]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kvm/sys_regs.c
Merge tag 'pm+acpi-4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
36
37 #include <trace/events/kvm.h>
38
39 #include "sys_regs.h"
40
41 #include "trace.h"
42
43 /*
44 * All of this file is extremly similar to the ARM coproc.c, but the
45 * types are different. My gut feeling is that it should be pretty
46 * easy to merge, but that would be an ABI breakage -- again. VFP
47 * would also need to be abstracted.
48 *
49 * For AArch32, we only take care of what is being trapped. Anything
50 * that has to do with init and userspace access has to go via the
51 * 64bit interface.
52 */
53
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
56
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
59
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
62 {
63 u32 ccsidr;
64
65 /* Make sure noone else changes CSSELR during this! */
66 local_irq_disable();
67 /* Put value into CSSELR */
68 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69 isb();
70 /* Read result out of CCSIDR */
71 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72 local_irq_enable();
73
74 return ccsidr;
75 }
76
77 /*
78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
79 */
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81 const struct sys_reg_params *p,
82 const struct sys_reg_desc *r)
83 {
84 if (!p->is_write)
85 return read_from_write_only(vcpu, p);
86
87 kvm_set_way_flush(vcpu);
88 return true;
89 }
90
91 /*
92 * Generic accessor for VM registers. Only called as long as HCR_TVM
93 * is set. If the guest enables the MMU, we stop trapping the VM
94 * sys_regs and leave it in complete control of the caches.
95 */
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97 const struct sys_reg_params *p,
98 const struct sys_reg_desc *r)
99 {
100 unsigned long val;
101 bool was_enabled = vcpu_has_cache_enabled(vcpu);
102
103 BUG_ON(!p->is_write);
104
105 val = *vcpu_reg(vcpu, p->Rt);
106 if (!p->is_aarch32) {
107 vcpu_sys_reg(vcpu, r->reg) = val;
108 } else {
109 if (!p->is_32bit)
110 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
111 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
112 }
113
114 kvm_toggle_cache(vcpu, was_enabled);
115 return true;
116 }
117
118 /*
119 * Trap handler for the GICv3 SGI generation system register.
120 * Forward the request to the VGIC emulation.
121 * The cp15_64 code makes sure this automatically works
122 * for both AArch64 and AArch32 accesses.
123 */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125 const struct sys_reg_params *p,
126 const struct sys_reg_desc *r)
127 {
128 u64 val;
129
130 if (!p->is_write)
131 return read_from_write_only(vcpu, p);
132
133 val = *vcpu_reg(vcpu, p->Rt);
134 vgic_v3_dispatch_sgi(vcpu, val);
135
136 return true;
137 }
138
139 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
140 const struct sys_reg_params *p,
141 const struct sys_reg_desc *r)
142 {
143 if (p->is_write)
144 return ignore_write(vcpu, p);
145 else
146 return read_zero(vcpu, p);
147 }
148
149 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
150 const struct sys_reg_params *p,
151 const struct sys_reg_desc *r)
152 {
153 if (p->is_write) {
154 return ignore_write(vcpu, p);
155 } else {
156 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
157 return true;
158 }
159 }
160
161 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
162 const struct sys_reg_params *p,
163 const struct sys_reg_desc *r)
164 {
165 if (p->is_write) {
166 return ignore_write(vcpu, p);
167 } else {
168 u32 val;
169 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
170 *vcpu_reg(vcpu, p->Rt) = val;
171 return true;
172 }
173 }
174
175 /*
176 * We want to avoid world-switching all the DBG registers all the
177 * time:
178 *
179 * - If we've touched any debug register, it is likely that we're
180 * going to touch more of them. It then makes sense to disable the
181 * traps and start doing the save/restore dance
182 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
183 * then mandatory to save/restore the registers, as the guest
184 * depends on them.
185 *
186 * For this, we use a DIRTY bit, indicating the guest has modified the
187 * debug registers, used as follow:
188 *
189 * On guest entry:
190 * - If the dirty bit is set (because we're coming back from trapping),
191 * disable the traps, save host registers, restore guest registers.
192 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
193 * set the dirty bit, disable the traps, save host registers,
194 * restore guest registers.
195 * - Otherwise, enable the traps
196 *
197 * On guest exit:
198 * - If the dirty bit is set, save guest registers, restore host
199 * registers and clear the dirty bit. This ensure that the host can
200 * now use the debug registers.
