr_el2);
60 }
61
62 static hyp_alternate_select(__activate_traps_arch,
63 __activate_traps_nvhe, __activate_traps_vhe,
64 ARM64_HAS_VIRT_HOST_EXTN);
65
66 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
67 {
68 u64 val;
69
70 /*
71 * We are about to set CPTR_EL2.TFP to trap all floating point
72 * register accesses to EL2, however, the ARM ARM clearly states that
73 * traps are only taken to EL2 if the operation would not otherwise
74 * trap to EL1. Therefore, always make sure that for 32-bit guests,
75 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
76 */
77 val = vcpu->arch.hcr_el2;
78 if (!(val & HCR_RW)) {
79 write_sysreg(1 << 30, fpexc32_el2);
80 isb();
81 }
82 write_sysreg(val, hcr_el2);
83 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
84 write_sysreg(1 << 15, hstr_el2);
85 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
86 __activate_traps_arch()();
87 }
88
89 static void __hyp_text __deactivate_traps_vhe(void)
90 {
91 extern char vectors[]; /* kernel exception vectors */
92
93 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
94 write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
95 write_sysreg(vectors, vbar_el1);
96 }
97
98 static void __hyp_text __deactivate_traps_nvhe(void)
99 {
100 write_sysreg(HCR_RW, hcr_el2);
101 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
102 }
103
104 static hyp_alternate_select(__deactivate_traps_arch,
105 __deactivate_traps_nvhe, __deactivate_traps_vhe,
106 ARM64_HAS_VIRT_HOST_EXTN);
107
108 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
109 {
110 __deactivate_traps_arch()();
111 write_sysreg(0, hstr_el2);
112 write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
113 }
114
115 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
116 {
117 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
118 write_sysreg(kvm->arch.vttbr, vttbr_el2);
119 }
120
121 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
122 {
123 write_sysreg(0, vttbr_el2);
124 }
125
126 static hyp_alternate_select(__vgic_call_save_state,
127 __vgic_v2_save_state, __vgic_v3_save_state,
128 ARM64_HAS_SYSREG_GIC_CPUIF);
129
130 static hyp_alternate_select(__vgic_call_restore_state,
131 __vgic_v2_restore_state, __vgic_v3_restore_state,
132 ARM64_HAS_SYSREG_GIC_CPUIF);
133
134 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
135 {
136 __vgic_call_save_state()(vcpu);
137 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
138 }
139
140 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
141 {
142 u64 val;
143
144 val = read_sysreg(hcr_el2);
145 val |= HCR_INT_OVERRIDE;
146 val |= vcpu->arch.irq_lines;
147 write_sysreg(val, hcr_el2);
148
149 __vgic_call_restore_state()(vcpu);
150 }
151
152 static bool __hyp_text __true_value(void)
153 {
154 return true;
155 }
156
157 static bool __hyp_text __false_value(void)
158 {
159 return false;
160 }
161
162 static hyp_alternate_select(__check_arm_834220,
163 __false_value, __true_value,
164 ARM64_WORKAROUND_834220);
165
166 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
167 {
168 u64 par, tmp;
169
170 /*
171 * Resolve the IPA the hard way using the guest VA.
172 *
173 * Stage-1 translation already validated the memory access
174 * rights. As such, we can use the EL1 translation regime, and
175 * don't have to distinguish between EL0 and EL1 access.
176 *
177 * We do need to save/restore PAR_EL1 though, as we haven't
178 * saved the guest context yet, and we may return early...
179 */
180 par = read_sysreg(par_el1);
181 asm volatile("at s1e1r, %0" : : "r" (far));
182 isb();
183
184 tmp = read_sysreg(par_el1);
185 write_sysreg(par, par_el1);
186
187 if (unlikely(tmp & 1))
188 return false; /* Translation failed, back to guest */
189
190 /* Convert PAR to HPFAR format */
191 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
192 return true;
193 }
194
195 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
196 {
197 u64 esr = read_sysreg_el2(esr);
198 u8 ec = esr >> ESR_ELx_EC_SHIFT;
199 u64 hpfar, far;
200
201 vcpu->arch.fault.esr_el2 = esr;
202
203 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
204 return true;
205
206 far = read_sysreg_el2(far);
207
208 /*
209 * The HPFAR can be invalid if the stage 2 fault did not
210 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
211 * bit is clear) and one of the two following cases are true:
212 * 1. The fault was due to a permission fault
213 * 2. The processor carries errata 834220
214 *
215 * Therefore, for all non S1PTW faults where we either have a
216 * permission fault or the errata workaround is enabled, we
217 * resolve the IPA using the AT instruction.
