]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kvm/hyp/switch.c
8b81cc6f37177237dc68a30ee4f46508c1f1a540
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/types.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_hyp.h>
22
23 static bool __hyp_text __fpsimd_enabled_nvhe(void)
24 {
25 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
26 }
27
28 static bool __hyp_text __fpsimd_enabled_vhe(void)
29 {
30 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
31 }
32
33 static hyp_alternate_select(__fpsimd_is_enabled,
34 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
35 ARM64_HAS_VIRT_HOST_EXTN);
36
37 bool __hyp_text __fpsimd_enabled(void)
38 {
39 return __fpsimd_is_enabled()();
40 }
41
42 static void __hyp_text __activate_traps_vhe(void)
43 {
44 u64 val;
45
46 val = read_sysreg(cpacr_el1);
47 val |= CPACR_EL1_TTA;
48 val &= ~CPACR_EL1_FPEN;
49 write_sysreg(val, cpacr_el1);
50
51 write_sysreg(__kvm_hyp_vector, vbar_el1);
52 }
53
54 static void __hyp_text __activate_traps_nvhe(void)
55 {
56 u64 val;
57
58 val = CPTR_EL2_DEFAULT;
59 val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
60 write_sysreg(val, cptr_el2);
61 }
62
63 static hyp_alternate_select(__activate_traps_arch,
64 __activate_traps_nvhe, __activate_traps_vhe,
65 ARM64_HAS_VIRT_HOST_EXTN);
66
67 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
68 {
69 u64 val;
70
71 /*
72 * We are about to set CPTR_EL2.TFP to trap all floating point
73 * register accesses to EL2, however, the ARM ARM clearly states that
74 * traps are only taken to EL2 if the operation would not otherwise
75 * trap to EL1. Therefore, always make sure that for 32-bit guests,
76 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
77 */
78 val = vcpu->arch.hcr_el2;
79 if (!(val & HCR_RW)) {
80 write_sysreg(1 << 30, fpexc32_el2);
81 isb();
82 }
83 write_sysreg(val, hcr_el2);
84 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
85 write_sysreg(1 << 15, hstr_el2);
86 /* Make sure we trap PMU access from EL0 to EL2 */
87 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
88 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
89 __activate_traps_arch()();
90 }
91
92 static void __hyp_text __deactivate_traps_vhe(void)
93 {
94 extern char vectors[]; /* kernel exception vectors */
95
96 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
97 write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
98 write_sysreg(vectors, vbar_el1);
99 }
100
101 static void __hyp_text __deactivate_traps_nvhe(void)
102 {
103 write_sysreg(HCR_RW, hcr_el2);
104 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
105 }
106
107 static hyp_alternate_select(__deactivate_traps_arch,
108 __deactivate_traps_nvhe, __deactivate_traps_vhe,
109 ARM64_HAS_VIRT_HOST_EXTN);
110
111 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
112 {
113 /*
114 * If we pended a virtual abort, preserve it until it gets
115 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
116 * the crucial bit is "On taking a vSError interrupt,
117 * HCR_EL2.VSE is cleared to 0."
118 */
119 if (vcpu->arch.hcr_el2 & HCR_VSE)
120 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
121
122 __deactivate_traps_arch()();
123 write_sysreg(0, hstr_el2);
124 write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
125 write_sysreg(0, pmuserenr_el0);
126 }
127
128 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
129 {
130 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
131 write_sysreg(kvm->arch.vttbr, vttbr_el2);
132 }
133
134 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
135 {
136 write_sysreg(0, vttbr_el2);
137 }
138
139 static hyp_alternate_select(__vgic_call_save_state,
140 __vgic_v2_save_state, __vgic_v3_save_state,
141 ARM64_HAS_SYSREG_GIC_CPUIF);
142
143 static hyp_alternate_select(__vgic_call_restore_state,
144 __vgic_v2_restore_state, __vgic_v3_restore_state,
145 ARM64_HAS_SYSREG_GIC_CPUIF);
146
147 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
148 {
149 __vgic_call_save_state()(vcpu);
150 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
151 }
152
153 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
154 {
155 u64 val;
156
157 val = read_sysreg(hcr_el2);
158 val |= HCR_INT_OVERRIDE;
159 val |= vcpu->arch.irq_lines;
160 write_sysreg(val, hcr_el2);
161
162 __vgic_call_restore_state()(vcpu);
163 }
164
165 static bool __hyp_text __true_value(void)
166 {
167 return true;
168 }
169
170 static bool __hyp_text __false_value(void)
171 {
172 return false;
173 }
174
175 static hyp_alternate_select(__check_arm_834220,
176 __false_value, __true_value,
177 ARM64_WORKAROUND_834220);
178
179 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
180 {
181 u64 par, tmp;
182
183 /*
184 * Resolve the IPA the hard way using the guest VA.
185 *
186 * Stage-1 translation already validated the memory access
187 * rights. As such, we can use the EL1 translation regime, and
188 * don't have to distinguish between EL0 and EL1 access.
189 *
190 * We do need to save/restore PAR_EL1 though, as we haven't
191 * saved the guest context yet, and we may return early...
