]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kvm/sys_regs.c
KVM: arm64: Log an error if trapping a read-from-write-only GICv3 access
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
52 *
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
55 * 64bit interface.
56 */
57
58 static bool read_from_write_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
61 {
62 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
66 }
67
68 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
69 static u32 cache_levels;
70
71 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
72 #define CSSELR_MAX 12
73
74 /* Which cache CCSIDR represents depends on CSSELR value. */
75 static u32 get_ccsidr(u32 csselr)
76 {
77 u32 ccsidr;
78
79 /* Make sure noone else changes CSSELR during this! */
80 local_irq_disable();
81 write_sysreg(csselr, csselr_el1);
82 isb();
83 ccsidr = read_sysreg(ccsidr_el1);
84 local_irq_enable();
85
86 return ccsidr;
87 }
88
89 /*
90 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
91 */
92 static bool access_dcsw(struct kvm_vcpu *vcpu,
93 struct sys_reg_params *p,
94 const struct sys_reg_desc *r)
95 {
96 if (!p->is_write)
97 return read_from_write_only(vcpu, p, r);
98
99 kvm_set_way_flush(vcpu);
100 return true;
101 }
102
103 /*
104 * Generic accessor for VM registers. Only called as long as HCR_TVM
105 * is set. If the guest enables the MMU, we stop trapping the VM
106 * sys_regs and leave it in complete control of the caches.
107 */
108 static bool access_vm_reg(struct kvm_vcpu *vcpu,
109 struct sys_reg_params *p,
110 const struct sys_reg_desc *r)
111 {
112 bool was_enabled = vcpu_has_cache_enabled(vcpu);
113
114 BUG_ON(!p->is_write);
115
116 if (!p->is_aarch32) {
117 vcpu_sys_reg(vcpu, r->reg) = p->regval;
118 } else {
119 if (!p->is_32bit)
120 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
121 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
122 }
123
124 kvm_toggle_cache(vcpu, was_enabled);
125 return true;
126 }
127
128 /*
129 * Trap handler for the GICv3 SGI generation system register.
130 * Forward the request to the VGIC emulation.
131 * The cp15_64 code makes sure this automatically works
132 * for both AArch64 and AArch32 accesses.
133 */
134 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
135 struct sys_reg_params *p,
136 const struct sys_reg_desc *r)
137 {
138 if (!p->is_write)
139 return read_from_write_only(vcpu, p, r);
140
141 vgic_v3_dispatch_sgi(vcpu, p->regval);
142
143 return true;
144 }
145
146 static bool access_gic_sre(struct kvm_vcpu *vcpu,
147 struct sys_reg_params *p,
148 const struct sys_reg_desc *r)
149 {
150 if (p->is_write)
151 return ignore_write(vcpu, p);
152
153 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
154 return true;
155 }
156
157 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
158 struct sys_reg_params *p,
159 const struct sys_reg_desc *r)
160 {
161 if (p->is_write)
162 return ignore_write(vcpu, p);
163 else
164 return read_zero(vcpu, p);
165 }
166
167 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
168 struct sys_reg_params *p,
169 const struct sys_reg_desc *r)
170 {
171 if (p->is_write) {
172 return ignore_write(vcpu, p);
173 } else {
174 p->regval = (1 << 3);
175 return true;
176 }
177 }
178
179 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
180 struct sys_reg_params *p,
181 const struct sys_reg_desc *r)
182 {
183 if (p->is_write) {
184 return ignore_write(vcpu, p);
185 } else {
186 p->regval = read_sysreg(dbgauthstatus_el1);
187 return true;
188 }
189 }
190
191 /*
192 * We want to avoid world-switching all the DBG registers all the
193 * time:
194 *
195 * - If we've touched any debug register, it is likely that we're
196 * going to touch more of them. It then makes sense to disable the
197 * traps and start doing the save/restore dance
198 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
199 * then mandatory to save/restore the registers, as the guest
200 * depends on them.
201 *
202 * For this, we use a DIRTY bit, indicating the guest has modified the
203 * debug registers, used as follow:
204 *
205 * On guest entry:
206 * - If the dirty bit is set (because we're coming back from trapping),
207 * disable the traps, save host registers, restore guest registers.
208 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
209 * set the dirty bit, disable the traps, save host registers,
210 * restore guest registers.
211 * - Otherwise, enable the traps
212 *
213 * On guest exit:
214 * - If the dirty bit is set, save guest registers, restore host
215 * registers and clear the dirty bit. This ensure that the host can
216 * now use the debug registers.
217 */
218 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
219 struct sys_reg_params *p,
220 const struct sys_reg_desc *r)
221 {
222 if (p->is_write) {
223 vcpu_sys_reg(vcpu, r->reg) = p->regval;
224 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
225 } else {
226 p->regval = vcpu_sys_reg(vcpu, r->reg);
227 }
228
229 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
230
231 return true;
232 }
233
234 /*
235 * reg_to_dbg/dbg_to_reg
236 *
237 * A 32 bit write to a debug register leave top bits alone
238 * A 32 bit read from a debug register only returns the bottom bits
239 *
240 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
241 * hyp.S code switches between host and guest values in future.
242 */
243 static void reg_to_dbg(struct kvm_vcpu *vcpu,
244 struct sys_reg_params *p,
245 u64 *dbg_reg)
246 {
247 u64 val = p->regval;
248
249 if (p->is_32bit) {
250 val &= 0xffffffffUL;
251 val |= ((*dbg_reg >> 32) << 32);
252 }
253
254 *dbg_reg = val;
255 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
256 }
257
258 static void dbg_to_reg(struct kvm_vcpu *vcpu,
259 struct sys_reg_params *p,
260 u64 *dbg_reg)
261 {
262 p->regval = *dbg_reg;
263 if (p->is_32bit)
264 p->regval &= 0xffffffffUL;
265 }
266
267 static bool trap_bvr(struct kvm_vcpu *vcpu,
268 struct sys_reg_params *p,
269 const struct sys_reg_desc *rd)
270 {
271 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
272
273 if (p->is_write)
274 reg_to_dbg(vcpu, p, dbg_reg);
275 else
276 dbg_to_reg(vcpu, p, dbg_reg);
277
278 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
279
280 return true;
281 }
282
283 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284 const struct kvm_one_reg *reg, void __user *uaddr)
285 {
286 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287
288 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
289 return -EFAULT;
290 return 0;
291 }
292
293 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
294 const struct kvm_one_reg *reg, void __user *uaddr)
295 {
296 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
297
298 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
299 return -EFAULT;
300 return 0;
301 }
302
303 static void reset_bvr(struct kvm_vcpu *vcpu,
304 const struct sys_reg_desc *rd)
305 {
306 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
307 }
308
309 static bool trap_bcr(struct kvm_vcpu *vcpu,
310 struct sys_reg_params *p,
311 const struct sys_reg_desc *rd)
312 {
313 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
314
315 if (p->is_write)
316 reg_to_dbg(vcpu, p, dbg_reg);
317 else
318 dbg_to_reg(vcpu, p, dbg_reg);
319
320 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
321
322 return true;
323 }
324
325 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
326 const struct kvm_one_reg *reg, void __user *uaddr)
327 {
328 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
329
330 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
331 return -EFAULT;
332
333 return 0;
334 }
335
336 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
337 const struct kvm_one_reg *reg, void __user *uaddr)
338 {
339 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
340
341 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
342 return -EFAULT;
343 return 0;
344 }
345
346 static void reset_bcr(struct kvm_vcpu *vcpu,
347 const struct sys_reg_desc *rd)
348 {
349 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
350 }
351
352 static bool trap_wvr(struct kvm_vcpu *vcpu,
353 struct sys_reg_params *p,
354 const struct sys_reg_desc *rd)
355 {
356 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
357
358 if (p->is_write)
359 reg_to_dbg(vcpu, p, dbg_reg);
360 else
361 dbg_to_reg(vcpu, p, dbg_reg);
362
363 trace_trap_reg(__func__, rd->reg, p->is_write,
364 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
365
366 return true;
367 }
368
369 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370 const struct kvm_one_reg *reg, void __user *uaddr)
371 {
372 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373
374 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
375 return -EFAULT;
376 return 0;
377 }
378
379 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
380 const struct kvm_one_reg *reg, void __user *uaddr)
381 {
382 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
383
384 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
385 return -EFAULT;
386 return 0;
387 }
388
389 static void reset_wvr(struct kvm_vcpu *vcpu,
390 const struct sys_reg_desc *rd)
391 {
392 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
393 }
394
395 static bool trap_wcr(struct kvm_vcpu *vcpu,
396 struct sys_reg_params *p,
397 const struct sys_reg_desc *rd)
398 {
399 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
400
401 if (p->is_write)
402 reg_to_dbg(vcpu, p, dbg_reg);
403 else
404 dbg_to_reg(vcpu, p, dbg_reg);
405
406 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
407
408 return true;
409 }
410
411 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412 const struct kvm_one_reg *reg, void __user *uaddr)
413 {
414 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415
416 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
417 return -EFAULT;
418 return 0;
419 }
420
421 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
422 const struct kvm_one_reg *reg, void __user *uaddr)
423 {
424 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
425
426 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
427 return -EFAULT;
428 return 0;
429 }
430
431 static void reset_wcr(struct kvm_vcpu *vcpu,
432 const struct sys_reg_desc *rd)
433 {
434 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
435 }
436
437 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
438 {
439 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
440 }
441
442 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
443 {
444 u64 mpidr;
445
446 /*
447 * Map the vcpu_id into the first three affinity level fields of
448 * the MPIDR. We limit the number of VCPUs in level 0 due to a
449 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
450 * of the GICv3 to be able to address each CPU directly when
451 * sending IPIs.