218 */
219 if (!(esr & ESR_ELx_S1PTW) &&
220 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
221 if (!__translate_far_to_hpfar(far, &hpfar))
222 return false;
223 } else {
224 hpfar = read_sysreg(hpfar_el2);
225 }
226
227 vcpu->arch.fault.far_el2 = far;
228 vcpu->arch.fault.hpfar_el2 = hpfar;
229 return true;
230 }
231
232 static int __hyp_text __guest_run(struct kvm_vcpu *vcpu)
233 {
234 struct kvm_cpu_context *host_ctxt;
235 struct kvm_cpu_context *guest_ctxt;
236 bool fp_enabled;
237 u64 exit_code;
238
239 vcpu = kern_hyp_va(vcpu);
240 write_sysreg(vcpu, tpidr_el2);
241
242 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
243 guest_ctxt = &vcpu->arch.ctxt;
244
245 __sysreg_save_host_state(host_ctxt);
246 __debug_cond_save_host_state(vcpu);
247
248 __activate_traps(vcpu);
249 __activate_vm(vcpu);
250
251 __vgic_restore_state(vcpu);
252 __timer_restore_state(vcpu);
253
254 /*
255 * We must restore the 32-bit state before the sysregs, thanks
256 * to Cortex-A57 erratum #852523.
257 */
258 __sysreg32_restore_state(vcpu);
259 __sysreg_restore_guest_state(guest_ctxt);
260 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
261
262 /* Jump in the fire! */
263 again:
264 exit_code = __guest_enter(vcpu, host_ctxt);
265 /* And we're baaack! */
266
267 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
268 goto again;
269
270 fp_enabled = __fpsimd_enabled();
271
272 __sysreg_save_guest_state(guest_ctxt);
273 __sysreg32_save_state(vcpu);
274 __timer_save_state(vcpu);
275 __vgic_save_state(vcpu);
276
277 __deactivate_traps(vcpu);
278 __deactivate_vm(vcpu);
279
280 __sysreg_restore_host_state(host_ctxt);
281
282 if (fp_enabled) {
283 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
284 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
285 }
286
287 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
288 __debug_cond_restore_host_state(vcpu);
289
290 return exit_code;
291 }
292
293 __alias(__guest_run) int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
294
295 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
296
297 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
298 {
299 unsigned long str_va = (unsigned long)__hyp_panic_string;
300
301 __hyp_do_panic(hyp_kern_va(str_va),
302 spsr, elr,
303 read_sysreg(esr_el2), read_sysreg_el2(far),
304 read_sysreg(hpfar_el2), par,
305 (void *)read_sysreg(tpidr_el2));
306 }
307
308 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
309 {
310 panic(__hyp_panic_string,
311 spsr, elr,
312 read_sysreg_el2(esr), read_sysreg_el2(far),
313 read_sysreg(hpfar_el2), par,
314 (void *)read_sysreg(tpidr_el2));
315 }
316
317 static hyp_alternate_select(__hyp_call_panic,
318 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
319 ARM64_HAS_VIRT_HOST_EXTN);
320
321 void __hyp_text __noreturn __hyp_panic(void)
322 {
323 u64 spsr = read_sysreg_el2(spsr);
324 u64 elr = read_sysreg_el2(elr);
325 u64 par = read_sysreg(par_el1);
326
327 if (read_sysreg(vttbr_el2)) {
328 struct kvm_vcpu *vcpu;
329 struct kvm_cpu_context *host_ctxt;
330
331 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
332 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
333 __deactivate_traps(vcpu);
334 __deactivate_vm(vcpu);
335 __sysreg_restore_host_state(host_ctxt);
336 }
337
338 /* Call panic for real */
339 __hyp_call_panic()(spsr, elr, par);
340
341 unreachable();
342 }