201 */
202 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
203 const struct sys_reg_params *p,
204 const struct sys_reg_desc *r)
205 {
206 if (p->is_write) {
207 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
208 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
209 } else {
210 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
211 }
212
213 trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt));
214
215 return true;
216 }
217
218 /*
219 * reg_to_dbg/dbg_to_reg
220 *
221 * A 32 bit write to a debug register leave top bits alone
222 * A 32 bit read from a debug register only returns the bottom bits
223 *
224 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
225 * hyp.S code switches between host and guest values in future.
226 */
227 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
228 const struct sys_reg_params *p,
229 u64 *dbg_reg)
230 {
231 u64 val = *vcpu_reg(vcpu, p->Rt);
232
233 if (p->is_32bit) {
234 val &= 0xffffffffUL;
235 val |= ((*dbg_reg >> 32) << 32);
236 }
237
238 *dbg_reg = val;
239 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
240 }
241
242 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
243 const struct sys_reg_params *p,
244 u64 *dbg_reg)
245 {
246 u64 val = *dbg_reg;
247
248 if (p->is_32bit)
249 val &= 0xffffffffUL;
250
251 *vcpu_reg(vcpu, p->Rt) = val;
252 }
253
254 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
255 const struct sys_reg_params *p,
256 const struct sys_reg_desc *rd)
257 {
258 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
259
260 if (p->is_write)
261 reg_to_dbg(vcpu, p, dbg_reg);
262 else
263 dbg_to_reg(vcpu, p, dbg_reg);
264
265 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
266
267 return true;
268 }
269
270 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
271 const struct kvm_one_reg *reg, void __user *uaddr)
272 {
273 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
274
275 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
276 return -EFAULT;
277 return 0;
278 }
279
280 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
281 const struct kvm_one_reg *reg, void __user *uaddr)
282 {
283 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
284
285 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
286 return -EFAULT;
287 return 0;
288 }
289
290 static inline void reset_bvr(struct kvm_vcpu *vcpu,
291 const struct sys_reg_desc *rd)
292 {
293 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
294 }
295
296 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
297 const struct sys_reg_params *p,
298 const struct sys_reg_desc *rd)
299 {
300 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
301
302 if (p->is_write)
303 reg_to_dbg(vcpu, p, dbg_reg);
304 else
305 dbg_to_reg(vcpu, p, dbg_reg);
306
307 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
308
309 return true;
310 }
311
312 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
313 const struct kvm_one_reg *reg, void __user *uaddr)
314 {
315 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
316
317 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
318 return -EFAULT;
319
320 return 0;
321 }
322
323 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
327
328 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
329 return -EFAULT;
330 return 0;
331 }
332
333 static inline void reset_bcr(struct kvm_vcpu *vcpu,
334 const struct sys_reg_desc *rd)
335 {
336 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
337 }
338
339 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
340 const struct sys_reg_params *p,
341 const struct sys_reg_desc *rd)
342 {
343 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
344
345 if (p->is_write)
346 reg_to_dbg(vcpu, p, dbg_reg);
347 else
348 dbg_to_reg(vcpu, p, dbg_reg);
349
350 trace_trap_reg(__func__, rd->reg, p->is_write,
351 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
352
353 return true;
354 }
355
356 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
357 const struct kvm_one_reg *reg, void __user *uaddr)
358 {
359 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
360
361 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
362 return -EFAULT;
363 return 0;
364 }
365
366 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
367 const struct kvm_one_reg *reg, void __user *uaddr)
368 {
369 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
370
371 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
372 return -EFAULT;
373 return 0;
374 }
375
376 static inline void reset_wvr(struct kvm_vcpu *vcpu,
377 const struct sys_reg_desc *rd)
378 {
379 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
380 }
381
382 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
383 const struct sys_reg_params *p,
384 const struct sys_reg_desc *rd)
385 {
386 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
387
388 if (p->is_write)
389 reg_to_dbg(vcpu, p, dbg_reg);
390 else
391 dbg_to_reg(vcpu, p, dbg_reg);
392
393 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
394
395 return true;
396 }
397
398 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
399 const struct kvm_one_reg *reg, void __user *uaddr)
400 {
401 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
402
403 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
404 return -EFAULT;
405 return 0;
406 }
407
408 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
409 const struct kvm_one_reg *reg, void __user *uaddr)
410 {
411 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
412
413 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
414 return -EFAULT;
415 return 0;
416 }
417
418 static inline void reset_wcr(struct kvm_vcpu *vcpu,
419 const struct sys_reg_desc *rd)
420 {
421 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
422 }
423
424 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
425 {
426 u64 amair;
427
428 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
429 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434 u64 mpidr;
435
436 /*
437 * Map the vcpu_id into the first three affinity level fields of
438 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 * of the GICv3 to be able to address each CPU directly when
441 * sending IPIs.