452 */
453 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
454 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
455 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
456 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
457 }
458
459 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
460 {
461 u64 pmcr, val;
462
463 pmcr = read_sysreg(pmcr_el0);
464 /*
465 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
466 * except PMCR.E resetting to zero.
467 */
468 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
469 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
470 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
471 }
472
473 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
474 {
475 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
476
477 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
478 }
479
480 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
481 {
482 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
483
484 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
485 || vcpu_mode_priv(vcpu));
486 }
487
488 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
489 {
490 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
491
492 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
493 || vcpu_mode_priv(vcpu));
494 }
495
496 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
497 {
498 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
499
500 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
501 || vcpu_mode_priv(vcpu));
502 }
503
504 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
505 const struct sys_reg_desc *r)
506 {
507 u64 val;
508
509 if (!kvm_arm_pmu_v3_ready(vcpu))
510 return trap_raz_wi(vcpu, p, r);
511
512 if (pmu_access_el0_disabled(vcpu))
513 return false;
514
515 if (p->is_write) {
516 /* Only update writeable bits of PMCR */
517 val = vcpu_sys_reg(vcpu, PMCR_EL0);
518 val &= ~ARMV8_PMU_PMCR_MASK;
519 val |= p->regval & ARMV8_PMU_PMCR_MASK;
520 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
521 kvm_pmu_handle_pmcr(vcpu, val);
522 } else {
523 /* PMCR.P & PMCR.C are RAZ */
524 val = vcpu_sys_reg(vcpu, PMCR_EL0)
525 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
526 p->regval = val;
527 }
528
529 return true;
530 }
531
532 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
533 const struct sys_reg_desc *r)
534 {
535 if (!kvm_arm_pmu_v3_ready(vcpu))
536 return trap_raz_wi(vcpu, p, r);
537
538 if (pmu_access_event_counter_el0_disabled(vcpu))
539 return false;
540
541 if (p->is_write)
542 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
543 else
544 /* return PMSELR.SEL field */
545 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
546 & ARMV8_PMU_COUNTER_MASK;
547
548 return true;
549 }
550
551 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
552 const struct sys_reg_desc *r)
553 {
554 u64 pmceid;
555
556 if (!kvm_arm_pmu_v3_ready(vcpu))
557 return trap_raz_wi(vcpu, p, r);
558
559 BUG_ON(p->is_write);
560
561 if (pmu_access_el0_disabled(vcpu))
562 return false;
563
564 if (!(p->Op2 & 1))
565 pmceid = read_sysreg(pmceid0_el0);
566 else
567 pmceid = read_sysreg(pmceid1_el0);
568
569 p->regval = pmceid;
570
571 return true;
572 }
573
574 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
575 {
576 u64 pmcr, val;
577
578 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
579 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
580 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
581 return false;
582
583 return true;
584 }
585
586 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
587 struct sys_reg_params *p,
588 const struct sys_reg_desc *r)
589 {
590 u64 idx;
591
592 if (!kvm_arm_pmu_v3_ready(vcpu))
593 return trap_raz_wi(vcpu, p, r);
594
595 if (r->CRn == 9 && r->CRm == 13) {
596 if (r->Op2 == 2) {
597 /* PMXEVCNTR_EL0 */
598 if (pmu_access_event_counter_el0_disabled(vcpu))
599 return false;
600
601 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
602 & ARMV8_PMU_COUNTER_MASK;
603 } else if (r->Op2 == 0) {
604 /* PMCCNTR_EL0 */
605 if (pmu_access_cycle_counter_el0_disabled(vcpu))
606 return false;
607
608 idx = ARMV8_PMU_CYCLE_IDX;
609 } else {
610 return false;
611 }
612 } else if (r->CRn == 0 && r->CRm == 9) {
613 /* PMCCNTR */
614 if (pmu_access_event_counter_el0_disabled(vcpu))
615 return false;
616
617 idx = ARMV8_PMU_CYCLE_IDX;
618 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
619 /* PMEVCNTRn_EL0 */
620 if (pmu_access_event_counter_el0_disabled(vcpu))
621 return false;
622
623 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
624 } else {
625 return false;
626 }
627
628 if (!pmu_counter_idx_valid(vcpu, idx))
629 return false;
630
631 if (p->is_write) {
632 if (pmu_access_el0_disabled(vcpu))
633 return false;
634
635 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
636 } else {
637 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
638 }
639
640 return true;
641 }
642
643 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
644 const struct sys_reg_desc *r)
645 {
646 u64 idx, reg;
647
648 if (!kvm_arm_pmu_v3_ready(vcpu))
649 return trap_raz_wi(vcpu, p, r);
650
651 if (pmu_access_el0_disabled(vcpu))
652 return false;
653
654 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
655 /* PMXEVTYPER_EL0 */
656 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
657 reg = PMEVTYPER0_EL0 + idx;
658 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
659 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
660 if (idx == ARMV8_PMU_CYCLE_IDX)
661 reg = PMCCFILTR_EL0;
662 else
663 /* PMEVTYPERn_EL0 */
664 reg = PMEVTYPER0_EL0 + idx;
665 } else {
666 BUG();
667 }
668
669 if (!pmu_counter_idx_valid(vcpu, idx))
670 return false;
671
672 if (p->is_write) {
673 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
674 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
675 } else {
676 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
677 }
678
679 return true;
680 }
681
682 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
683 const struct sys_reg_desc *r)
684 {
685 u64 val, mask;
686
687 if (!kvm_arm_pmu_v3_ready(vcpu))
688 return trap_raz_wi(vcpu, p, r);
689
690 if (pmu_access_el0_disabled(vcpu))
691 return false;
692
693 mask = kvm_pmu_valid_counter_mask(vcpu);
694 if (p->is_write) {
695 val = p->regval & mask;
696 if (r->Op2 & 0x1) {
697 /* accessing PMCNTENSET_EL0 */
698 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
699 kvm_pmu_enable_counter(vcpu, val);
700 } else {
701 /* accessing PMCNTENCLR_EL0 */
702 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
703 kvm_pmu_disable_counter(vcpu, val);
704 }
705 } else {
706 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
707 }
708
709 return true;
710 }
711
712 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
713 const struct sys_reg_desc *r)
714 {
715 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
716
717 if (!kvm_arm_pmu_v3_ready(vcpu))
718 return trap_raz_wi(vcpu, p, r);
719
720 if (!vcpu_mode_priv(vcpu))
721 return false;
722
723 if (p->is_write) {
724 u64 val = p->regval & mask;
725
726 if (r->Op2 & 0x1)
727 /* accessing PMINTENSET_EL1 */
728 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
729 else
730 /* accessing PMINTENCLR_EL1 */
731 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
732 } else {
733 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
734 }
735
736 return true;
737 }
738
739 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
740 const struct sys_reg_desc *r)
741 {
742 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
743
744 if (!kvm_arm_pmu_v3_ready(vcpu))
745 return trap_raz_wi(vcpu, p, r);
746
747 if (pmu_access_el0_disabled(vcpu))
748 return false;
749
750 if (p->is_write) {
751 if (r->CRm & 0x2)
752 /* accessing PMOVSSET_EL0 */
753 kvm_pmu_overflow_set(vcpu, p->regval & mask);
754 else
755 /* accessing PMOVSCLR_EL0 */
756 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
757 } else {
758 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
759 }
760
761 return true;
762 }
763
764 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
765 const struct sys_reg_desc *r)
766 {
767 u64 mask;
768
769 if (!kvm_arm_pmu_v3_ready(vcpu))
770 return trap_raz_wi(vcpu, p, r);
771
772 if (pmu_write_swinc_el0_disabled(vcpu))
773 return false;
774
775 if (p->is_write) {
776 mask = kvm_pmu_valid_counter_mask(vcpu);
777 kvm_pmu_software_increment(vcpu, p->regval & mask);
778 return true;
779 }
780
781 return false;
782 }
783
784 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
785 const struct sys_reg_desc *r)
786 {
787 if (!kvm_arm_pmu_v3_ready(vcpu))
788 return trap_raz_wi(vcpu, p, r);
789
790 if (p->is_write) {
791 if (!vcpu_mode_priv(vcpu))
792 return false;
793
794 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
795 & ARMV8_PMU_USERENR_MASK;
796 } else {
