]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kvm/sys_regs.c
5bc9ede609407d8459f755630512656784a25ac8
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
52 *
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
55 * 64bit interface.
56 */
57
58 static bool read_from_write_only(struct kvm_vcpu *vcpu,
59 const struct sys_reg_params *params)
60 {
61 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
62 print_sys_reg_instr(params);
63 kvm_inject_undefined(vcpu);
64 return false;
65 }
66
67 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
68 static u32 cache_levels;
69
70 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
71 #define CSSELR_MAX 12
72
73 /* Which cache CCSIDR represents depends on CSSELR value. */
74 static u32 get_ccsidr(u32 csselr)
75 {
76 u32 ccsidr;
77
78 /* Make sure noone else changes CSSELR during this! */
79 local_irq_disable();
80 write_sysreg(csselr, csselr_el1);
81 isb();
82 ccsidr = read_sysreg(ccsidr_el1);
83 local_irq_enable();
84
85 return ccsidr;
86 }
87
88 /*
89 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
90 */
91 static bool access_dcsw(struct kvm_vcpu *vcpu,
92 struct sys_reg_params *p,
93 const struct sys_reg_desc *r)
94 {
95 if (!p->is_write)
96 return read_from_write_only(vcpu, p);
97
98 kvm_set_way_flush(vcpu);
99 return true;
100 }
101
102 /*
103 * Generic accessor for VM registers. Only called as long as HCR_TVM
104 * is set. If the guest enables the MMU, we stop trapping the VM
105 * sys_regs and leave it in complete control of the caches.
106 */
107 static bool access_vm_reg(struct kvm_vcpu *vcpu,
108 struct sys_reg_params *p,
109 const struct sys_reg_desc *r)
110 {
111 bool was_enabled = vcpu_has_cache_enabled(vcpu);
112
113 BUG_ON(!p->is_write);
114
115 if (!p->is_aarch32) {
116 vcpu_sys_reg(vcpu, r->reg) = p->regval;
117 } else {
118 if (!p->is_32bit)
119 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
120 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
121 }
122
123 kvm_toggle_cache(vcpu, was_enabled);
124 return true;
125 }
126
127 /*
128 * Trap handler for the GICv3 SGI generation system register.
129 * Forward the request to the VGIC emulation.
130 * The cp15_64 code makes sure this automatically works
131 * for both AArch64 and AArch32 accesses.
132 */
133 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
134 struct sys_reg_params *p,
135 const struct sys_reg_desc *r)
136 {
137 if (!p->is_write)
138 return read_from_write_only(vcpu, p);
139
140 vgic_v3_dispatch_sgi(vcpu, p->regval);
141
142 return true;
143 }
144
145 static bool access_gic_sre(struct kvm_vcpu *vcpu,
146 struct sys_reg_params *p,
147 const struct sys_reg_desc *r)
148 {
149 if (p->is_write)
150 return ignore_write(vcpu, p);
151
152 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
153 return true;
154 }
155
156 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
157 struct sys_reg_params *p,
158 const struct sys_reg_desc *r)
159 {
160 if (p->is_write)
161 return ignore_write(vcpu, p);
162 else
163 return read_zero(vcpu, p);
164 }
165
166 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
167 struct sys_reg_params *p,
168 const struct sys_reg_desc *r)
169 {
170 if (p->is_write) {
171 return ignore_write(vcpu, p);
172 } else {
173 p->regval = (1 << 3);
174 return true;
175 }
176 }
177
178 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
179 struct sys_reg_params *p,
180 const struct sys_reg_desc *r)
181 {
182 if (p->is_write) {
183 return ignore_write(vcpu, p);
184 } else {
185 p->regval = read_sysreg(dbgauthstatus_el1);
186 return true;
187 }
188 }
189
190 /*
191 * We want to avoid world-switching all the DBG registers all the
192 * time:
193 *
194 * - If we've touched any debug register, it is likely that we're
195 * going to touch more of them. It then makes sense to disable the
196 * traps and start doing the save/restore dance
197 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
198 * then mandatory to save/restore the registers, as the guest
199 * depends on them.
200 *
201 * For this, we use a DIRTY bit, indicating the guest has modified the
202 * debug registers, used as follow:
203 *
204 * On guest entry:
205 * - If the dirty bit is set (because we're coming back from trapping),
206 * disable the traps, save host registers, restore guest registers.
207 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
208 * set the dirty bit, disable the traps, save host registers,
209 * restore guest registers.
210 * - Otherwise, enable the traps
211 *
212 * On guest exit:
213 * - If the dirty bit is set, save guest registers, restore host
214 * registers and clear the dirty bit. This ensure that the host can
215 * now use the debug registers.
216 */
217 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
218 struct sys_reg_params *p,
219 const struct sys_reg_desc *r)
220 {
221 if (p->is_write) {
222 vcpu_sys_reg(vcpu, r->reg) = p->regval;
223 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
224 } else {
225 p->regval = vcpu_sys_reg(vcpu, r->reg);
226 }
227
228 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
229
230 return true;
231 }
232
233 /*
234 * reg_to_dbg/dbg_to_reg
235 *
236 * A 32 bit write to a debug register leave top bits alone
237 * A 32 bit read from a debug register only returns the bottom bits
238 *
239 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
240 * hyp.S code switches between host and guest values in future.
241 */
242 static void reg_to_dbg(struct kvm_vcpu *vcpu,
243 struct sys_reg_params *p,
244 u64 *dbg_reg)
245 {
246 u64 val = p->regval;
247
248 if (p->is_32bit) {
249 val &= 0xffffffffUL;
250 val |= ((*dbg_reg >> 32) << 32);
251 }
252
253 *dbg_reg = val;
254 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
255 }
256
257 static void dbg_to_reg(struct kvm_vcpu *vcpu,
258 struct sys_reg_params *p,
259 u64 *dbg_reg)
260 {
261 p->regval = *dbg_reg;
262 if (p->is_32bit)
263 p->regval &= 0xffffffffUL;
264 }
265
266 static bool trap_bvr(struct kvm_vcpu *vcpu,
267 struct sys_reg_params *p,
268 const struct sys_reg_desc *rd)
269 {
270 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
271
272 if (p->is_write)
273 reg_to_dbg(vcpu, p, dbg_reg);
274 else
275 dbg_to_reg(vcpu, p, dbg_reg);
276
277 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
278
279 return true;
280 }
281
282 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
283 const struct kvm_one_reg *reg, void __user *uaddr)
284 {
285 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
286
287 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
288 return -EFAULT;
289 return 0;
290 }
291
292 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
293 const struct kvm_one_reg *reg, void __user *uaddr)
294 {
295 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
296
297 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
298 return -EFAULT;
299 return 0;
300 }
301
302 static void reset_bvr(struct kvm_vcpu *vcpu,
303 const struct sys_reg_desc *rd)
304 {
305 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
306 }
307
308 static bool trap_bcr(struct kvm_vcpu *vcpu,
309 struct sys_reg_params *p,
310 const struct sys_reg_desc *rd)
311 {
312 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
313
314 if (p->is_write)
315 reg_to_dbg(vcpu, p, dbg_reg);
316 else
317 dbg_to_reg(vcpu, p, dbg_reg);
318
319 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
320
321 return true;
322 }
323
324 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
325 const struct kvm_one_reg *reg, void __user *uaddr)
326 {
327 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
328
329 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
330 return -EFAULT;
331
332 return 0;
333 }
334
335 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
336 const struct kvm_one_reg *reg, void __user *uaddr)
337 {
338 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
339
340 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
341 return -EFAULT;
342 return 0;
343 }
344
345 static void reset_bcr(struct kvm_vcpu *vcpu,
346 const struct sys_reg_desc *rd)
347 {
348 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
349 }
350
351 static bool trap_wvr(struct kvm_vcpu *vcpu,
352 struct sys_reg_params *p,
353 const struct sys_reg_desc *rd)
354 {
355 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
356
357 if (p->is_write)
358 reg_to_dbg(vcpu, p, dbg_reg);
359 else
360 dbg_to_reg(vcpu, p, dbg_reg);
361
362 trace_trap_reg(__func__, rd->reg, p->is_write,
363 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
364
365 return true;
366 }
367
368 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
369 const struct kvm_one_reg *reg, void __user *uaddr)
370 {
371 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
372
373 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
374 return -EFAULT;
375 return 0;
376 }
377
378 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
379 const struct kvm_one_reg *reg, void __user *uaddr)
380 {
381 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
382
383 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
384 return -EFAULT;
385 return 0;
386 }
387
388 static void reset_wvr(struct kvm_vcpu *vcpu,
389 const struct sys_reg_desc *rd)
390 {
391 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
392 }
393
394 static bool trap_wcr(struct kvm_vcpu *vcpu,
395 struct sys_reg_params *p,
396 const struct sys_reg_desc *rd)
397 {
398 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
399
400 if (p->is_write)
401 reg_to_dbg(vcpu, p, dbg_reg);
402 else
403 dbg_to_reg(vcpu, p, dbg_reg);
404
405 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406
407 return true;
408 }
409
410 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
414
415 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416 return -EFAULT;
417 return 0;
418 }
419
420 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421 const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
424
425 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426 return -EFAULT;
427 return 0;
428 }
429
430 static void reset_wcr(struct kvm_vcpu *vcpu,
431 const struct sys_reg_desc *rd)
432 {
433 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
434 }
435
436 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
437 {
438 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
439 }
440
441 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
442 {
443 u64 mpidr;
444
445 /*
446 * Map the vcpu_id into the first three affinity level fields of
447 * the MPIDR. We limit the number of VCPUs in level 0 due to a
448 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
449 * of the GICv3 to be able to address each CPU directly when
450 * sending IPIs.