442 */
443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
450 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
451 /* DBGBVRn_EL1 */ \
452 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
453 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
454 /* DBGBCRn_EL1 */ \
455 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
456 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
457 /* DBGWVRn_EL1 */ \
458 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
459 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
460 /* DBGWCRn_EL1 */ \
461 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
462 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
463
464 /*
465 * Architected system registers.
466 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
467 *
468 * We could trap ID_DFR0 and tell the guest we don't support performance
469 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
470 * NAKed, so it will read the PMCR anyway.
471 *
472 * Therefore we tell the guest we have 0 counters. Unfortunately, we
473 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
474 * all PM registers, which doesn't crash the guest kernel at least.
475 *
476 * Debug handling: We do trap most, if not all debug related system
477 * registers. The implementation is good enough to ensure that a guest
478 * can use these with minimal performance degradation. The drawback is
479 * that we don't implement any of the external debug, none of the
480 * OSlock protocol. This should be revisited if we ever encounter a
481 * more demanding guest...
482 */
483 static const struct sys_reg_desc sys_reg_descs[] = {
484 /* DC ISW */
485 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
486 access_dcsw },
487 /* DC CSW */
488 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
489 access_dcsw },
490 /* DC CISW */
491 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
492 access_dcsw },
493
494 DBG_BCR_BVR_WCR_WVR_EL1(0),
495 DBG_BCR_BVR_WCR_WVR_EL1(1),
496 /* MDCCINT_EL1 */
497 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
498 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
499 /* MDSCR_EL1 */
500 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
501 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
502 DBG_BCR_BVR_WCR_WVR_EL1(2),
503 DBG_BCR_BVR_WCR_WVR_EL1(3),
504 DBG_BCR_BVR_WCR_WVR_EL1(4),
505 DBG_BCR_BVR_WCR_WVR_EL1(5),
506 DBG_BCR_BVR_WCR_WVR_EL1(6),
507 DBG_BCR_BVR_WCR_WVR_EL1(7),
508 DBG_BCR_BVR_WCR_WVR_EL1(8),
509 DBG_BCR_BVR_WCR_WVR_EL1(9),
510 DBG_BCR_BVR_WCR_WVR_EL1(10),
511 DBG_BCR_BVR_WCR_WVR_EL1(11),
512 DBG_BCR_BVR_WCR_WVR_EL1(12),
513 DBG_BCR_BVR_WCR_WVR_EL1(13),
514 DBG_BCR_BVR_WCR_WVR_EL1(14),
515 DBG_BCR_BVR_WCR_WVR_EL1(15),
516
517 /* MDRAR_EL1 */
518 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
519 trap_raz_wi },
520 /* OSLAR_EL1 */
521 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
522 trap_raz_wi },
523 /* OSLSR_EL1 */
524 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
525 trap_oslsr_el1 },
526 /* OSDLR_EL1 */
527 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
528 trap_raz_wi },
529 /* DBGPRCR_EL1 */
530 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
531 trap_raz_wi },
532 /* DBGCLAIMSET_EL1 */
533 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
534 trap_raz_wi },
535 /* DBGCLAIMCLR_EL1 */
536 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
537 trap_raz_wi },
538 /* DBGAUTHSTATUS_EL1 */
539 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
540 trap_dbgauthstatus_el1 },
541
542 /* MDCCSR_EL1 */
543 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
544 trap_raz_wi },
545 /* DBGDTR_EL0 */
546 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
547 trap_raz_wi },
548 /* DBGDTR[TR]X_EL0 */
549 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
550 trap_raz_wi },
551
552 /* DBGVCR32_EL2 */
553 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
554 NULL, reset_val, DBGVCR32_EL2, 0 },
555
556 /* MPIDR_EL1 */
557 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
558 NULL, reset_mpidr, MPIDR_EL1 },
559 /* SCTLR_EL1 */
560 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
561 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
562 /* CPACR_EL1 */
563 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
564 NULL, reset_val, CPACR_EL1, 0 },
565 /* TTBR0_EL1 */
566 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
567 access_vm_reg, reset_unknown, TTBR0_EL1 },
568 /* TTBR1_EL1 */
569 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
570 access_vm_reg, reset_unknown, TTBR1_EL1 },
571 /* TCR_EL1 */
572 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
573 access_vm_reg, reset_val, TCR_EL1, 0 },
574
575 /* AFSR0_EL1 */
576 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
577 access_vm_reg, reset_unknown, AFSR0_EL1 },
578 /* AFSR1_EL1 */
579 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
580 access_vm_reg, reset_unknown, AFSR1_EL1 },
581 /* ESR_EL1 */