797 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
798 & ARMV8_PMU_USERENR_MASK;
799 }
800
801 return true;
802 }
803
804 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
805 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
806 /* DBGBVRn_EL1 */ \
807 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
808 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
809 /* DBGBCRn_EL1 */ \
810 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
811 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
812 /* DBGWVRn_EL1 */ \
813 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
814 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
815 /* DBGWCRn_EL1 */ \
816 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
817 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
818
819 /* Macro to expand the PMEVCNTRn_EL0 register */
820 #define PMU_PMEVCNTR_EL0(n) \
821 /* PMEVCNTRn_EL0 */ \
822 { Op0(0b11), Op1(0b011), CRn(0b1110), \
823 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
824 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
825
826 /* Macro to expand the PMEVTYPERn_EL0 register */
827 #define PMU_PMEVTYPER_EL0(n) \
828 /* PMEVTYPERn_EL0 */ \
829 { Op0(0b11), Op1(0b011), CRn(0b1110), \
830 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
831 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
832
833 /*
834 * Architected system registers.
835 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
836 *
837 * Debug handling: We do trap most, if not all debug related system
838 * registers. The implementation is good enough to ensure that a guest
839 * can use these with minimal performance degradation. The drawback is
840 * that we don't implement any of the external debug, none of the
841 * OSlock protocol. This should be revisited if we ever encounter a
842 * more demanding guest...
843 */
844 static const struct sys_reg_desc sys_reg_descs[] = {
845 /* DC ISW */
846 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
847 access_dcsw },
848 /* DC CSW */
849 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
850 access_dcsw },
851 /* DC CISW */
852 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
853 access_dcsw },
854
855 DBG_BCR_BVR_WCR_WVR_EL1(0),
856 DBG_BCR_BVR_WCR_WVR_EL1(1),
857 /* MDCCINT_EL1 */
858 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
859 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
860 /* MDSCR_EL1 */
861 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
862 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
863 DBG_BCR_BVR_WCR_WVR_EL1(2),
864 DBG_BCR_BVR_WCR_WVR_EL1(3),
865 DBG_BCR_BVR_WCR_WVR_EL1(4),
866 DBG_BCR_BVR_WCR_WVR_EL1(5),
867 DBG_BCR_BVR_WCR_WVR_EL1(6),
868 DBG_BCR_BVR_WCR_WVR_EL1(7),
869 DBG_BCR_BVR_WCR_WVR_EL1(8),
870 DBG_BCR_BVR_WCR_WVR_EL1(9),
871 DBG_BCR_BVR_WCR_WVR_EL1(10),
872 DBG_BCR_BVR_WCR_WVR_EL1(11),
873 DBG_BCR_BVR_WCR_WVR_EL1(12),
874 DBG_BCR_BVR_WCR_WVR_EL1(13),
875 DBG_BCR_BVR_WCR_WVR_EL1(14),
876 DBG_BCR_BVR_WCR_WVR_EL1(15),
877
878 /* MDRAR_EL1 */
879 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
880 trap_raz_wi },
881 /* OSLAR_EL1 */
882 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
883 trap_raz_wi },
884 /* OSLSR_EL1 */
885 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
886 trap_oslsr_el1 },
887 /* OSDLR_EL1 */
888 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
889 trap_raz_wi },
890 /* DBGPRCR_EL1 */
891 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
892 trap_raz_wi },
893 /* DBGCLAIMSET_EL1 */
894 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
895 trap_raz_wi },
896 /* DBGCLAIMCLR_EL1 */
897 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
898 trap_raz_wi },
899 /* DBGAUTHSTATUS_EL1 */
900 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
901 trap_dbgauthstatus_el1 },
902
903 /* MDCCSR_EL1 */
904 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
905 trap_raz_wi },
906 /* DBGDTR_EL0 */
907 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
908 trap_raz_wi },
909 /* DBGDTR[TR]X_EL0 */
910 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
911 trap_raz_wi },
912
913 /* DBGVCR32_EL2 */
914 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
915 NULL, reset_val, DBGVCR32_EL2, 0 },
916
917 /* MPIDR_EL1 */
918 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
919 NULL, reset_mpidr, MPIDR_EL1 },
920 /* SCTLR_EL1 */
921 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
922 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
923 /* CPACR_EL1 */
924 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
925 NULL, reset_val, CPACR_EL1, 0 },
926 /* TTBR0_EL1 */
927 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
928 access_vm_reg, reset_unknown, TTBR0_EL1 },
929 /* TTBR1_EL1 */
930 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
931 access_vm_reg, reset_unknown, TTBR1_EL1 },
932 /* TCR_EL1 */
933 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
934 access_vm_reg, reset_val, TCR_EL1, 0 },
935
936 /* AFSR0_EL1 */
937 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
938 access_vm_reg, reset_unknown, AFSR0_EL1 },
939 /* AFSR1_EL1 */
940 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
941 access_vm_reg, reset_unknown, AFSR1_EL1 },
942 /* ESR_EL1 */
943 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
944 access_vm_reg, reset_unknown, ESR_EL1 },
945 /* FAR_EL1 */
946 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
947 access_vm_reg, reset_unknown, FAR_EL1 },
948 /* PAR_EL1 */
949 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
950 NULL, reset_unknown, PAR_EL1 },
951
952 /* PMINTENSET_EL1 */
953 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
954 access_pminten, reset_unknown, PMINTENSET_EL1 },
955 /* PMINTENCLR_EL1 */
956 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
957 access_pminten, NULL, PMINTENSET_EL1 },
958
959 /* MAIR_EL1 */
960 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
961 access_vm_reg, reset_unknown, MAIR_EL1 },
962 /* AMAIR_EL1 */
963 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
964 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
965
966 /* VBAR_EL1 */
967 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
968 NULL, reset_val, VBAR_EL1, 0 },
969
970 /* ICC_EOIR0_EL1 */
971 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1000), Op2(0b001),
972 read_from_write_only },
973 /* ICC_DIR_EL1 */
974 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b001),
975 read_from_write_only },
976 /* ICC_SGI1R_EL1 */
977 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
978 access_gic_sgi },
979 /* ICC_EOIR1_EL1 */
980 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b001),
981 read_from_write_only },
982 /* ICC_SRE_EL1 */
983 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
984 access_gic_sre },
985
986 /* CONTEXTIDR_EL1 */
987 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
988 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
989 /* TPIDR_EL1 */
990 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
991 NULL, reset_unknown, TPIDR_EL1 },
992
993 /* CNTKCTL_EL1 */
994 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
995 NULL, reset_val, CNTKCTL_EL1, 0},
996
997 /* CSSELR_EL1 */
998 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
999 NULL, reset_unknown, CSSELR_EL1 },
1000
1001 /* PMCR_EL0 */
1002 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
1003 access_pmcr, reset_pmcr, },
1004 /* PMCNTENSET_EL0 */
1005 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
1006 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1007 /* PMCNTENCLR_EL0 */
1008 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
1009 access_pmcnten, NULL, PMCNTENSET_EL0 },
1010 /* PMOVSCLR_EL0 */
1011 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1012 access_pmovs, NULL, PMOVSSET_EL0 },
1013 /* PMSWINC_EL0 */
1014 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1015 access_pmswinc, reset_unknown, PMSWINC_EL0 },
1016 /* PMSELR_EL0 */
1017 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1018 access_pmselr, reset_unknown, PMSELR_EL0 },
1019 /* PMCEID0_EL0 */
1020 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1021 access_pmceid },
1022 /* PMCEID1_EL0 */
1023 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1024 access_pmceid },
1025 /* PMCCNTR_EL0 */
1026 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1027 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1028 /* PMXEVTYPER_EL0 */
1029 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1030 access_pmu_evtyper },
1031 /* PMXEVCNTR_EL0 */
1032 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1033 access_pmu_evcntr },
1034 /* PMUSERENR_EL0
1035 * This register resets as unknown in 64bit mode while it resets as zero
1036 * in 32bit mode. Here we choose to reset it as zero for consistency.