451 */
452 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
453 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
454 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
455 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
456 }
457
458 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
459 {
460 u64 pmcr, val;
461
462 pmcr = read_sysreg(pmcr_el0);
463 /*
464 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
465 * except PMCR.E resetting to zero.
466 */
467 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
468 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
469 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
470 }
471
472 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
473 {
474 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
475
476 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
477 }
478
479 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
480 {
481 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
482
483 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
484 || vcpu_mode_priv(vcpu));
485 }
486
487 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
488 {
489 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
490
491 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
492 || vcpu_mode_priv(vcpu));
493 }
494
495 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
496 {
497 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
498
499 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
500 || vcpu_mode_priv(vcpu));
501 }
502
503 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
504 const struct sys_reg_desc *r)
505 {
506 u64 val;
507
508 if (!kvm_arm_pmu_v3_ready(vcpu))
509 return trap_raz_wi(vcpu, p, r);
510
511 if (pmu_access_el0_disabled(vcpu))
512 return false;
513
514 if (p->is_write) {
515 /* Only update writeable bits of PMCR */
516 val = vcpu_sys_reg(vcpu, PMCR_EL0);
517 val &= ~ARMV8_PMU_PMCR_MASK;
518 val |= p->regval & ARMV8_PMU_PMCR_MASK;
519 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
520 kvm_pmu_handle_pmcr(vcpu, val);
521 } else {
522 /* PMCR.P & PMCR.C are RAZ */
523 val = vcpu_sys_reg(vcpu, PMCR_EL0)
524 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
525 p->regval = val;
526 }
527
528 return true;
529 }
530
531 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
532 const struct sys_reg_desc *r)
533 {
534 if (!kvm_arm_pmu_v3_ready(vcpu))
535 return trap_raz_wi(vcpu, p, r);
536
537 if (pmu_access_event_counter_el0_disabled(vcpu))
538 return false;
539
540 if (p->is_write)
541 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
542 else
543 /* return PMSELR.SEL field */
544 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
545 & ARMV8_PMU_COUNTER_MASK;
546
547 return true;
548 }
549
550 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
551 const struct sys_reg_desc *r)
552 {
553 u64 pmceid;
554
555 if (!kvm_arm_pmu_v3_ready(vcpu))
556 return trap_raz_wi(vcpu, p, r);
557
558 BUG_ON(p->is_write);
559
560 if (pmu_access_el0_disabled(vcpu))
561 return false;
562
563 if (!(p->Op2 & 1))
564 pmceid = read_sysreg(pmceid0_el0);
565 else
566 pmceid = read_sysreg(pmceid1_el0);
567
568 p->regval = pmceid;
569
570 return true;
571 }
572
573 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
574 {
575 u64 pmcr, val;
576
577 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
578 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
579 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
580 return false;
581
582 return true;
583 }
584
585 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
586 struct sys_reg_params *p,
587 const struct sys_reg_desc *r)
588 {
589 u64 idx;
590
591 if (!kvm_arm_pmu_v3_ready(vcpu))
592 return trap_raz_wi(vcpu, p, r);
593
594 if (r->CRn == 9 && r->CRm == 13) {
595 if (r->Op2 == 2) {
596 /* PMXEVCNTR_EL0 */
597 if (pmu_access_event_counter_el0_disabled(vcpu))
598 return false;
599
600 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
601 & ARMV8_PMU_COUNTER_MASK;
602 } else if (r->Op2 == 0) {
603 /* PMCCNTR_EL0 */
604 if (pmu_access_cycle_counter_el0_disabled(vcpu))
605 return false;
606
607 idx = ARMV8_PMU_CYCLE_IDX;
608 } else {
609 return false;
610 }
611 } else if (r->CRn == 0 && r->CRm == 9) {
612 /* PMCCNTR */
613 if (pmu_access_event_counter_el0_disabled(vcpu))
614 return false;
615
616 idx = ARMV8_PMU_CYCLE_IDX;
617 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
618 /* PMEVCNTRn_EL0 */
619 if (pmu_access_event_counter_el0_disabled(vcpu))
620 return false;
621
622 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
623 } else {
624 return false;
625 }
626
627 if (!pmu_counter_idx_valid(vcpu, idx))
628 return false;
629
630 if (p->is_write) {
631 if (pmu_access_el0_disabled(vcpu))
632 return false;
633
634 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
635 } else {
636 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
637 }
638
639 return true;
640 }
641
642 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
643 const struct sys_reg_desc *r)
644 {
645 u64 idx, reg;
646
647 if (!kvm_arm_pmu_v3_ready(vcpu))
648 return trap_raz_wi(vcpu, p, r);
649
650 if (pmu_access_el0_disabled(vcpu))
651 return false;
652
653 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
654 /* PMXEVTYPER_EL0 */
655 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
656 reg = PMEVTYPER0_EL0 + idx;
657 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
658 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
659 if (idx == ARMV8_PMU_CYCLE_IDX)
660 reg = PMCCFILTR_EL0;
661 else
662 /* PMEVTYPERn_EL0 */
663 reg = PMEVTYPER0_EL0 + idx;
664 } else {
665 BUG();
666 }
667
668 if (!pmu_counter_idx_valid(vcpu, idx))
669 return false;
670
671 if (p->is_write) {
672 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
673 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
674 } else {
675 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
676 }
677
678 return true;
679 }
680
681 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
682 const struct sys_reg_desc *r)
683 {
684 u64 val, mask;
685
686 if (!kvm_arm_pmu_v3_ready(vcpu))
687 return trap_raz_wi(vcpu, p, r);
688
689 if (pmu_access_el0_disabled(vcpu))
690 return false;
691
692 mask = kvm_pmu_valid_counter_mask(vcpu);
693 if (p->is_write) {
694 val = p->regval & mask;
695 if (r->Op2 & 0x1) {
696 /* accessing PMCNTENSET_EL0 */
697 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
698 kvm_pmu_enable_counter(vcpu, val);
699 } else {
700 /* accessing PMCNTENCLR_EL0 */
701 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
702 kvm_pmu_disable_counter(vcpu, val);
703 }
704 } else {
705 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
706 }
707
708 return true;
709 }
710
711 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
712 const struct sys_reg_desc *r)
713 {
714 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
715
716 if (!kvm_arm_pmu_v3_ready(vcpu))
717 return trap_raz_wi(vcpu, p, r);
718
719 if (!vcpu_mode_priv(vcpu))
720 return false;
721
722 if (p->is_write) {
723 u64 val = p->regval & mask;
724
725 if (r->Op2 & 0x1)
726 /* accessing PMINTENSET_EL1 */
727 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
728 else
729 /* accessing PMINTENCLR_EL1 */
730 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
731 } else {
732 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
733 }
734
735 return true;
736 }
737
738 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
739 const struct sys_reg_desc *r)
740 {
741 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
742
743 if (!kvm_arm_pmu_v3_ready(vcpu))
744 return trap_raz_wi(vcpu, p, r);
745
746 if (pmu_access_el0_disabled(vcpu))
747 return false;
748
749 if (p->is_write) {
750 if (r->CRm & 0x2)
751 /* accessing PMOVSSET_EL0 */
752 kvm_pmu_overflow_set(vcpu, p->regval & mask);
753 else
754 /* accessing PMOVSCLR_EL0 */
755 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
756 } else {
757 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
758 }
759
760 return true;
761 }
762
763 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
764 const struct sys_reg_desc *r)
765 {
766 u64 mask;
767
768 if (!kvm_arm_pmu_v3_ready(vcpu))
769 return trap_raz_wi(vcpu, p, r);
770
771 if (pmu_write_swinc_el0_disabled(vcpu))
772 return false;
773
774 if (p->is_write) {
775 mask = kvm_pmu_valid_counter_mask(vcpu);
776 kvm_pmu_software_increment(vcpu, p->regval & mask);
777 return true;
778 }
779
780 return false;
781 }
782
783 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
784 const struct sys_reg_desc *r)
785 {
786 if (!kvm_arm_pmu_v3_ready(vcpu))
787 return trap_raz_wi(vcpu, p, r);