582 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
583 access_vm_reg, reset_unknown, ESR_EL1 },
584 /* FAR_EL1 */
585 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
586 access_vm_reg, reset_unknown, FAR_EL1 },
587 /* PAR_EL1 */
588 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
589 NULL, reset_unknown, PAR_EL1 },
590
591 /* PMINTENSET_EL1 */
592 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
593 trap_raz_wi },
594 /* PMINTENCLR_EL1 */
595 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
596 trap_raz_wi },
597
598 /* MAIR_EL1 */
599 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
600 access_vm_reg, reset_unknown, MAIR_EL1 },
601 /* AMAIR_EL1 */
602 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
603 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
604
605 /* VBAR_EL1 */
606 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
607 NULL, reset_val, VBAR_EL1, 0 },
608
609 /* ICC_SGI1R_EL1 */
610 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
611 access_gic_sgi },
612 /* ICC_SRE_EL1 */
613 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
614 trap_raz_wi },
615
616 /* CONTEXTIDR_EL1 */
617 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
618 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
619 /* TPIDR_EL1 */
620 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
621 NULL, reset_unknown, TPIDR_EL1 },
622
623 /* CNTKCTL_EL1 */
624 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
625 NULL, reset_val, CNTKCTL_EL1, 0},
626
627 /* CSSELR_EL1 */
628 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
629 NULL, reset_unknown, CSSELR_EL1 },
630
631 /* PMCR_EL0 */
632 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
633 trap_raz_wi },
634 /* PMCNTENSET_EL0 */
635 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
636 trap_raz_wi },
637 /* PMCNTENCLR_EL0 */
638 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
639 trap_raz_wi },
640 /* PMOVSCLR_EL0 */
641 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
642 trap_raz_wi },
643 /* PMSWINC_EL0 */
644 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
645 trap_raz_wi },
646 /* PMSELR_EL0 */
647 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
648 trap_raz_wi },
649 /* PMCEID0_EL0 */
650 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
651 trap_raz_wi },
652 /* PMCEID1_EL0 */
653 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
654 trap_raz_wi },
655 /* PMCCNTR_EL0 */
656 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
657 trap_raz_wi },
658 /* PMXEVTYPER_EL0 */
659 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
660 trap_raz_wi },
661 /* PMXEVCNTR_EL0 */
662 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
663 trap_raz_wi },
664 /* PMUSERENR_EL0 */
665 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
666 trap_raz_wi },
667 /* PMOVSSET_EL0 */
668 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
669 trap_raz_wi },
670
671 /* TPIDR_EL0 */
672 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
673 NULL, reset_unknown, TPIDR_EL0 },
674 /* TPIDRRO_EL0 */
675 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
676 NULL, reset_unknown, TPIDRRO_EL0 },
677
678 /* DACR32_EL2 */
679 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
680 NULL, reset_unknown, DACR32_EL2 },
681 /* IFSR32_EL2 */
682 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
683 NULL, reset_unknown, IFSR32_EL2 },
684 /* FPEXC32_EL2 */
685 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
686 NULL, reset_val, FPEXC32_EL2, 0x70 },
687 };
688
689 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
690 const struct sys_reg_params *p,
691 const struct sys_reg_desc *r)
692 {
693 if (p->is_write) {
694 return ignore_write(vcpu, p);
695 } else {
696 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
697 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
698 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
699
700 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
701 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
702 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) |
703 (6 << 16) | (el3 << 14) | (el3 << 12));
704 return true;
705 }
706 }
707
708 static bool trap_debug32(struct kvm_vcpu *vcpu,
709 const struct sys_reg_params *p,
710 const struct sys_reg_desc *r)
711 {
712 if (p->is_write) {
713 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
714 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
715 } else {
716 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
717 }
718
719 return true;
720 }
721
722 /* AArch32 debug register mappings
723 *
724 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
725 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
726 *
727 * All control registers and watchpoint value registers are mapped to
728 * the lower 32 bits of their AArch64 equivalents. We share the trap
729 * handlers with the above AArch64 code which checks what mode the
730 * system is in.