1037 */
1038 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1039 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1040 /* PMOVSSET_EL0 */
1041 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1042 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1043
1044 /* TPIDR_EL0 */
1045 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1046 NULL, reset_unknown, TPIDR_EL0 },
1047 /* TPIDRRO_EL0 */
1048 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1049 NULL, reset_unknown, TPIDRRO_EL0 },
1050
1051 /* PMEVCNTRn_EL0 */
1052 PMU_PMEVCNTR_EL0(0),
1053 PMU_PMEVCNTR_EL0(1),
1054 PMU_PMEVCNTR_EL0(2),
1055 PMU_PMEVCNTR_EL0(3),
1056 PMU_PMEVCNTR_EL0(4),
1057 PMU_PMEVCNTR_EL0(5),
1058 PMU_PMEVCNTR_EL0(6),
1059 PMU_PMEVCNTR_EL0(7),
1060 PMU_PMEVCNTR_EL0(8),
1061 PMU_PMEVCNTR_EL0(9),
1062 PMU_PMEVCNTR_EL0(10),
1063 PMU_PMEVCNTR_EL0(11),
1064 PMU_PMEVCNTR_EL0(12),
1065 PMU_PMEVCNTR_EL0(13),
1066 PMU_PMEVCNTR_EL0(14),
1067 PMU_PMEVCNTR_EL0(15),
1068 PMU_PMEVCNTR_EL0(16),
1069 PMU_PMEVCNTR_EL0(17),
1070 PMU_PMEVCNTR_EL0(18),
1071 PMU_PMEVCNTR_EL0(19),
1072 PMU_PMEVCNTR_EL0(20),
1073 PMU_PMEVCNTR_EL0(21),
1074 PMU_PMEVCNTR_EL0(22),
1075 PMU_PMEVCNTR_EL0(23),
1076 PMU_PMEVCNTR_EL0(24),
1077 PMU_PMEVCNTR_EL0(25),
1078 PMU_PMEVCNTR_EL0(26),
1079 PMU_PMEVCNTR_EL0(27),
1080 PMU_PMEVCNTR_EL0(28),
1081 PMU_PMEVCNTR_EL0(29),
1082 PMU_PMEVCNTR_EL0(30),
1083 /* PMEVTYPERn_EL0 */
1084 PMU_PMEVTYPER_EL0(0),
1085 PMU_PMEVTYPER_EL0(1),
1086 PMU_PMEVTYPER_EL0(2),
1087 PMU_PMEVTYPER_EL0(3),
1088 PMU_PMEVTYPER_EL0(4),
1089 PMU_PMEVTYPER_EL0(5),
1090 PMU_PMEVTYPER_EL0(6),
1091 PMU_PMEVTYPER_EL0(7),
1092 PMU_PMEVTYPER_EL0(8),
1093 PMU_PMEVTYPER_EL0(9),
1094 PMU_PMEVTYPER_EL0(10),
1095 PMU_PMEVTYPER_EL0(11),
1096 PMU_PMEVTYPER_EL0(12),
1097 PMU_PMEVTYPER_EL0(13),
1098 PMU_PMEVTYPER_EL0(14),
1099 PMU_PMEVTYPER_EL0(15),
1100 PMU_PMEVTYPER_EL0(16),
1101 PMU_PMEVTYPER_EL0(17),
1102 PMU_PMEVTYPER_EL0(18),
1103 PMU_PMEVTYPER_EL0(19),
1104 PMU_PMEVTYPER_EL0(20),
1105 PMU_PMEVTYPER_EL0(21),
1106 PMU_PMEVTYPER_EL0(22),
1107 PMU_PMEVTYPER_EL0(23),
1108 PMU_PMEVTYPER_EL0(24),
1109 PMU_PMEVTYPER_EL0(25),
1110 PMU_PMEVTYPER_EL0(26),
1111 PMU_PMEVTYPER_EL0(27),
1112 PMU_PMEVTYPER_EL0(28),
1113 PMU_PMEVTYPER_EL0(29),
1114 PMU_PMEVTYPER_EL0(30),
1115 /* PMCCFILTR_EL0
1116 * This register resets as unknown in 64bit mode while it resets as zero
1117 * in 32bit mode. Here we choose to reset it as zero for consistency.
1118 */
1119 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1120 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1121
1122 /* DACR32_EL2 */
1123 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1124 NULL, reset_unknown, DACR32_EL2 },
1125 /* IFSR32_EL2 */
1126 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1127 NULL, reset_unknown, IFSR32_EL2 },
1128 /* FPEXC32_EL2 */
1129 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1130 NULL, reset_val, FPEXC32_EL2, 0x70 },
1131 };
1132
1133 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1134 struct sys_reg_params *p,
1135 const struct sys_reg_desc *r)
1136 {
1137 if (p->is_write) {
1138 return ignore_write(vcpu, p);
1139 } else {
1140 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1141 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1142 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1143
1144 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1145 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1146 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1147 | (6 << 16) | (el3 << 14) | (el3 << 12));
1148 return true;
1149 }
1150 }
1151
1152 static bool trap_debug32(struct kvm_vcpu *vcpu,
1153 struct sys_reg_params *p,
1154 const struct sys_reg_desc *r)
1155 {
1156 if (p->is_write) {
1157 vcpu_cp14(vcpu, r->reg) = p->regval;
1158 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1159 } else {
1160 p->regval = vcpu_cp14(vcpu, r->reg);
1161 }
1162
1163 return true;
1164 }
1165
1166 /* AArch32 debug register mappings
1167 *
1168 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1169 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1170 *
1171 * All control registers and watchpoint value registers are mapped to
1172 * the lower 32 bits of their AArch64 equivalents. We share the trap
1173 * handlers with the above AArch64 code which checks what mode the
1174 * system is in.