788
789 if (p->is_write) {
790 if (!vcpu_mode_priv(vcpu))
791 return false;
792
793 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
794 & ARMV8_PMU_USERENR_MASK;
795 } else {
796 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
797 & ARMV8_PMU_USERENR_MASK;
798 }
799
800 return true;
801 }
802
803 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
804 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
805 /* DBGBVRn_EL1 */ \
806 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
807 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
808 /* DBGBCRn_EL1 */ \
809 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
810 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
811 /* DBGWVRn_EL1 */ \
812 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
813 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
814 /* DBGWCRn_EL1 */ \
815 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
816 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
817
818 /* Macro to expand the PMEVCNTRn_EL0 register */
819 #define PMU_PMEVCNTR_EL0(n) \
820 /* PMEVCNTRn_EL0 */ \
821 { Op0(0b11), Op1(0b011), CRn(0b1110), \
822 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
823 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
824
825 /* Macro to expand the PMEVTYPERn_EL0 register */
826 #define PMU_PMEVTYPER_EL0(n) \
827 /* PMEVTYPERn_EL0 */ \
828 { Op0(0b11), Op1(0b011), CRn(0b1110), \
829 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
830 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
831
832 /*
833 * Architected system registers.
834 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
835 *
836 * Debug handling: We do trap most, if not all debug related system
837 * registers. The implementation is good enough to ensure that a guest
838 * can use these with minimal performance degradation. The drawback is
839 * that we don't implement any of the external debug, none of the
840 * OSlock protocol. This should be revisited if we ever encounter a
841 * more demanding guest...
842 */
843 static const struct sys_reg_desc sys_reg_descs[] = {
844 /* DC ISW */
845 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
846 access_dcsw },
847 /* DC CSW */
848 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
849 access_dcsw },
850 /* DC CISW */
851 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
852 access_dcsw },
853
854 DBG_BCR_BVR_WCR_WVR_EL1(0),
855 DBG_BCR_BVR_WCR_WVR_EL1(1),
856 /* MDCCINT_EL1 */
857 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
858 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
859 /* MDSCR_EL1 */
860 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
861 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
862 DBG_BCR_BVR_WCR_WVR_EL1(2),
863 DBG_BCR_BVR_WCR_WVR_EL1(3),
864 DBG_BCR_BVR_WCR_WVR_EL1(4),
865 DBG_BCR_BVR_WCR_WVR_EL1(5),
866 DBG_BCR_BVR_WCR_WVR_EL1(6),
867 DBG_BCR_BVR_WCR_WVR_EL1(7),
868 DBG_BCR_BVR_WCR_WVR_EL1(8),
869 DBG_BCR_BVR_WCR_WVR_EL1(9),
870 DBG_BCR_BVR_WCR_WVR_EL1(10),
871 DBG_BCR_BVR_WCR_WVR_EL1(11),
872 DBG_BCR_BVR_WCR_WVR_EL1(12),
873 DBG_BCR_BVR_WCR_WVR_EL1(13),
874 DBG_BCR_BVR_WCR_WVR_EL1(14),
875 DBG_BCR_BVR_WCR_WVR_EL1(15),
876
877 /* MDRAR_EL1 */
878 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
879 trap_raz_wi },
880 /* OSLAR_EL1 */
881 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
882 trap_raz_wi },
883 /* OSLSR_EL1 */
884 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
885 trap_oslsr_el1 },
886 /* OSDLR_EL1 */
887 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
888 trap_raz_wi },
889 /* DBGPRCR_EL1 */
890 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
891 trap_raz_wi },
892 /* DBGCLAIMSET_EL1 */
893 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
894 trap_raz_wi },
895 /* DBGCLAIMCLR_EL1 */
896 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
897 trap_raz_wi },
898 /* DBGAUTHSTATUS_EL1 */
899 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
900 trap_dbgauthstatus_el1 },
901
902 /* MDCCSR_EL1 */
903 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
904 trap_raz_wi },
905 /* DBGDTR_EL0 */
906 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
907 trap_raz_wi },
908 /* DBGDTR[TR]X_EL0 */
909 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
910 trap_raz_wi },
911
912 /* DBGVCR32_EL2 */
913 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
914 NULL, reset_val, DBGVCR32_EL2, 0 },
915
916 /* MPIDR_EL1 */
917 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
918 NULL, reset_mpidr, MPIDR_EL1 },
919 /* SCTLR_EL1 */
920 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
921 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
922 /* CPACR_EL1 */
923 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
924 NULL, reset_val, CPACR_EL1, 0 },
925 /* TTBR0_EL1 */
926 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
927 access_vm_reg, reset_unknown, TTBR0_EL1 },
928 /* TTBR1_EL1 */
929 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
930 access_vm_reg, reset_unknown, TTBR1_EL1 },
931 /* TCR_EL1 */
932 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
933 access_vm_reg, reset_val, TCR_EL1, 0 },
934
935 /* AFSR0_EL1 */
936 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
937 access_vm_reg, reset_unknown, AFSR0_EL1 },
938 /* AFSR1_EL1 */
939 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
940 access_vm_reg, reset_unknown, AFSR1_EL1 },
941 /* ESR_EL1 */
942 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
943 access_vm_reg, reset_unknown, ESR_EL1 },
944 /* FAR_EL1 */
945 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
946 access_vm_reg, reset_unknown, FAR_EL1 },
947 /* PAR_EL1 */
948 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
949 NULL, reset_unknown, PAR_EL1 },
950
951 /* PMINTENSET_EL1 */
952 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
953 access_pminten, reset_unknown, PMINTENSET_EL1 },
954 /* PMINTENCLR_EL1 */
955 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
956 access_pminten, NULL, PMINTENSET_EL1 },
957
958 /* MAIR_EL1 */
959 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
960 access_vm_reg, reset_unknown, MAIR_EL1 },
961 /* AMAIR_EL1 */
962 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
963 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
964
965 /* VBAR_EL1 */
966 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
967 NULL, reset_val, VBAR_EL1, 0 },
968
969 /* ICC_SGI1R_EL1 */
970 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
971 access_gic_sgi },
972 /* ICC_SRE_EL1 */
973 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
974 access_gic_sre },
975
976 /* CONTEXTIDR_EL1 */
977 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
978 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
979 /* TPIDR_EL1 */
980 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
981 NULL, reset_unknown, TPIDR_EL1 },
982
983 /* CNTKCTL_EL1 */
984 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
985 NULL, reset_val, CNTKCTL_EL1, 0},
986
987 /* CSSELR_EL1 */
988 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
989 NULL, reset_unknown, CSSELR_EL1 },
990
991 /* PMCR_EL0 */
992 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
993 access_pmcr, reset_pmcr, },
994 /* PMCNTENSET_EL0 */
995 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
996 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
997 /* PMCNTENCLR_EL0 */
998 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
999 access_pmcnten, NULL, PMCNTENSET_EL0 },
1000 /* PMOVSCLR_EL0 */
1001 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1002 access_pmovs, NULL, PMOVSSET_EL0 },
1003 /* PMSWINC_EL0 */
1004 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1005 access_pmswinc, reset_unknown, PMSWINC_EL0 },
1006 /* PMSELR_EL0 */
1007 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1008 access_pmselr, reset_unknown, PMSELR_EL0 },
1009 /* PMCEID0_EL0 */
1010 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1011 access_pmceid },
1012 /* PMCEID1_EL0 */
1013 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1014 access_pmceid },
1015 /* PMCCNTR_EL0 */
1016 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1017 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1018 /* PMXEVTYPER_EL0 */
1019 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1020 access_pmu_evtyper },
1021 /* PMXEVCNTR_EL0 */
1022 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1023 access_pmu_evcntr },
1024 /* PMUSERENR_EL0
1025 * This register resets as unknown in 64bit mode while it resets as zero
1026 * in 32bit mode. Here we choose to reset it as zero for consistency.