731 */
732
733 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
734 const struct sys_reg_params *p,
735 const struct sys_reg_desc *rd)
736 {
737 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
738
739 if (p->is_write) {
740 u64 val = *dbg_reg;
741
742 val &= 0xffffffffUL;
743 val |= *vcpu_reg(vcpu, p->Rt) << 32;
744 *dbg_reg = val;
745
746 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
747 } else {
748 *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32;
749 }
750
751 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
752
753 return true;
754 }
755
756 #define DBG_BCR_BVR_WCR_WVR(n) \
757 /* DBGBVRn */ \
758 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
759 /* DBGBCRn */ \
760 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
761 /* DBGWVRn */ \
762 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
763 /* DBGWCRn */ \
764 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
765
766 #define DBGBXVR(n) \
767 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
768
769 /*
770 * Trapped cp14 registers. We generally ignore most of the external
771 * debug, on the principle that they don't really make sense to a
772 * guest. Revisit this one day, would this principle change.
773 */
774 static const struct sys_reg_desc cp14_regs[] = {
775 /* DBGIDR */
776 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
777 /* DBGDTRRXext */
778 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
779
780 DBG_BCR_BVR_WCR_WVR(0),
781 /* DBGDSCRint */
782 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
783 DBG_BCR_BVR_WCR_WVR(1),
784 /* DBGDCCINT */
785 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
786 /* DBGDSCRext */
787 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
788 DBG_BCR_BVR_WCR_WVR(2),
789 /* DBGDTR[RT]Xint */
790 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
791 /* DBGDTR[RT]Xext */
792 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
793 DBG_BCR_BVR_WCR_WVR(3),
794 DBG_BCR_BVR_WCR_WVR(4),
795 DBG_BCR_BVR_WCR_WVR(5),
796 /* DBGWFAR */
797 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
798 /* DBGOSECCR */
799 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
800 DBG_BCR_BVR_WCR_WVR(6),
801 /* DBGVCR */
802 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
803 DBG_BCR_BVR_WCR_WVR(7),
804 DBG_BCR_BVR_WCR_WVR(8),
805 DBG_BCR_BVR_WCR_WVR(9),
806 DBG_BCR_BVR_WCR_WVR(10),
807 DBG_BCR_BVR_WCR_WVR(11),
808 DBG_BCR_BVR_WCR_WVR(12),
809 DBG_BCR_BVR_WCR_WVR(13),
810 DBG_BCR_BVR_WCR_WVR(14),
811 DBG_BCR_BVR_WCR_WVR(15),
812
813 /* DBGDRAR (32bit) */
814 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
815
816 DBGBXVR(0),
817 /* DBGOSLAR */
818 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
819 DBGBXVR(1),
820 /* DBGOSLSR */
821 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
822 DBGBXVR(2),
823 DBGBXVR(3),
824 /* DBGOSDLR */
825 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
826 DBGBXVR(4),
827 /* DBGPRCR */
828 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
829 DBGBXVR(5),
830 DBGBXVR(6),
831 DBGBXVR(7),
832 DBGBXVR(8),
833 DBGBXVR(9),
834 DBGBXVR(10),
835 DBGBXVR(11),
836 DBGBXVR(12),
837 DBGBXVR(13),
838 DBGBXVR(14),
839 DBGBXVR(15),
840
841 /* DBGDSAR (32bit) */
842 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
843
844 /* DBGDEVID2 */
845 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
846 /* DBGDEVID1 */
847 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
848 /* DBGDEVID */
849 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
850 /* DBGCLAIMSET */
851 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
852 /* DBGCLAIMCLR */
853 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
854 /* DBGAUTHSTATUS */
855 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
856 };
857
858 /* Trapped cp14 64bit registers */
859 static const struct sys_reg_desc cp14_64_regs[] = {
860 /* DBGDRAR (64bit) */
861 { Op1( 0), CRm( 1), .access = trap_raz_wi },
862
863 /* DBGDSAR (64bit) */
864 { Op1( 0), CRm( 2), .access = trap_raz_wi },
865 };
866
867 /*
868 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
869 * depending on the way they are accessed (as a 32bit or a 64bit
870 * register).