1175 */
1176
1177 static bool trap_xvr(struct kvm_vcpu *vcpu,
1178 struct sys_reg_params *p,
1179 const struct sys_reg_desc *rd)
1180 {
1181 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1182
1183 if (p->is_write) {
1184 u64 val = *dbg_reg;
1185
1186 val &= 0xffffffffUL;
1187 val |= p->regval << 32;
1188 *dbg_reg = val;
1189
1190 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1191 } else {
1192 p->regval = *dbg_reg >> 32;
1193 }
1194
1195 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1196
1197 return true;
1198 }
1199
1200 #define DBG_BCR_BVR_WCR_WVR(n) \
1201 /* DBGBVRn */ \
1202 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1203 /* DBGBCRn */ \
1204 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1205 /* DBGWVRn */ \
1206 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1207 /* DBGWCRn */ \
1208 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1209
1210 #define DBGBXVR(n) \
1211 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1212
1213 /*
1214 * Trapped cp14 registers. We generally ignore most of the external
1215 * debug, on the principle that they don't really make sense to a
1216 * guest. Revisit this one day, would this principle change.
1217 */
1218 static const struct sys_reg_desc cp14_regs[] = {
1219 /* DBGIDR */
1220 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1221 /* DBGDTRRXext */
1222 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1223
1224 DBG_BCR_BVR_WCR_WVR(0),
1225 /* DBGDSCRint */
1226 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1227 DBG_BCR_BVR_WCR_WVR(1),
1228 /* DBGDCCINT */
1229 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1230 /* DBGDSCRext */
1231 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1232 DBG_BCR_BVR_WCR_WVR(2),
1233 /* DBGDTR[RT]Xint */
1234 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1235 /* DBGDTR[RT]Xext */
1236 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1237 DBG_BCR_BVR_WCR_WVR(3),
1238 DBG_BCR_BVR_WCR_WVR(4),
1239 DBG_BCR_BVR_WCR_WVR(5),
1240 /* DBGWFAR */
1241 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1242 /* DBGOSECCR */
1243 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1244 DBG_BCR_BVR_WCR_WVR(6),
1245 /* DBGVCR */
1246 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1247 DBG_BCR_BVR_WCR_WVR(7),
1248 DBG_BCR_BVR_WCR_WVR(8),
1249 DBG_BCR_BVR_WCR_WVR(9),
1250 DBG_BCR_BVR_WCR_WVR(10),
1251 DBG_BCR_BVR_WCR_WVR(11),
1252 DBG_BCR_BVR_WCR_WVR(12),
1253 DBG_BCR_BVR_WCR_WVR(13),
1254 DBG_BCR_BVR_WCR_WVR(14),
1255 DBG_BCR_BVR_WCR_WVR(15),
1256
1257 /* DBGDRAR (32bit) */
1258 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1259
1260 DBGBXVR(0),
1261 /* DBGOSLAR */
1262 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1263 DBGBXVR(1),
1264 /* DBGOSLSR */
1265 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1266 DBGBXVR(2),
1267 DBGBXVR(3),
1268 /* DBGOSDLR */
1269 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1270 DBGBXVR(4),
1271 /* DBGPRCR */
1272 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1273 DBGBXVR(5),
1274 DBGBXVR(6),
1275 DBGBXVR(7),
1276 DBGBXVR(8),
1277 DBGBXVR(9),
1278 DBGBXVR(10),
1279 DBGBXVR(11),
1280 DBGBXVR(12),
1281 DBGBXVR(13),
1282 DBGBXVR(14),
1283 DBGBXVR(15),
1284
1285 /* DBGDSAR (32bit) */
1286 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1287
1288 /* DBGDEVID2 */
1289 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1290 /* DBGDEVID1 */
1291 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1292 /* DBGDEVID */
1293 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1294 /* DBGCLAIMSET */
1295 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1296 /* DBGCLAIMCLR */
1297 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1298 /* DBGAUTHSTATUS */
1299 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1300 };
1301
1302 /* Trapped cp14 64bit registers */
1303 static const struct sys_reg_desc cp14_64_regs[] = {
1304 /* DBGDRAR (64bit) */
1305 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1306
1307 /* DBGDSAR (64bit) */
1308 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1309 };
1310
1311 /* Macro to expand the PMEVCNTRn register */
1312 #define PMU_PMEVCNTR(n) \
1313 /* PMEVCNTRn */ \
1314 { Op1(0), CRn(0b1110), \
1315 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1316 access_pmu_evcntr }
1317
1318 /* Macro to expand the PMEVTYPERn register */
1319 #define PMU_PMEVTYPER(n) \
1320 /* PMEVTYPERn */ \
1321 { Op1(0), CRn(0b1110), \
1322 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1323 access_pmu_evtyper }
1324
1325 /*
1326 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1327 * depending on the way they are accessed (as a 32bit or a 64bit
1328 * register).
1329 */
1330 static const struct sys_reg_desc cp15_regs[] = {
1331 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1332
1333 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1334 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1335 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1336 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1337 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1338 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1339 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1340 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1341 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1342 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1343 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1344
1345 /*
1346 * DC{C,I,CI}SW operations:
1347 */
1348 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1349 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1350 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1351
1352 /* PMU */
1353 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1354 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1355 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1356 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1357 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1358 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1359 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1360 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1361 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1362 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1363 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1364 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1365 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1366 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1367 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1368
1369 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1370 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1371 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1372 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1373
1374 /* ICC_SRE */
1375 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1376
1377 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1378
1379 /* PMEVCNTRn */
1380 PMU_PMEVCNTR(0),
1381 PMU_PMEVCNTR(1),
1382 PMU_PMEVCNTR(2),
1383 PMU_PMEVCNTR(3),
1384 PMU_PMEVCNTR(4),
1385 PMU_PMEVCNTR(5),
1386 PMU_PMEVCNTR(6),
1387 PMU_PMEVCNTR(7),
1388 PMU_PMEVCNTR(8),
1389 PMU_PMEVCNTR(9),
1390 PMU_PMEVCNTR(10),
1391 PMU_PMEVCNTR(11),
1392 PMU_PMEVCNTR(12),
1393 PMU_PMEVCNTR(13),
1394 PMU_PMEVCNTR(14),
1395 PMU_PMEVCNTR(15),
1396 PMU_PMEVCNTR(16),
1397 PMU_PMEVCNTR(17),
1398 PMU_PMEVCNTR(18),
1399 PMU_PMEVCNTR(19),
1400 PMU_PMEVCNTR(20),
1401 PMU_PMEVCNTR(21),
1402 PMU_PMEVCNTR(22),
1403 PMU_PMEVCNTR(23),
1404 PMU_PMEVCNTR(24),
1405 PMU_PMEVCNTR(25),
1406 PMU_PMEVCNTR(26),
1407 PMU_PMEVCNTR(27),
1408 PMU_PMEVCNTR(28),
1409 PMU_PMEVCNTR(29),
1410 PMU_PMEVCNTR(30),
1411 /* PMEVTYPERn */
1412 PMU_PMEVTYPER(0),
1413 PMU_PMEVTYPER(1),
1414 PMU_PMEVTYPER(2),
1415 PMU_PMEVTYPER(3),
1416 PMU_PMEVTYPER(4),
1417 PMU_PMEVTYPER(5),
1418 PMU_PMEVTYPER(6),
1419 PMU_PMEVTYPER(7),
1420 PMU_PMEVTYPER(8),
1421 PMU_PMEVTYPER(9),
1422 PMU_PMEVTYPER(10),
1423 PMU_PMEVTYPER(11),
1424 PMU_PMEVTYPER(12),
1425 PMU_PMEVTYPER(13),
1426 PMU_PMEVTYPER(14),
1427 PMU_PMEVTYPER(15),
1428 PMU_PMEVTYPER(16),
1429 PMU_PMEVTYPER(17),
1430 PMU_PMEVTYPER(18),
1431 PMU_PMEVTYPER(19),
1432 PMU_PMEVTYPER(20),
1433 PMU_PMEVTYPER(21),
1434 PMU_PMEVTYPER(22),
1435 PMU_PMEVTYPER(23),
1436 PMU_PMEVTYPER(24),
1437 PMU_PMEVTYPER(25),
1438 PMU_PMEVTYPER(26),
1439 PMU_PMEVTYPER(27),
1440 PMU_PMEVTYPER(28),
1441 PMU_PMEVTYPER(29),
1442 PMU_PMEVTYPER(30),
1443 /* PMCCFILTR */
1444 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1445 };
1446
1447 static const struct sys_reg_desc cp15_64_regs[] = {
1448 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1449 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1450 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1451 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1452 };
1453
1454 /* Target specific emulation tables */
1455 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1456
1457 void kvm_register_target_sys_reg_table(unsigned int target,
1458 struct kvm_sys_reg_target_table *table)
1459 {
1460 target_tables[target] = table;
1461 }
1462
1463 /* Get specific register table for this target. */
1464 static const struct sys_reg_desc *get_target_table(unsigned target,
1465 bool mode_is_64,
1466 size_t *num)
1467 {
1468 struct kvm_sys_reg_target_table *table;
1469
1470 table = target_tables[target];
1471 if (mode_is_64) {
1472 *num = table->table64.num;
1473 return table->table64.table;
1474 } else {
1475 *num = table->table32.num;
1476 return table->table32.table;
1477 }
1478 }
1479
1480 #define reg_to_match_value(x) \
1481 ({ \
1482 unsigned long val; \
1483 val = (x)->Op0 << 14; \
1484 val |= (x)->Op1 << 11; \
1485 val |= (x)->CRn << 7; \
1486 val |= (x)->CRm << 3; \
1487 val |= (x)->Op2; \
1488 val; \
1489 })
1490
1491 static int match_sys_reg(const void *key, const void *elt)
1492 {
1493 const unsigned long pval = (unsigned long)key;
1494 const struct sys_reg_desc *r = elt;
1495
1496 return pval - reg_to_match_value(r);
1497 }
1498
1499 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1500 const struct sys_reg_desc table[],
1501 unsigned int num)
1502 {
1503 unsigned long pval = reg_to_match_value(params);
1504
1505 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1506 }
1507
1508 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1509 {
1510 kvm_inject_undefined(vcpu);
1511 return 1;
1512 }
1513
1514 /*
1515 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1516 * call the corresponding trap handler.