1027 */
1028 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1029 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1030 /* PMOVSSET_EL0 */
1031 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1032 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1033
1034 /* TPIDR_EL0 */
1035 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1036 NULL, reset_unknown, TPIDR_EL0 },
1037 /* TPIDRRO_EL0 */
1038 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1039 NULL, reset_unknown, TPIDRRO_EL0 },
1040
1041 /* PMEVCNTRn_EL0 */
1042 PMU_PMEVCNTR_EL0(0),
1043 PMU_PMEVCNTR_EL0(1),
1044 PMU_PMEVCNTR_EL0(2),
1045 PMU_PMEVCNTR_EL0(3),
1046 PMU_PMEVCNTR_EL0(4),
1047 PMU_PMEVCNTR_EL0(5),
1048 PMU_PMEVCNTR_EL0(6),
1049 PMU_PMEVCNTR_EL0(7),
1050 PMU_PMEVCNTR_EL0(8),
1051 PMU_PMEVCNTR_EL0(9),
1052 PMU_PMEVCNTR_EL0(10),
1053 PMU_PMEVCNTR_EL0(11),
1054 PMU_PMEVCNTR_EL0(12),
1055 PMU_PMEVCNTR_EL0(13),
1056 PMU_PMEVCNTR_EL0(14),
1057 PMU_PMEVCNTR_EL0(15),
1058 PMU_PMEVCNTR_EL0(16),
1059 PMU_PMEVCNTR_EL0(17),
1060 PMU_PMEVCNTR_EL0(18),
1061 PMU_PMEVCNTR_EL0(19),
1062 PMU_PMEVCNTR_EL0(20),
1063 PMU_PMEVCNTR_EL0(21),
1064 PMU_PMEVCNTR_EL0(22),
1065 PMU_PMEVCNTR_EL0(23),
1066 PMU_PMEVCNTR_EL0(24),
1067 PMU_PMEVCNTR_EL0(25),
1068 PMU_PMEVCNTR_EL0(26),
1069 PMU_PMEVCNTR_EL0(27),
1070 PMU_PMEVCNTR_EL0(28),
1071 PMU_PMEVCNTR_EL0(29),
1072 PMU_PMEVCNTR_EL0(30),
1073 /* PMEVTYPERn_EL0 */
1074 PMU_PMEVTYPER_EL0(0),
1075 PMU_PMEVTYPER_EL0(1),
1076 PMU_PMEVTYPER_EL0(2),
1077 PMU_PMEVTYPER_EL0(3),
1078 PMU_PMEVTYPER_EL0(4),
1079 PMU_PMEVTYPER_EL0(5),
1080 PMU_PMEVTYPER_EL0(6),
1081 PMU_PMEVTYPER_EL0(7),
1082 PMU_PMEVTYPER_EL0(8),
1083 PMU_PMEVTYPER_EL0(9),
1084 PMU_PMEVTYPER_EL0(10),
1085 PMU_PMEVTYPER_EL0(11),
1086 PMU_PMEVTYPER_EL0(12),
1087 PMU_PMEVTYPER_EL0(13),
1088 PMU_PMEVTYPER_EL0(14),
1089 PMU_PMEVTYPER_EL0(15),
1090 PMU_PMEVTYPER_EL0(16),
1091 PMU_PMEVTYPER_EL0(17),
1092 PMU_PMEVTYPER_EL0(18),
1093 PMU_PMEVTYPER_EL0(19),
1094 PMU_PMEVTYPER_EL0(20),
1095 PMU_PMEVTYPER_EL0(21),
1096 PMU_PMEVTYPER_EL0(22),
1097 PMU_PMEVTYPER_EL0(23),
1098 PMU_PMEVTYPER_EL0(24),
1099 PMU_PMEVTYPER_EL0(25),
1100 PMU_PMEVTYPER_EL0(26),
1101 PMU_PMEVTYPER_EL0(27),
1102 PMU_PMEVTYPER_EL0(28),
1103 PMU_PMEVTYPER_EL0(29),
1104 PMU_PMEVTYPER_EL0(30),
1105 /* PMCCFILTR_EL0
1106 * This register resets as unknown in 64bit mode while it resets as zero
1107 * in 32bit mode. Here we choose to reset it as zero for consistency.
1108 */
1109 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1110 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1111
1112 /* DACR32_EL2 */
1113 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1114 NULL, reset_unknown, DACR32_EL2 },
1115 /* IFSR32_EL2 */
1116 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1117 NULL, reset_unknown, IFSR32_EL2 },
1118 /* FPEXC32_EL2 */
1119 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1120 NULL, reset_val, FPEXC32_EL2, 0x70 },
1121 };
1122
1123 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1124 struct sys_reg_params *p,
1125 const struct sys_reg_desc *r)
1126 {
1127 if (p->is_write) {
1128 return ignore_write(vcpu, p);
1129 } else {
1130 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1131 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1132 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1133
1134 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1135 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1136 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1137 | (6 << 16) | (el3 << 14) | (el3 << 12));
1138 return true;
1139 }
1140 }
1141
1142 static bool trap_debug32(struct kvm_vcpu *vcpu,
1143 struct sys_reg_params *p,
1144 const struct sys_reg_desc *r)
1145 {
1146 if (p->is_write) {
1147 vcpu_cp14(vcpu, r->reg) = p->regval;
1148 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1149 } else {
1150 p->regval = vcpu_cp14(vcpu, r->reg);
1151 }
1152
1153 return true;
1154 }
1155
1156 /* AArch32 debug register mappings
1157 *
1158 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1159 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1160 *
1161 * All control registers and watchpoint value registers are mapped to
1162 * the lower 32 bits of their AArch64 equivalents. We share the trap
1163 * handlers with the above AArch64 code which checks what mode the
1164 * system is in.