871 */
872 static const struct sys_reg_desc cp15_regs[] = {
873 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
874
875 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
876 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
877 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
878 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
879 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
880 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
881 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
882 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
883 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
884 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
885 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
886
887 /*
888 * DC{C,I,CI}SW operations:
889 */
890 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
891 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
892 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
893
894 /* PMU */
895 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
896 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
897 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
898 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
899 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
900 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
901 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
902 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
903 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
904 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
905 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
906 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
907 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
908
909 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
910 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
911 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
912 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
913
914 /* ICC_SRE */
915 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
916
917 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
918 };
919
920 static const struct sys_reg_desc cp15_64_regs[] = {
921 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
922 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
923 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
924 };
925
926 /* Target specific emulation tables */
927 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
928
929 void kvm_register_target_sys_reg_table(unsigned int target,
930 struct kvm_sys_reg_target_table *table)
931 {
932 target_tables[target] = table;
933 }
934
935 /* Get specific register table for this target. */
936 static const struct sys_reg_desc *get_target_table(unsigned target,
937 bool mode_is_64,
938 size_t *num)
939 {
940 struct kvm_sys_reg_target_table *table;
941
942 table = target_tables[target];
943 if (mode_is_64) {
944 *num = table->table64.num;
945 return table->table64.table;
946 } else {
947 *num = table->table32.num;
948 return table->table32.table;
949 }
950 }
951
952 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
953 const struct sys_reg_desc table[],
954 unsigned int num)
955 {
956 unsigned int i;
957
958 for (i = 0; i < num; i++) {
959 const struct sys_reg_desc *r = &table[i];
960
961 if (params->Op0 != r->Op0)
962 continue;
963 if (params->Op1 != r->Op1)
964 continue;
965 if (params->CRn != r->CRn)
966 continue;
967 if (params->CRm != r->CRm)
968 continue;
969 if (params->Op2 != r->Op2)
970 continue;
971
972 return r;
973 }
974 return NULL;
975 }
976
977 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
978 {
979 kvm_inject_undefined(vcpu);
980 return 1;
981 }
982
983 /*
984 * emulate_cp -- tries to match a sys_reg access in a handling table, and
985 * call the corresponding trap handler.
986 *
987 * @params: pointer to the descriptor of the access
988 * @table: array of trap descriptors
989 * @num: size of the trap descriptor array
990 *
991 * Return 0 if the access has been handled, and -1 if not.
992 */
993 static int emulate_cp(struct kvm_vcpu *vcpu,
994 const struct sys_reg_params *params,
995 const struct sys_reg_desc *table,
996 size_t num)
997 {
998 const struct sys_reg_desc *r;
999
1000 if (!table)
1001 return -1; /* Not handled */
1002
1003 r = find_reg(params, table, num);
1004
1005 if (r) {
1006 /*
1007 * Not having an accessor means that we have
1008 * configured a trap that we don't know how to
1009 * handle. This certainly qualifies as a gross bug
1010 * that should be fixed right away.
1011 */
1012 BUG_ON(!r->access);
1013
1014 if (likely(r->access(vcpu, params, r))) {
1015 /* Skip instruction, since it was emulated */
1016 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1017 }
1018
1019 /* Handled */
1020 return 0;
1021 }
1022
1023 /* Not handled */
1024 return -1;
1025 }
1026
1027 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1028 struct sys_reg_params *params)
1029 {
1030 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1031 int cp;
1032
1033 switch(hsr_ec) {
1034 case ESR_ELx_EC_CP15_32:
1035 case ESR_ELx_EC_CP15_64:
1036 cp = 15;
1037 break;
1038 case ESR_ELx_EC_CP14_MR:
1039 case ESR_ELx_EC_CP14_64:
1040 cp = 14;
1041 break;
1042 default:
1043 WARN_ON((cp = -1));
1044 }
1045
1046 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1047 cp, *vcpu_pc(vcpu));
1048 print_sys_reg_instr(params);
1049 kvm_inject_undefined(vcpu);
1050 }
1051
1052 /**
1053 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1054 * @vcpu: The VCPU pointer
1055 * @run: The kvm_run struct
1056 */
1057 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1058 const struct sys_reg_desc *global,
1059 size_t nr_global,
1060 const struct sys_reg_desc *target_specific,
1061 size_t nr_specific)
1062 {
1063 struct sys_reg_params params;
1064 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1065 int Rt2 = (hsr >> 10) & 0xf;
1066
1067 params.is_aarch32 = true;
1068 params.is_32bit = false;
1069 params.CRm = (hsr >> 1) & 0xf;
1070 params.Rt = (hsr >> 5) & 0xf;
1071 params.is_write = ((hsr & 1) == 0);
1072
1073 params.Op0 = 0;
1074 params.Op1 = (hsr >> 16) & 0xf;
1075 params.Op2 = 0;
1076 params.CRn = 0;
1077
1078 /*
1079 * Massive hack here. Store Rt2 in the top 32bits so we only
1080 * have one register to deal with. As we use the same trap
1081 * backends between AArch32 and AArch64, we get away with it.