192 */
193 par = read_sysreg(par_el1);
194 asm volatile("at s1e1r, %0" : : "r" (far));
195 isb();
196
197 tmp = read_sysreg(par_el1);
198 write_sysreg(par, par_el1);
199
200 if (unlikely(tmp & 1))
201 return false; /* Translation failed, back to guest */
202
203 /* Convert PAR to HPFAR format */
204 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
205 return true;
206 }
207
208 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
209 {
210 u64 esr = read_sysreg_el2(esr);
211 u8 ec = ESR_ELx_EC(esr);
212 u64 hpfar, far;
213
214 vcpu->arch.fault.esr_el2 = esr;
215
216 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
217 return true;
218
219 far = read_sysreg_el2(far);
220
221 /*
222 * The HPFAR can be invalid if the stage 2 fault did not
223 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
224 * bit is clear) and one of the two following cases are true:
225 * 1. The fault was due to a permission fault
226 * 2. The processor carries errata 834220
227 *
228 * Therefore, for all non S1PTW faults where we either have a
229 * permission fault or the errata workaround is enabled, we
230 * resolve the IPA using the AT instruction.
231 */
232 if (!(esr & ESR_ELx_S1PTW) &&
233 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
234 if (!__translate_far_to_hpfar(far, &hpfar))
235 return false;
236 } else {
237 hpfar = read_sysreg(hpfar_el2);
238 }
239
240 vcpu->arch.fault.far_el2 = far;
241 vcpu->arch.fault.hpfar_el2 = hpfar;
242 return true;
243 }
244
245 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
246 {
247 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
248
249 if (vcpu_mode_is_32bit(vcpu)) {
250 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
251 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
252 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
253 } else {
254 *vcpu_pc(vcpu) += 4;
255 }
256
257 write_sysreg_el2(*vcpu_pc(vcpu), elr);
258 }
259
260 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
261 {
262 struct kvm_cpu_context *host_ctxt;
263 struct kvm_cpu_context *guest_ctxt;
264 bool fp_enabled;
265 u64 exit_code;
266
267 vcpu = kern_hyp_va(vcpu);
268 write_sysreg(vcpu, tpidr_el2);
269
270 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
271 guest_ctxt = &vcpu->arch.ctxt;
272
273 __sysreg_save_host_state(host_ctxt);
274 __debug_cond_save_host_state(vcpu);
275
276 __activate_traps(vcpu);
277 __activate_vm(vcpu);
278
279 __vgic_restore_state(vcpu);
280 __timer_restore_state(vcpu);
281
282 /*
283 * We must restore the 32-bit state before the sysregs, thanks
284 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
285 */
286 __sysreg32_restore_state(vcpu);
287 __sysreg_restore_guest_state(guest_ctxt);
288 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
289
290 /* Jump in the fire! */
291 again:
292 exit_code = __guest_enter(vcpu, host_ctxt);
293 /* And we're baaack! */
294
295 /*
296 * We're using the raw exception code in order to only process
297 * the trap if no SError is pending. We will come back to the
298 * same PC once the SError has been injected, and replay the
299 * trapping instruction.
300 */
301 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
302 goto again;
303
304 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
305 exit_code == ARM_EXCEPTION_TRAP) {
306 bool valid;
307
308 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
309 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
310 kvm_vcpu_dabt_isvalid(vcpu) &&
311 !kvm_vcpu_dabt_isextabt(vcpu) &&
312 !kvm_vcpu_dabt_iss1tw(vcpu);
313
314 if (valid && __vgic_v2_perform_cpuif_access(vcpu)) {
315 __skip_instr(vcpu);
316 goto again;
317 }
318 }
319
320 fp_enabled = __fpsimd_enabled();
321
322 __sysreg_save_guest_state(guest_ctxt);
323 __sysreg32_save_state(vcpu);
324 __timer_save_state(vcpu);
325 __vgic_save_state(vcpu);
326
327 __deactivate_traps(vcpu);
328 __deactivate_vm(vcpu);
329
330 __sysreg_restore_host_state(host_ctxt);
331
332 if (fp_enabled) {
333 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
334 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
335 }
336
337 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
338 __debug_cond_restore_host_state(vcpu);
339
340 return exit_code;
341 }
342
343 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
344
345 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
346 {
347 unsigned long str_va;
348
349 /*
350 * Force the panic string to be loaded from the literal pool,
351 * making sure it is a kernel address and not a PC-relative
352 * reference.
353 */
354 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
355
356 __hyp_do_panic(str_va,
357 spsr, elr,
358 read_sysreg(esr_el2), read_sysreg_el2(far),
359 read_sysreg(hpfar_el2), par,
360 (void *)read_sysreg(tpidr_el2));
361 }
362
363 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par)
364 {
365 panic(__hyp_panic_string,
366 spsr, elr,
367 read_sysreg_el2(esr), read_sysreg_el2(far),
368 read_sysreg(hpfar_el2), par,
369 (void *)read_sysreg(tpidr_el2));
370 }
371
372 static hyp_alternate_select(__hyp_call_panic,
373 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
374 ARM64_HAS_VIRT_HOST_EXTN);
375
376 void __hyp_text __noreturn __hyp_panic(void)
377 {
378 u64 spsr = read_sysreg_el2(spsr);
379 u64 elr = read_sysreg_el2(elr);
380 u64 par = read_sysreg(par_el1);
381
382 if (read_sysreg(vttbr_el2)) {
383 struct kvm_vcpu *vcpu;
384 struct kvm_cpu_context *host_ctxt;
385
386 vcpu = (struct kvm_vcpu *)read_sysreg(tpidr_el2);
387 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
388 __deactivate_traps(vcpu);
389 __deactivate_vm(vcpu);
390 __sysreg_restore_host_state(host_ctxt);
391 }
392
393 /* Call panic for real */
394 __hyp_call_panic()(spsr, elr, par);
395
396 unreachable();
397 }