1165 */
1166
1167 static bool trap_xvr(struct kvm_vcpu *vcpu,
1168 struct sys_reg_params *p,
1169 const struct sys_reg_desc *rd)
1170 {
1171 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1172
1173 if (p->is_write) {
1174 u64 val = *dbg_reg;
1175
1176 val &= 0xffffffffUL;
1177 val |= p->regval << 32;
1178 *dbg_reg = val;
1179
1180 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1181 } else {
1182 p->regval = *dbg_reg >> 32;
1183 }
1184
1185 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1186
1187 return true;
1188 }
1189
1190 #define DBG_BCR_BVR_WCR_WVR(n) \
1191 /* DBGBVRn */ \
1192 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1193 /* DBGBCRn */ \
1194 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1195 /* DBGWVRn */ \
1196 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1197 /* DBGWCRn */ \
1198 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1199
1200 #define DBGBXVR(n) \
1201 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1202
1203 /*
1204 * Trapped cp14 registers. We generally ignore most of the external
1205 * debug, on the principle that they don't really make sense to a
1206 * guest. Revisit this one day, would this principle change.
1207 */
1208 static const struct sys_reg_desc cp14_regs[] = {
1209 /* DBGIDR */
1210 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1211 /* DBGDTRRXext */
1212 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1213
1214 DBG_BCR_BVR_WCR_WVR(0),
1215 /* DBGDSCRint */
1216 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1217 DBG_BCR_BVR_WCR_WVR(1),
1218 /* DBGDCCINT */
1219 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1220 /* DBGDSCRext */
1221 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1222 DBG_BCR_BVR_WCR_WVR(2),
1223 /* DBGDTR[RT]Xint */
1224 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1225 /* DBGDTR[RT]Xext */
1226 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1227 DBG_BCR_BVR_WCR_WVR(3),
1228 DBG_BCR_BVR_WCR_WVR(4),
1229 DBG_BCR_BVR_WCR_WVR(5),
1230 /* DBGWFAR */
1231 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1232 /* DBGOSECCR */
1233 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1234 DBG_BCR_BVR_WCR_WVR(6),
1235 /* DBGVCR */
1236 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1237 DBG_BCR_BVR_WCR_WVR(7),
1238 DBG_BCR_BVR_WCR_WVR(8),
1239 DBG_BCR_BVR_WCR_WVR(9),
1240 DBG_BCR_BVR_WCR_WVR(10),
1241 DBG_BCR_BVR_WCR_WVR(11),
1242 DBG_BCR_BVR_WCR_WVR(12),
1243 DBG_BCR_BVR_WCR_WVR(13),
1244 DBG_BCR_BVR_WCR_WVR(14),
1245 DBG_BCR_BVR_WCR_WVR(15),
1246
1247 /* DBGDRAR (32bit) */
1248 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1249
1250 DBGBXVR(0),
1251 /* DBGOSLAR */
1252 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1253 DBGBXVR(1),
1254 /* DBGOSLSR */
1255 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1256 DBGBXVR(2),
1257 DBGBXVR(3),
1258 /* DBGOSDLR */
1259 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1260 DBGBXVR(4),
1261 /* DBGPRCR */
1262 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1263 DBGBXVR(5),
1264 DBGBXVR(6),
1265 DBGBXVR(7),
1266 DBGBXVR(8),
1267 DBGBXVR(9),
1268 DBGBXVR(10),
1269 DBGBXVR(11),
1270 DBGBXVR(12),
1271 DBGBXVR(13),
1272 DBGBXVR(14),
1273 DBGBXVR(15),
1274
1275 /* DBGDSAR (32bit) */
1276 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1277
1278 /* DBGDEVID2 */
1279 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1280 /* DBGDEVID1 */
1281 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1282 /* DBGDEVID */
1283 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1284 /* DBGCLAIMSET */
1285 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1286 /* DBGCLAIMCLR */
1287 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1288 /* DBGAUTHSTATUS */
1289 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1290 };
1291
1292 /* Trapped cp14 64bit registers */
1293 static const struct sys_reg_desc cp14_64_regs[] = {
1294 /* DBGDRAR (64bit) */
1295 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1296
1297 /* DBGDSAR (64bit) */
1298 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1299 };
1300
1301 /* Macro to expand the PMEVCNTRn register */
1302 #define PMU_PMEVCNTR(n) \
1303 /* PMEVCNTRn */ \
1304 { Op1(0), CRn(0b1110), \
1305 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1306 access_pmu_evcntr }
1307
1308 /* Macro to expand the PMEVTYPERn register */
1309 #define PMU_PMEVTYPER(n) \
1310 /* PMEVTYPERn */ \
1311 { Op1(0), CRn(0b1110), \
1312 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1313 access_pmu_evtyper }
1314
1315 /*
1316 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1317 * depending on the way they are accessed (as a 32bit or a 64bit
1318 * register).
1319 */
1320 static const struct sys_reg_desc cp15_regs[] = {
1321 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1322
1323 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1324 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1325 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1326 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1327 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1328 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1329 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1330 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1331 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1332 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1333 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1334
1335 /*
1336 * DC{C,I,CI}SW operations:
1337 */
1338 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1339 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1340 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1341
1342 /* PMU */
1343 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1344 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1345 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1346 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1347 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1348 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1349 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1350 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1351 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1352 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1353 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1354 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1355 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1356 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1357 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1358
1359 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1360 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1361 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1362 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1363
1364 /* ICC_SRE */
1365 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1366
1367 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1368
1369 /* PMEVCNTRn */
1370 PMU_PMEVCNTR(0),
1371 PMU_PMEVCNTR(1),
1372 PMU_PMEVCNTR(2),
1373 PMU_PMEVCNTR(3),
1374 PMU_PMEVCNTR(4),
1375 PMU_PMEVCNTR(5),
1376 PMU_PMEVCNTR(6),
1377 PMU_PMEVCNTR(7),
1378 PMU_PMEVCNTR(8),
1379 PMU_PMEVCNTR(9),
1380 PMU_PMEVCNTR(10),
1381 PMU_PMEVCNTR(11),
1382 PMU_PMEVCNTR(12),
1383 PMU_PMEVCNTR(13),
1384 PMU_PMEVCNTR(14),
1385 PMU_PMEVCNTR(15),
1386 PMU_PMEVCNTR(16),
1387 PMU_PMEVCNTR(17),
1388 PMU_PMEVCNTR(18),
1389 PMU_PMEVCNTR(19),
1390 PMU_PMEVCNTR(20),
1391 PMU_PMEVCNTR(21),
1392 PMU_PMEVCNTR(22),
1393 PMU_PMEVCNTR(23),
1394 PMU_PMEVCNTR(24),
1395 PMU_PMEVCNTR(25),
1396 PMU_PMEVCNTR(26),
1397 PMU_PMEVCNTR(27),
1398 PMU_PMEVCNTR(28),
1399 PMU_PMEVCNTR(29),
1400 PMU_PMEVCNTR(30),
1401 /* PMEVTYPERn */
1402 PMU_PMEVTYPER(0),
1403 PMU_PMEVTYPER(1),
1404 PMU_PMEVTYPER(2),
1405 PMU_PMEVTYPER(3),
1406 PMU_PMEVTYPER(4),
1407 PMU_PMEVTYPER(5),
1408 PMU_PMEVTYPER(6),
1409 PMU_PMEVTYPER(7),
1410 PMU_PMEVTYPER(8),
1411 PMU_PMEVTYPER(9),
1412 PMU_PMEVTYPER(10),
1413 PMU_PMEVTYPER(11),
1414 PMU_PMEVTYPER(12),
1415 PMU_PMEVTYPER(13),
1416 PMU_PMEVTYPER(14),
1417 PMU_PMEVTYPER(15),
1418 PMU_PMEVTYPER(16),
1419 PMU_PMEVTYPER(17),
1420 PMU_PMEVTYPER(18),
1421 PMU_PMEVTYPER(19),
1422 PMU_PMEVTYPER(20),
1423 PMU_PMEVTYPER(21),
1424 PMU_PMEVTYPER(22),
1425 PMU_PMEVTYPER(23),
1426 PMU_PMEVTYPER(24),
1427 PMU_PMEVTYPER(25),
1428 PMU_PMEVTYPER(26),
1429 PMU_PMEVTYPER(27),
1430 PMU_PMEVTYPER(28),
1431 PMU_PMEVTYPER(29),
1432 PMU_PMEVTYPER(30),
1433 /* PMCCFILTR */
1434 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1435 };
1436
1437 static const struct sys_reg_desc cp15_64_regs[] = {
1438 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1439 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1440 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1441 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1442 };
1443
1444 /* Target specific emulation tables */
1445 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1446
1447 void kvm_register_target_sys_reg_table(unsigned int target,
1448 struct kvm_sys_reg_target_table *table)
1449 {
1450 target_tables[target] = table;
1451 }
1452
1453 /* Get specific register table for this target. */
1454 static const struct sys_reg_desc *get_target_table(unsigned target,
1455 bool mode_is_64,
1456 size_t *num)
1457 {
1458 struct kvm_sys_reg_target_table *table;
1459
1460 table = target_tables[target];
1461 if (mode_is_64) {
1462 *num = table->table64.num;
1463 return table->table64.table;
1464 } else {
1465 *num = table->table32.num;
1466 return table->table32.table;
1467 }
1468 }
1469
1470 #define reg_to_match_value(x) \
1471 ({ \
1472 unsigned long val; \
1473 val = (x)->Op0 << 14; \
1474 val |= (x)->Op1 << 11; \
1475 val |= (x)->CRn << 7; \
1476 val |= (x)->CRm << 3; \
1477 val |= (x)->Op2; \
1478 val; \
1479 })
1480
1481 static int match_sys_reg(const void *key, const void *elt)
1482 {
1483 const unsigned long pval = (unsigned long)key;
1484 const struct sys_reg_desc *r = elt;
1485
1486 return pval - reg_to_match_value(r);
1487 }
1488
1489 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1490 const struct sys_reg_desc table[],
1491 unsigned int num)
1492 {
1493 unsigned long pval = reg_to_match_value(params);
1494
1495 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1496 }
1497
1498 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1499 {
1500 kvm_inject_undefined(vcpu);
1501 return 1;
1502 }
1503
1504 /*
1505 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1506 * call the corresponding trap handler.