1082 */
1083 if (params.is_write) {
1084 u64 val = *vcpu_reg(vcpu, params.Rt);
1085 val &= 0xffffffff;
1086 val |= *vcpu_reg(vcpu, Rt2) << 32;
1087 *vcpu_reg(vcpu, params.Rt) = val;
1088 }
1089
1090 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1091 goto out;
1092 if (!emulate_cp(vcpu, &params, global, nr_global))
1093 goto out;
1094
1095 unhandled_cp_access(vcpu, &params);
1096
1097 out:
1098 /* Do the opposite hack for the read side */
1099 if (!params.is_write) {
1100 u64 val = *vcpu_reg(vcpu, params.Rt);
1101 val >>= 32;
1102 *vcpu_reg(vcpu, Rt2) = val;
1103 }
1104
1105 return 1;
1106 }
1107
1108 /**
1109 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1110 * @vcpu: The VCPU pointer
1111 * @run: The kvm_run struct
1112 */
1113 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1114 const struct sys_reg_desc *global,
1115 size_t nr_global,
1116 const struct sys_reg_desc *target_specific,
1117 size_t nr_specific)
1118 {
1119 struct sys_reg_params params;
1120 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1121
1122 params.is_aarch32 = true;
1123 params.is_32bit = true;
1124 params.CRm = (hsr >> 1) & 0xf;
1125 params.Rt = (hsr >> 5) & 0xf;
1126 params.is_write = ((hsr & 1) == 0);
1127 params.CRn = (hsr >> 10) & 0xf;
1128 params.Op0 = 0;
1129 params.Op1 = (hsr >> 14) & 0x7;
1130 params.Op2 = (hsr >> 17) & 0x7;
1131
1132 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1133 return 1;
1134 if (!emulate_cp(vcpu, &params, global, nr_global))
1135 return 1;
1136
1137 unhandled_cp_access(vcpu, &params);
1138 return 1;
1139 }
1140
1141 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1142 {
1143 const struct sys_reg_desc *target_specific;
1144 size_t num;
1145
1146 target_specific = get_target_table(vcpu->arch.target, false, &num);
1147 return kvm_handle_cp_64(vcpu,
1148 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1149 target_specific, num);
1150 }
1151
1152 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1153 {
1154 const struct sys_reg_desc *target_specific;
1155 size_t num;
1156
1157 target_specific = get_target_table(vcpu->arch.target, false, &num);
1158 return kvm_handle_cp_32(vcpu,
1159 cp15_regs, ARRAY_SIZE(cp15_regs),
1160 target_specific, num);
1161 }
1162
1163 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1164 {
1165 return kvm_handle_cp_64(vcpu,
1166 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1167 NULL, 0);
1168 }
1169
1170 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1171 {
1172 return kvm_handle_cp_32(vcpu,
1173 cp14_regs, ARRAY_SIZE(cp14_regs),
1174 NULL, 0);
1175 }
1176
1177 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1178 const struct sys_reg_params *params)
1179 {
1180 size_t num;
1181 const struct sys_reg_desc *table, *r;
1182
1183 table = get_target_table(vcpu->arch.target, true, &num);
1184
1185 /* Search target-specific then generic table. */
1186 r = find_reg(params, table, num);
1187 if (!r)
1188 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1189
1190 if (likely(r)) {
1191 /*
1192 * Not having an accessor means that we have
1193 * configured a trap that we don't know how to
1194 * handle. This certainly qualifies as a gross bug
1195 * that should be fixed right away.