1517 *
1518 * @params: pointer to the descriptor of the access
1519 * @table: array of trap descriptors
1520 * @num: size of the trap descriptor array
1521 *
1522 * Return 0 if the access has been handled, and -1 if not.
1523 */
1524 static int emulate_cp(struct kvm_vcpu *vcpu,
1525 struct sys_reg_params *params,
1526 const struct sys_reg_desc *table,
1527 size_t num)
1528 {
1529 const struct sys_reg_desc *r;
1530
1531 if (!table)
1532 return -1; /* Not handled */
1533
1534 r = find_reg(params, table, num);
1535
1536 if (r) {
1537 /*
1538 * Not having an accessor means that we have
1539 * configured a trap that we don't know how to
1540 * handle. This certainly qualifies as a gross bug
1541 * that should be fixed right away.
1542 */
1543 BUG_ON(!r->access);
1544
1545 if (likely(r->access(vcpu, params, r))) {
1546 /* Skip instruction, since it was emulated */
1547 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1548 /* Handled */
1549 return 0;
1550 }
1551 }
1552
1553 /* Not handled */
1554 return -1;
1555 }
1556
1557 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1558 struct sys_reg_params *params)
1559 {
1560 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1561 int cp = -1;
1562
1563 switch(hsr_ec) {
1564 case ESR_ELx_EC_CP15_32:
1565 case ESR_ELx_EC_CP15_64:
1566 cp = 15;
1567 break;
1568 case ESR_ELx_EC_CP14_MR:
1569 case ESR_ELx_EC_CP14_64:
1570 cp = 14;
1571 break;
1572 default:
1573 WARN_ON(1);
1574 }
1575
1576 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1577 cp, *vcpu_pc(vcpu));
1578 print_sys_reg_instr(params);
1579 kvm_inject_undefined(vcpu);
1580 }
1581
1582 /**
1583 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1584 * @vcpu: The VCPU pointer
1585 * @run: The kvm_run struct
1586 */
1587 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1588 const struct sys_reg_desc *global,
1589 size_t nr_global,
1590 const struct sys_reg_desc *target_specific,
1591 size_t nr_specific)
1592 {
1593 struct sys_reg_params params;
1594 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1595 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1596 int Rt2 = (hsr >> 10) & 0x1f;
1597
1598 params.is_aarch32 = true;
1599 params.is_32bit = false;
1600 params.CRm = (hsr >> 1) & 0xf;
1601 params.is_write = ((hsr & 1) == 0);
1602
1603 params.Op0 = 0;
1604 params.Op1 = (hsr >> 16) & 0xf;
1605 params.Op2 = 0;
1606 params.CRn = 0;
1607
1608 /*
1609 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1610 * backends between AArch32 and AArch64, we get away with it.
1611 */
1612 if (params.is_write) {
1613 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1614 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1615 }
1616
1617 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1618 goto out;
1619 if (!emulate_cp(vcpu, &params, global, nr_global))
1620 goto out;
1621
1622 unhandled_cp_access(vcpu, &params);
1623
1624 out:
1625 /* Split up the value between registers for the read side */
1626 if (!params.is_write) {
1627 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1628 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1629 }
1630
1631 return 1;
1632 }
1633
1634 /**
1635 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1636 * @vcpu: The VCPU pointer
1637 * @run: The kvm_run struct
1638 */
1639 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1640 const struct sys_reg_desc *global,
1641 size_t nr_global,
1642 const struct sys_reg_desc *target_specific,
1643 size_t nr_specific)
1644 {
1645 struct sys_reg_params params;
1646 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1647 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1648
1649 params.is_aarch32 = true;
1650 params.is_32bit = true;
1651 params.CRm = (hsr >> 1) & 0xf;
1652 params.regval = vcpu_get_reg(vcpu, Rt);
1653 params.is_write = ((hsr & 1) == 0);
1654 params.CRn = (hsr >> 10) & 0xf;
1655 params.Op0 = 0;
1656 params.Op1 = (hsr >> 14) & 0x7;
1657 params.Op2 = (hsr >> 17) & 0x7;
1658
1659 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1660 !emulate_cp(vcpu, &params, global, nr_global)) {
1661 if (!params.is_write)
1662 vcpu_set_reg(vcpu, Rt, params.regval);
1663 return 1;
1664 }
1665
1666 unhandled_cp_access(vcpu, &params);
1667 return 1;
1668 }
1669
1670 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1671 {
1672 const struct sys_reg_desc *target_specific;
1673 size_t num;
1674
1675 target_specific = get_target_table(vcpu->arch.target, false, &num);
1676 return kvm_handle_cp_64(vcpu,
1677 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1678 target_specific, num);
1679 }
1680
1681 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1682 {
1683 const struct sys_reg_desc *target_specific;
1684 size_t num;
1685
1686 target_specific = get_target_table(vcpu->arch.target, false, &num);
1687 return kvm_handle_cp_32(vcpu,
1688 cp15_regs, ARRAY_SIZE(cp15_regs),
1689 target_specific, num);
1690 }
1691
1692 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1693 {
1694 return kvm_handle_cp_64(vcpu,
1695 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1696 NULL, 0);
1697 }
1698
1699 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1700 {
1701 return kvm_handle_cp_32(vcpu,
1702 cp14_regs, ARRAY_SIZE(cp14_regs),
1703 NULL, 0);
1704 }
1705
1706 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1707 struct sys_reg_params *params)
1708 {
1709 size_t num;
1710 const struct sys_reg_desc *table, *r;
1711
1712 table = get_target_table(vcpu->arch.target, true, &num);
1713
1714 /* Search target-specific then generic table. */
1715 r = find_reg(params, table, num);
1716 if (!r)
1717 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1718
1719 if (likely(r)) {
1720 /*
1721 * Not having an accessor means that we have
1722 * configured a trap that we don't know how to
1723 * handle. This certainly qualifies as a gross bug
1724 * that should be fixed right away.