1507 *
1508 * @params: pointer to the descriptor of the access
1509 * @table: array of trap descriptors
1510 * @num: size of the trap descriptor array
1511 *
1512 * Return 0 if the access has been handled, and -1 if not.
1513 */
1514 static int emulate_cp(struct kvm_vcpu *vcpu,
1515 struct sys_reg_params *params,
1516 const struct sys_reg_desc *table,
1517 size_t num)
1518 {
1519 const struct sys_reg_desc *r;
1520
1521 if (!table)
1522 return -1; /* Not handled */
1523
1524 r = find_reg(params, table, num);
1525
1526 if (r) {
1527 /*
1528 * Not having an accessor means that we have
1529 * configured a trap that we don't know how to
1530 * handle. This certainly qualifies as a gross bug
1531 * that should be fixed right away.
1532 */
1533 BUG_ON(!r->access);
1534
1535 if (likely(r->access(vcpu, params, r))) {
1536 /* Skip instruction, since it was emulated */
1537 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1538 /* Handled */
1539 return 0;
1540 }
1541 }
1542
1543 /* Not handled */
1544 return -1;
1545 }
1546
1547 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1548 struct sys_reg_params *params)
1549 {
1550 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1551 int cp = -1;
1552
1553 switch(hsr_ec) {
1554 case ESR_ELx_EC_CP15_32:
1555 case ESR_ELx_EC_CP15_64:
1556 cp = 15;
1557 break;
1558 case ESR_ELx_EC_CP14_MR:
1559 case ESR_ELx_EC_CP14_64:
1560 cp = 14;
1561 break;
1562 default:
1563 WARN_ON(1);
1564 }
1565
1566 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1567 cp, *vcpu_pc(vcpu));
1568 print_sys_reg_instr(params);
1569 kvm_inject_undefined(vcpu);
1570 }
1571
1572 /**
1573 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1574 * @vcpu: The VCPU pointer
1575 * @run: The kvm_run struct
1576 */
1577 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1578 const struct sys_reg_desc *global,
1579 size_t nr_global,
1580 const struct sys_reg_desc *target_specific,
1581 size_t nr_specific)
1582 {
1583 struct sys_reg_params params;
1584 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1585 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1586 int Rt2 = (hsr >> 10) & 0x1f;
1587
1588 params.is_aarch32 = true;
1589 params.is_32bit = false;
1590 params.CRm = (hsr >> 1) & 0xf;
1591 params.is_write = ((hsr & 1) == 0);
1592
1593 params.Op0 = 0;
1594 params.Op1 = (hsr >> 16) & 0xf;
1595 params.Op2 = 0;
1596 params.CRn = 0;
1597
1598 /*
1599 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1600 * backends between AArch32 and AArch64, we get away with it.
1601 */
1602 if (params.is_write) {
1603 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1604 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1605 }
1606
1607 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1608 goto out;
1609 if (!emulate_cp(vcpu, &params, global, nr_global))
1610 goto out;
1611
1612 unhandled_cp_access(vcpu, &params);
1613
1614 out:
1615 /* Split up the value between registers for the read side */
1616 if (!params.is_write) {
1617 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1618 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1619 }
1620
1621 return 1;
1622 }
1623
1624 /**
1625 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1626 * @vcpu: The VCPU pointer
1627 * @run: The kvm_run struct
1628 */
1629 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1630 const struct sys_reg_desc *global,
1631 size_t nr_global,
1632 const struct sys_reg_desc *target_specific,
1633 size_t nr_specific)
1634 {
1635 struct sys_reg_params params;
1636 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1637 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1638
1639 params.is_aarch32 = true;
1640 params.is_32bit = true;
1641 params.CRm = (hsr >> 1) & 0xf;
1642 params.regval = vcpu_get_reg(vcpu, Rt);
1643 params.is_write = ((hsr & 1) == 0);
1644 params.CRn = (hsr >> 10) & 0xf;
1645 params.Op0 = 0;
1646 params.Op1 = (hsr >> 14) & 0x7;
1647 params.Op2 = (hsr >> 17) & 0x7;
1648
1649 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1650 !emulate_cp(vcpu, &params, global, nr_global)) {
1651 if (!params.is_write)
1652 vcpu_set_reg(vcpu, Rt, params.regval);
1653 return 1;
1654 }
1655
1656 unhandled_cp_access(vcpu, &params);
1657 return 1;
1658 }
1659
1660 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1661 {
1662 const struct sys_reg_desc *target_specific;
1663 size_t num;
1664
1665 target_specific = get_target_table(vcpu->arch.target, false, &num);
1666 return kvm_handle_cp_64(vcpu,
1667 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1668 target_specific, num);
1669 }
1670
1671 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1672 {
1673 const struct sys_reg_desc *target_specific;
1674 size_t num;
1675
1676 target_specific = get_target_table(vcpu->arch.target, false, &num);
1677 return kvm_handle_cp_32(vcpu,
1678 cp15_regs, ARRAY_SIZE(cp15_regs),
1679 target_specific, num);
1680 }
1681
1682 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1683 {
1684 return kvm_handle_cp_64(vcpu,
1685 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1686 NULL, 0);
1687 }
1688
1689 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1690 {
1691 return kvm_handle_cp_32(vcpu,
1692 cp14_regs, ARRAY_SIZE(cp14_regs),
1693 NULL, 0);
1694 }
1695
1696 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1697 struct sys_reg_params *params)
1698 {
1699 size_t num;
1700 const struct sys_reg_desc *table, *r;
1701
1702 table = get_target_table(vcpu->arch.target, true, &num);
1703
1704 /* Search target-specific then generic table. */
1705 r = find_reg(params, table, num);
1706 if (!r)
1707 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1708
1709 if (likely(r)) {
1710 /*
1711 * Not having an accessor means that we have
1712 * configured a trap that we don't know how to
1713 * handle. This certainly qualifies as a gross bug
1714 * that should be fixed right away.
1715 */
1716 BUG_ON(!r->access);
1717
1718 if (likely(r->access(vcpu, params, r))) {
1719 /* Skip instruction, since it was emulated */
1720 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1721 return 1;
1722 }
1723 /* If access function fails, it should complain. */
1724 } else {
1725 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1726 *vcpu_pc(vcpu));
1727 print_sys_reg_instr(params);
1728 }
1729 kvm_inject_undefined(vcpu);
1730 return 1;
1731 }
1732
1733 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1734 const struct sys_reg_desc *table, size_t num)
1735 {
1736 unsigned long i;
1737
1738 for (i = 0; i < num; i++)
1739 if (table[i].reset)
1740 table[i].reset(vcpu, &table[i]);
1741 }
1742
1743 /**
1744 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1745 * @vcpu: The VCPU pointer
1746 * @run: The kvm_run struct
1747 */
1748 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1749 {
1750 struct sys_reg_params params;
1751 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1752 int Rt = kvm_vcpu_sys_get_rt(vcpu);
1753 int ret;
1754
1755 trace_kvm_handle_sys_reg(esr);
1756
1757 params.is_aarch32 = false;
1758 params.is_32bit = false;
1759 params.Op0 = (esr >> 20) & 3;
1760 params.Op1 = (esr >> 14) & 0x7;
1761 params.CRn = (esr >> 10) & 0xf;
1762 params.CRm = (esr >> 1) & 0xf;
1763 params.Op2 = (esr >> 17) & 0x7;
1764 params.regval = vcpu_get_reg(vcpu, Rt);
1765 params.is_write = !(esr & 1);
1766
1767 ret = emulate_sys_reg(vcpu, &params);
1768
1769 if (!params.is_write)
1770 vcpu_set_reg(vcpu, Rt, params.regval);
1771 return ret;
1772 }
1773
1774 /******************************************************************************
1775 * Userspace API
1776 *****************************************************************************/
1777
1778 static bool index_to_params(u64 id, struct sys_reg_params *params)
1779 {
1780 switch (id & KVM_REG_SIZE_MASK) {
1781 case KVM_REG_SIZE_U64:
1782 /* Any unused index bits means it's not valid. */
1783 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1784 | KVM_REG_ARM_COPROC_MASK
1785 | KVM_REG_ARM64_SYSREG_OP0_MASK
1786 | KVM_REG_ARM64_SYSREG_OP1_MASK
1787 | KVM_REG_ARM64_SYSREG_CRN_MASK
1788 | KVM_REG_ARM64_SYSREG_CRM_MASK
1789 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1790 return false;
1791 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1792 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1793 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1794 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1795 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1796 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1797 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1798 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1799 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1800 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1801 return true;
1802 default:
1803 return false;
1804 }
1805 }
1806
1807 /* Decode an index value, and find the sys_reg_desc entry. */
1808 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1809 u64 id)
1810 {
1811 size_t num;
1812 const struct sys_reg_desc *table, *r;
1813 struct sys_reg_params params;
1814
1815 /* We only do sys_reg for now. */
1816 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1817 return NULL;
1818
1819 if (!index_to_params(id, &params))
1820 return NULL;
1821
1822 table = get_target_table(vcpu->arch.target, true, &num);
1823 r = find_reg(&params, table, num);
1824 if (!r)
1825 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1826
1827 /* Not saved in the sys_reg array? */
1828 if (r && !r->reg)
1829 r = NULL;
1830
1831 return r;
1832 }
1833
1834 /*
1835 * These are the invariant sys_reg registers: we let the guest see the
1836 * host versions of these, so they're part of the guest state.
1837 *
1838 * A future CPU may provide a mechanism to present different values to
1839 * the guest, or a future kvm may trap them.
1840 */
1841
1842 #define FUNCTION_INVARIANT(reg) \
1843 static void get_##reg(struct kvm_vcpu *v, \
1844 const struct sys_reg_desc *r) \
1845 { \
1846 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1847 }
1848
1849 FUNCTION_INVARIANT(midr_el1)
1850 FUNCTION_INVARIANT(ctr_el0)
1851 FUNCTION_INVARIANT(revidr_el1)
1852 FUNCTION_INVARIANT(id_pfr0_el1)
1853 FUNCTION_INVARIANT(id_pfr1_el1)
1854 FUNCTION_INVARIANT(id_dfr0_el1)
1855 FUNCTION_INVARIANT(id_afr0_el1)
1856 FUNCTION_INVARIANT(id_mmfr0_el1)
1857 FUNCTION_INVARIANT(id_mmfr1_el1)
1858 FUNCTION_INVARIANT(id_mmfr2_el1)
1859 FUNCTION_INVARIANT(id_mmfr3_el1)
1860 FUNCTION_INVARIANT(id_isar0_el1)
1861 FUNCTION_INVARIANT(id_isar1_el1)
1862 FUNCTION_INVARIANT(id_isar2_el1)
1863 FUNCTION_INVARIANT(id_isar3_el1)
1864 FUNCTION_INVARIANT(id_isar4_el1)
1865 FUNCTION_INVARIANT(id_isar5_el1)
1866 FUNCTION_INVARIANT(clidr_el1)
1867 FUNCTION_INVARIANT(aidr_el1)
1868
1869 /* ->val is filled in by kvm_sys_reg_table_init() */
1870 static struct sys_reg_desc invariant_sys_regs[] = {
1871 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1872 NULL, get_midr_el1 },
1873 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1874 NULL, get_revidr_el1 },
1875 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1876 NULL, get_id_pfr0_el1 },
1877 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1878 NULL, get_id_pfr1_el1 },
1879 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1880 NULL, get_id_dfr0_el1 },
1881 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1882 NULL, get_id_afr0_el1 },
1883 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1884 NULL, get_id_mmfr0_el1 },
1885 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1886 NULL, get_id_mmfr1_el1 },
1887 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1888 NULL, get_id_mmfr2_el1 },
1889 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1890 NULL, get_id_mmfr3_el1 },
1891 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1892 NULL, get_id_isar0_el1 },
1893 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1894 NULL, get_id_isar1_el1 },
1895 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1896 NULL, get_id_isar2_el1 },
1897 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1898 NULL, get_id_isar3_el1 },
1899 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1900 NULL, get_id_isar4_el1 },
1901 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1902 NULL, get_id_isar5_el1 },
1903 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1904 NULL, get_clidr_el1 },
1905 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1906 NULL, get_aidr_el1 },
1907 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1908 NULL, get_ctr_el0 },
1909 };
1910
1911 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1912 {
1913 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1914 return -EFAULT;
1915 return 0;
1916 }
1917
1918 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1919 {
1920 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1921 return -EFAULT;
1922 return 0;
1923 }
1924
1925 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1926 {
1927 struct sys_reg_params params;
1928 const struct sys_reg_desc *r;
1929
1930 if (!index_to_params(id, &params))
1931 return -ENOENT;
1932
1933 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1934 if (!r)
1935 return -ENOENT;
1936
1937 return reg_to_user(uaddr, &r->val, id);
1938 }
1939
1940 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1941 {
1942 struct sys_reg_params params;
1943 const struct sys_reg_desc *r;
1944 int err;
1945 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1946
1947 if (!index_to_params(id, &params))
1948 return -ENOENT;
1949 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1950 if (!r)
1951 return -ENOENT;
1952
1953 err = reg_from_user(&val, uaddr, id);
1954 if (err)
1955 return err;
1956
1957 /* This is what we mean by invariant: you can't change it. */
1958 if (r->val != val)
1959 return -EINVAL;
1960
1961 return 0;
1962 }
1963
1964 static bool is_valid_cache(u32 val)
1965 {
1966 u32 level, ctype;
1967
1968 if (val >= CSSELR_MAX)
1969 return false;
1970
1971 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1972 level = (val >> 1);
1973 ctype = (cache_levels >> (level * 3)) & 7;
1974
1975 switch (ctype) {
1976 case 0: /* No cache */
1977 return false;
1978 case 1: /* Instruction cache only */
1979 return (val & 1);
1980 case 2: /* Data cache only */
1981 case 4: /* Unified cache */
1982 return !(val & 1);
1983 case 3: /* Separate instruction and data caches */
1984 return true;
1985 default: /* Reserved: we can't know instruction or data. */
1986 return false;
1987 }
1988 }
1989