1725 */
1726 BUG_ON(!r->access);
1727
1728 if (likely(r->access(vcpu, params, r))) {
1729 /* Skip instruction, since it was emulated */
1730 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1731 return 1;
1732 }
1733 /* If access function fails, it should complain. */
1734 } else {
1735 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1736 *vcpu_pc(vcpu));
1737 print_sys_reg_instr(params);
1738 }
1739 kvm_inject_undefined(vcpu);
1740 return 1;
1741 }
1742
1743 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1744 const struct sys_reg_desc *table, size_t num)
1745 {
1746 unsigned long i;
1747
1748 for (i = 0; i < num; i++)
1749 if (table[i].reset)
1750 table[i].reset(vcpu, &table[i]);
1751 }
1752
1753 /**
1754 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1755 * @vcpu: The VCPU pointer
1756 * @run: The kvm_run struct
1757 */
1758 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1759 {
1760 struct sys_reg_params params;
1761 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1762 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1763 int ret;
1764
1765 trace_kvm_handle_sys_reg(esr);
1766
1767 params.is_aarch32 = false;
1768 params.is_32bit = false;
1769 params.Op0 = (esr >> 20) & 3;
1770 params.Op1 = (esr >> 14) & 0x7;
1771 params.CRn = (esr >> 10) & 0xf;
1772 params.CRm = (esr >> 1) & 0xf;
1773 params.Op2 = (esr >> 17) & 0x7;
1774 params.regval = vcpu_get_reg(vcpu, Rt);
1775 params.is_write = !(esr & 1);
1776
1777 ret = emulate_sys_reg(vcpu, &params);
1778
1779 if (!params.is_write)
1780 vcpu_set_reg(vcpu, Rt, params.regval);
1781 return ret;
1782 }
1783
1784 /******************************************************************************
1785 * Userspace API
1786 *****************************************************************************/
1787
1788 static bool index_to_params(u64 id, struct sys_reg_params *params)
1789 {
1790 switch (id & KVM_REG_SIZE_MASK) {
1791 case KVM_REG_SIZE_U64:
1792 /* Any unused index bits means it's not valid. */
1793 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1794 | KVM_REG_ARM_COPROC_MASK
1795 | KVM_REG_ARM64_SYSREG_OP0_MASK
1796 | KVM_REG_ARM64_SYSREG_OP1_MASK
1797 | KVM_REG_ARM64_SYSREG_CRN_MASK
1798 | KVM_REG_ARM64_SYSREG_CRM_MASK
1799 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1800 return false;
1801 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1802 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1803 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1804 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1805 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1806 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1807 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1808 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1809 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1810 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1811 return true;
1812 default:
1813 return false;
1814 }
1815 }
1816
1817 /* Decode an index value, and find the sys_reg_desc entry. */
1818 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1819 u64 id)
1820 {
1821 size_t num;
1822 const struct sys_reg_desc *table, *r;
1823 struct sys_reg_params params;
1824
1825 /* We only do sys_reg for now. */
1826 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1827 return NULL;
1828
1829 if (!index_to_params(id, &params))
1830 return NULL;
1831
1832 table = get_target_table(vcpu->arch.target, true, &num);
1833 r = find_reg(&params, table, num);
1834 if (!r)
1835 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1836
1837 /* Not saved in the sys_reg array? */
1838 if (r && !r->reg)
1839 r = NULL;
1840
1841 return r;
1842 }
1843
1844 /*
1845 * These are the invariant sys_reg registers: we let the guest see the
1846 * host versions of these, so they're part of the guest state.
1847 *
1848 * A future CPU may provide a mechanism to present different values to
1849 * the guest, or a future kvm may trap them.
1850 */
1851
1852 #define FUNCTION_INVARIANT(reg) \
1853 static void get_##reg(struct kvm_vcpu *v, \
1854 const struct sys_reg_desc *r) \
1855 { \
1856 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1857 }
1858
1859 FUNCTION_INVARIANT(midr_el1)
1860 FUNCTION_INVARIANT(ctr_el0)
1861 FUNCTION_INVARIANT(revidr_el1)
1862 FUNCTION_INVARIANT(id_pfr0_el1)
1863 FUNCTION_INVARIANT(id_pfr1_el1)
1864 FUNCTION_INVARIANT(id_dfr0_el1)
1865 FUNCTION_INVARIANT(id_afr0_el1)
1866 FUNCTION_INVARIANT(id_mmfr0_el1)
1867 FUNCTION_INVARIANT(id_mmfr1_el1)
1868 FUNCTION_INVARIANT(id_mmfr2_el1)
1869 FUNCTION_INVARIANT(id_mmfr3_el1)
1870 FUNCTION_INVARIANT(id_isar0_el1)
1871 FUNCTION_INVARIANT(id_isar1_el1)
1872 FUNCTION_INVARIANT(id_isar2_el1)
1873 FUNCTION_INVARIANT(id_isar3_el1)
1874 FUNCTION_INVARIANT(id_isar4_el1)
1875 FUNCTION_INVARIANT(id_isar5_el1)
1876 FUNCTION_INVARIANT(clidr_el1)
1877 FUNCTION_INVARIANT(aidr_el1)
1878
1879 /* ->val is filled in by kvm_sys_reg_table_init() */
1880 static struct sys_reg_desc invariant_sys_regs[] = {
1881 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1882 NULL, get_midr_el1 },
1883 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1884 NULL, get_revidr_el1 },
1885 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1886 NULL, get_id_pfr0_el1 },
1887 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1888 NULL, get_id_pfr1_el1 },
1889 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1890 NULL, get_id_dfr0_el1 },
1891 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1892 NULL, get_id_afr0_el1 },
1893 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1894 NULL, get_id_mmfr0_el1 },
1895 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1896 NULL, get_id_mmfr1_el1 },
1897 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1898 NULL, get_id_mmfr2_el1 },
1899 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1900 NULL, get_id_mmfr3_el1 },
1901 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1902 NULL, get_id_isar0_el1 },
1903 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1904 NULL, get_id_isar1_el1 },
1905 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1906 NULL, get_id_isar2_el1 },
1907 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1908 NULL, get_id_isar3_el1 },
1909 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1910 NULL, get_id_isar4_el1 },
1911 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1912 NULL, get_id_isar5_el1 },
1913 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1914 NULL, get_clidr_el1 },
1915 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1916 NULL, get_aidr_el1 },
1917 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1918 NULL, get_ctr_el0 },
1919 };
1920
1921 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1922 {
1923 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1924 return -EFAULT;
1925 return 0;
1926 }
1927
1928 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1929 {
1930 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1931 return -EFAULT;
1932 return 0;
1933 }
1934
1935 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1936 {
1937 struct sys_reg_params params;
1938 const struct sys_reg_desc *r;
1939
1940 if (!index_to_params(id, &params))
1941 return -ENOENT;
1942
1943 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1944 if (!r)
1945 return -ENOENT;
1946
1947 return reg_to_user(uaddr, &r->val, id);
1948 }
1949
1950 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1951 {
1952 struct sys_reg_params params;
1953 const struct sys_reg_desc *r;
1954 int err;
1955 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1956
1957 if (!index_to_params(id, &params))
1958 return -ENOENT;
1959 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1960 if (!r)
1961 return -ENOENT;
1962
1963 err = reg_from_user(&val, uaddr, id);
1964 if (err)
1965 return err;
1966
1967 /* This is what we mean by invariant: you can't change it. */
1968 if (r->val != val)
1969 return -EINVAL;
1970
1971 return 0;
1972 }
1973
1974 static bool is_valid_cache(u32 val)
1975 {
1976 u32 level, ctype;
1977
1978 if (val >= CSSELR_MAX)
1979 return false;
1980
1981 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1982 level = (val >> 1);
1983 ctype = (cache_levels >> (level * 3)) & 7;
1984
1985 switch (ctype) {
1986 case 0: /* No cache */
1987 return false;
1988 case 1: /* Instruction cache only */
1989 return (val & 1);
1990 case 2: /* Data cache only */
1991 case 4: /* Unified cache */
1992 return !(val & 1);
1993 case 3: /* Separate instruction and data caches */
1994 return true;
1995 default: /* Reserved: we can't know instruction or data. */
1996 return false;
1997 }
1998 }