1990 static int demux_c15_get(u64 id, void __user *uaddr)
1991 {
1992 u32 val;
1993 u32 __user *uval = uaddr;
1994
1995 /* Fail if we have unknown bits set. */
1996 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1997 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1998 return -ENOENT;
1999
2000 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2001 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2002 if (KVM_REG_SIZE(id) != 4)
2003 return -ENOENT;
2004 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2005 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2006 if (!is_valid_cache(val))
2007 return -ENOENT;
2008
2009 return put_user(get_ccsidr(val), uval);
2010 default:
2011 return -ENOENT;
2012 }
2013 }
2014
2015 static int demux_c15_set(u64 id, void __user *uaddr)
2016 {
2017 u32 val, newval;
2018 u32 __user *uval = uaddr;
2019
2020 /* Fail if we have unknown bits set. */
2021 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2022 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2023 return -ENOENT;
2024
2025 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2026 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2027 if (KVM_REG_SIZE(id) != 4)
2028 return -ENOENT;
2029 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2030 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2031 if (!is_valid_cache(val))
2032 return -ENOENT;
2033
2034 if (get_user(newval, uval))
2035 return -EFAULT;
2036
2037 /* This is also invariant: you can't change it. */
2038 if (newval != get_ccsidr(val))
2039 return -EINVAL;
2040 return 0;
2041 default:
2042 return -ENOENT;
2043 }
2044 }
2045
2046 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2047 {
2048 const struct sys_reg_desc *r;
2049 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2050
2051 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2052 return demux_c15_get(reg->id, uaddr);
2053
2054 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2055 return -ENOENT;
2056
2057 r = index_to_sys_reg_desc(vcpu, reg->id);
2058 if (!r)
2059 return get_invariant_sys_reg(reg->id, uaddr);
2060
2061 if (r->get_user)
2062 return (r->get_user)(vcpu, r, reg, uaddr);
2063
2064 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2065 }
2066
2067 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2068 {
2069 const struct sys_reg_desc *r;
2070 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2071
2072 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2073 return demux_c15_set(reg->id, uaddr);
2074
2075 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2076 return -ENOENT;
2077
2078 r = index_to_sys_reg_desc(vcpu, reg->id);
2079 if (!r)
2080 return set_invariant_sys_reg(reg->id, uaddr);
2081
2082 if (r->set_user)
2083 return (r->set_user)(vcpu, r, reg, uaddr);
2084
2085 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2086 }
2087
2088 static unsigned int num_demux_regs(void)
2089 {
2090 unsigned int i, count = 0;
2091
2092 for (i = 0; i < CSSELR_MAX; i++)
2093 if (is_valid_cache(i))
2094 count++;
2095
2096 return count;
2097 }
2098
2099 static int write_demux_regids(u64 __user *uindices)
2100 {
2101 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2102 unsigned int i;
2103
2104 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2105 for (i = 0; i < CSSELR_MAX; i++) {
2106 if (!is_valid_cache(i))
2107 continue;
2108 if (put_user(val | i, uindices))
2109 return -EFAULT;
2110 uindices++;
2111 }
2112 return 0;
2113 }
2114
2115 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2116 {
2117 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2118 KVM_REG_ARM64_SYSREG |
2119 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2120 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2121 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2122 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2123 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2124 }
2125
2126 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2127 {
2128 if (!*uind)
2129 return true;
2130
2131 if (put_user(sys_reg_to_index(reg), *uind))
2132 return false;
2133
2134 (*uind)++;
2135 return true;
2136 }
2137
2138 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2139 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2140 {
2141 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2142 unsigned int total = 0;
2143 size_t num;
2144
2145 /* We check for duplicates here, to allow arch-specific overrides. */
2146 i1 = get_target_table(vcpu->arch.target, true, &num);
2147 end1 = i1 + num;
2148 i2 = sys_reg_descs;
2149 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2150
2151 BUG_ON(i1 == end1 || i2 == end2);
2152
2153 /* Walk carefully, as both tables may refer to the same register. */
2154 while (i1 || i2) {
2155 int cmp = cmp_sys_reg(i1, i2);
2156 /* target-specific overrides generic entry. */
2157 if (cmp <= 0) {
2158 /* Ignore registers we trap but don't save. */
2159 if (i1->reg) {
2160 if (!copy_reg_to_user(i1, &uind))
2161 return -EFAULT;
2162 total++;
2163 }
2164 } else {
2165 /* Ignore registers we trap but don't save. */
2166 if (i2->reg) {
2167 if (!copy_reg_to_user(i2, &uind))
2168 return -EFAULT;
2169 total++;
2170 }
2171 }
2172
2173 if (cmp <= 0 && ++i1 == end1)
2174 i1 = NULL;
2175 if (cmp >= 0 && ++i2 == end2)
2176 i2 = NULL;
2177 }
2178 return total;
2179 }
2180
2181 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2182 {
2183 return ARRAY_SIZE(invariant_sys_regs)
2184 + num_demux_regs()
2185 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2186 }
2187
2188 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2189 {
2190 unsigned int i;
2191 int err;
2192
2193 /* Then give them all the invariant registers' indices. */
2194 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2195 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2196 return -EFAULT;
2197 uindices++;
2198 }
2199
2200 err = walk_sys_regs(vcpu, uindices);
2201 if (err < 0)
2202 return err;
2203 uindices += err;
2204
2205 return write_demux_regids(uindices);
2206 }
2207
2208 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2209 {
2210 unsigned int i;
2211
2212 for (i = 1; i < n; i++) {
2213 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2214 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2215 return 1;
2216 }
2217 }
2218
2219 return 0;
2220 }
2221
2222 void kvm_sys_reg_table_init(void)
2223 {
2224 unsigned int i;
2225 struct sys_reg_desc clidr;
2226
2227 /* Make sure tables are unique and in order. */
2228 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2229 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2230 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2231 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2232 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2233 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2234
2235 /* We abuse the reset function to overwrite the table itself. */
2236 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2237 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2238
2239 /*
2240 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2241 *
2242 * If software reads the Cache Type fields from Ctype1
2243 * upwards, once it has seen a value of 0b000, no caches
2244 * exist at further-out levels of the hierarchy. So, for
2245 * example, if Ctype3 is the first Cache Type field with a
2246 * value of 0b000, the values of Ctype4 to Ctype7 must be
2247 * ignored.
2248 */
2249 get_clidr_el1(NULL, &clidr); /* Ugly... */
2250 cache_levels = clidr.val;
2251 for (i = 0; i < 7; i++)
2252 if (((cache_levels >> (i*3)) & 7) == 0)
2253 break;
2254 /* Clear all higher bits. */
2255 cache_levels &= (1 << (i*3))-1;
2256 }
2257
2258 /**
2259 * kvm_reset_sys_regs - sets system registers to reset value
2260 * @vcpu: The VCPU pointer
2261 *
2262 * This function finds the right table above and sets the registers on the
2263 * virtual CPU struct to their architecturally defined reset values.
2264 */
2265 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2266 {
2267 size_t num;
2268 const struct sys_reg_desc *table;
2269
2270 /* Catch someone adding a register without putting in reset entry. */
2271 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2272
2273 /* Generic chip reset first (so target could override). */
2274 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2275
2276 table = get_target_table(vcpu->arch.target, true, &num);
2277 reset_sys_reg_descs(vcpu, table, num);
2278
2279 for (num = 1; num < NR_SYS_REGS; num++)
2280 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2281 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2282 }