1999
2000 static int demux_c15_get(u64 id, void __user *uaddr)
2001 {
2002 u32 val;
2003 u32 __user *uval = uaddr;
2004
2005 /* Fail if we have unknown bits set. */
2006 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2007 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2008 return -ENOENT;
2009
2010 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2011 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2012 if (KVM_REG_SIZE(id) != 4)
2013 return -ENOENT;
2014 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2015 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2016 if (!is_valid_cache(val))
2017 return -ENOENT;
2018
2019 return put_user(get_ccsidr(val), uval);
2020 default:
2021 return -ENOENT;
2022 }
2023 }
2024
2025 static int demux_c15_set(u64 id, void __user *uaddr)
2026 {
2027 u32 val, newval;
2028 u32 __user *uval = uaddr;
2029
2030 /* Fail if we have unknown bits set. */
2031 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2032 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2033 return -ENOENT;
2034
2035 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2036 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2037 if (KVM_REG_SIZE(id) != 4)
2038 return -ENOENT;
2039 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2040 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2041 if (!is_valid_cache(val))
2042 return -ENOENT;
2043
2044 if (get_user(newval, uval))
2045 return -EFAULT;
2046
2047 /* This is also invariant: you can't change it. */
2048 if (newval != get_ccsidr(val))
2049 return -EINVAL;
2050 return 0;
2051 default:
2052 return -ENOENT;
2053 }
2054 }
2055
2056 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2057 {
2058 const struct sys_reg_desc *r;
2059 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2060
2061 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2062 return demux_c15_get(reg->id, uaddr);
2063
2064 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2065 return -ENOENT;
2066
2067 r = index_to_sys_reg_desc(vcpu, reg->id);
2068 if (!r)
2069 return get_invariant_sys_reg(reg->id, uaddr);
2070
2071 if (r->get_user)
2072 return (r->get_user)(vcpu, r, reg, uaddr);
2073
2074 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2075 }
2076
2077 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2078 {
2079 const struct sys_reg_desc *r;
2080 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2081
2082 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2083 return demux_c15_set(reg->id, uaddr);
2084
2085 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2086 return -ENOENT;
2087
2088 r = index_to_sys_reg_desc(vcpu, reg->id);
2089 if (!r)
2090 return set_invariant_sys_reg(reg->id, uaddr);
2091
2092 if (r->set_user)
2093 return (r->set_user)(vcpu, r, reg, uaddr);
2094
2095 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2096 }
2097
2098 static unsigned int num_demux_regs(void)
2099 {
2100 unsigned int i, count = 0;
2101
2102 for (i = 0; i < CSSELR_MAX; i++)
2103 if (is_valid_cache(i))
2104 count++;
2105
2106 return count;
2107 }
2108
2109 static int write_demux_regids(u64 __user *uindices)
2110 {
2111 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2112 unsigned int i;
2113
2114 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2115 for (i = 0; i < CSSELR_MAX; i++) {
2116 if (!is_valid_cache(i))
2117 continue;
2118 if (put_user(val | i, uindices))
2119 return -EFAULT;
2120 uindices++;
2121 }
2122 return 0;
2123 }
2124
2125 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2126 {
2127 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2128 KVM_REG_ARM64_SYSREG |
2129 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2130 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2131 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2132 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2133 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2134 }
2135
2136 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2137 {
2138 if (!*uind)
2139 return true;
2140
2141 if (put_user(sys_reg_to_index(reg), *uind))
2142 return false;
2143
2144 (*uind)++;
2145 return true;
2146 }
2147
2148 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2149 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2150 {
2151 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2152 unsigned int total = 0;
2153 size_t num;
2154
2155 /* We check for duplicates here, to allow arch-specific overrides. */
2156 i1 = get_target_table(vcpu->arch.target, true, &num);
2157 end1 = i1 + num;
2158 i2 = sys_reg_descs;
2159 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2160
2161 BUG_ON(i1 == end1 || i2 == end2);
2162
2163 /* Walk carefully, as both tables may refer to the same register. */
2164 while (i1 || i2) {
2165 int cmp = cmp_sys_reg(i1, i2);
2166 /* target-specific overrides generic entry. */
2167 if (cmp <= 0) {
2168 /* Ignore registers we trap but don't save. */
2169 if (i1->reg) {
2170 if (!copy_reg_to_user(i1, &uind))
2171 return -EFAULT;
2172 total++;
2173 }
2174 } else {
2175 /* Ignore registers we trap but don't save. */
2176 if (i2->reg) {
2177 if (!copy_reg_to_user(i2, &uind))
2178 return -EFAULT;
2179 total++;
2180 }
2181 }
2182
2183 if (cmp <= 0 && ++i1 == end1)
2184 i1 = NULL;
2185 if (cmp >= 0 && ++i2 == end2)
2186 i2 = NULL;
2187 }
2188 return total;
2189 }
2190
2191 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2192 {
2193 return ARRAY_SIZE(invariant_sys_regs)
2194 + num_demux_regs()
2195 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2196 }
2197
2198 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2199 {
2200 unsigned int i;
2201 int err;
2202
2203 /* Then give them all the invariant registers' indices. */
2204 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2205 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2206 return -EFAULT;
2207 uindices++;
2208 }
2209
2210 err = walk_sys_regs(vcpu, uindices);
2211 if (err < 0)
2212 return err;
2213 uindices += err;
2214
2215 return write_demux_regids(uindices);
2216 }
2217
2218 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2219 {
2220 unsigned int i;
2221
2222 for (i = 1; i < n; i++) {
2223 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2224 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2225 return 1;
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
2232 void kvm_sys_reg_table_init(void)
2233 {
2234 unsigned int i;
2235 struct sys_reg_desc clidr;
2236
2237 /* Make sure tables are unique and in order. */
2238 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2239 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2240 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2241 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2242 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2243 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2244
2245 /* We abuse the reset function to overwrite the table itself. */
2246 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2247 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2248
2249 /*
2250 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2251 *
2252 * If software reads the Cache Type fields from Ctype1
2253 * upwards, once it has seen a value of 0b000, no caches
2254 * exist at further-out levels of the hierarchy. So, for
2255 * example, if Ctype3 is the first Cache Type field with a
2256 * value of 0b000, the values of Ctype4 to Ctype7 must be
2257 * ignored.
2258 */
2259 get_clidr_el1(NULL, &clidr); /* Ugly... */
2260 cache_levels = clidr.val;
2261 for (i = 0; i < 7; i++)
2262 if (((cache_levels >> (i*3)) & 7) == 0)
2263 break;
2264 /* Clear all higher bits. */
2265 cache_levels &= (1 << (i*3))-1;
2266 }
2267
2268 /**
2269 * kvm_reset_sys_regs - sets system registers to reset value
2270 * @vcpu: The VCPU pointer
2271 *
2272 * This function finds the right table above and sets the registers on the
2273 * virtual CPU struct to their architecturally defined reset values.
2274 */
2275 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2276 {
2277 size_t num;
2278 const struct sys_reg_desc *table;
2279
2280 /* Catch someone adding a register without putting in reset entry. */
2281 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2282
2283 /* Generic chip reset first (so target could override). */
2284 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2285
2286 table = get_target_table(vcpu->arch.target, true, &num);
2287 reset_sys_reg_descs(vcpu, table, num);
2288
2289 for (num = 1; num < NR_SYS_REGS; num++)
2290 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2291 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2292 }