1196 */
1197 BUG_ON(!r->access);
1198
1199 if (likely(r->access(vcpu, params, r))) {
1200 /* Skip instruction, since it was emulated */
1201 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1202 return 1;
1203 }
1204 /* If access function fails, it should complain. */
1205 } else {
1206 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1207 *vcpu_pc(vcpu));
1208 print_sys_reg_instr(params);
1209 }
1210 kvm_inject_undefined(vcpu);
1211 return 1;
1212 }
1213
1214 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1215 const struct sys_reg_desc *table, size_t num)
1216 {
1217 unsigned long i;
1218
1219 for (i = 0; i < num; i++)
1220 if (table[i].reset)
1221 table[i].reset(vcpu, &table[i]);
1222 }
1223
1224 /**
1225 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1226 * @vcpu: The VCPU pointer
1227 * @run: The kvm_run struct
1228 */
1229 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1230 {
1231 struct sys_reg_params params;
1232 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1233
1234 trace_kvm_handle_sys_reg(esr);
1235
1236 params.is_aarch32 = false;
1237 params.is_32bit = false;
1238 params.Op0 = (esr >> 20) & 3;
1239 params.Op1 = (esr >> 14) & 0x7;
1240 params.CRn = (esr >> 10) & 0xf;
1241 params.CRm = (esr >> 1) & 0xf;
1242 params.Op2 = (esr >> 17) & 0x7;
1243 params.Rt = (esr >> 5) & 0x1f;
1244 params.is_write = !(esr & 1);
1245
1246 return emulate_sys_reg(vcpu, &params);
1247 }
1248
1249 /******************************************************************************
1250 * Userspace API
1251 *****************************************************************************/
1252
1253 static bool index_to_params(u64 id, struct sys_reg_params *params)
1254 {
1255 switch (id & KVM_REG_SIZE_MASK) {
1256 case KVM_REG_SIZE_U64:
1257 /* Any unused index bits means it's not valid. */
1258 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1259 | KVM_REG_ARM_COPROC_MASK
1260 | KVM_REG_ARM64_SYSREG_OP0_MASK
1261 | KVM_REG_ARM64_SYSREG_OP1_MASK
1262 | KVM_REG_ARM64_SYSREG_CRN_MASK
1263 | KVM_REG_ARM64_SYSREG_CRM_MASK
1264 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1265 return false;
1266 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1267 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1268 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1269 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1270 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1271 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1272 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1273 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1274 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1275 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1276 return true;
1277 default:
1278 return false;
1279 }
1280 }
1281
1282 /* Decode an index value, and find the sys_reg_desc entry. */
1283 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1284 u64 id)
1285 {
1286 size_t num;
1287 const struct sys_reg_desc *table, *r;
1288 struct sys_reg_params params;
1289
1290 /* We only do sys_reg for now. */
1291 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1292 return NULL;
1293
1294 if (!index_to_params(id, &params))
1295 return NULL;
1296
1297 table = get_target_table(vcpu->arch.target, true, &num);
1298 r = find_reg(&params, table, num);
1299 if (!r)
1300 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1301
1302 /* Not saved in the sys_reg array? */
1303 if (r && !r->reg)
1304 r = NULL;
1305
1306 return r;
1307 }
1308
1309 /*
1310 * These are the invariant sys_reg registers: we let the guest see the
1311 * host versions of these, so they're part of the guest state.
1312 *
1313 * A future CPU may provide a mechanism to present different values to
1314 * the guest, or a future kvm may trap them.
1315 */
1316
1317 #define FUNCTION_INVARIANT(reg) \
1318 static void get_##reg(struct kvm_vcpu *v, \
1319 const struct sys_reg_desc *r) \
1320 { \
1321 u64 val; \
1322 \
1323 asm volatile("mrs %0, " __stringify(reg) "\n" \
1324 : "=r" (val)); \
1325 ((struct sys_reg_desc *)r)->val = val; \
1326 }
1327
1328 FUNCTION_INVARIANT(midr_el1)
1329 FUNCTION_INVARIANT(ctr_el0)
1330 FUNCTION_INVARIANT(revidr_el1)
1331 FUNCTION_INVARIANT(id_pfr0_el1)
1332 FUNCTION_INVARIANT(id_pfr1_el1)
1333 FUNCTION_INVARIANT(id_dfr0_el1)
1334 FUNCTION_INVARIANT(id_afr0_el1)
1335 FUNCTION_INVARIANT(id_mmfr0_el1)
1336 FUNCTION_INVARIANT(id_mmfr1_el1)
1337 FUNCTION_INVARIANT(id_mmfr2_el1)
1338 FUNCTION_INVARIANT(id_mmfr3_el1)
1339 FUNCTION_INVARIANT(id_isar0_el1)
1340 FUNCTION_INVARIANT(id_isar1_el1)
1341 FUNCTION_INVARIANT(id_isar2_el1)
1342 FUNCTION_INVARIANT(id_isar3_el1)
1343 FUNCTION_INVARIANT(id_isar4_el1)
1344 FUNCTION_INVARIANT(id_isar5_el1)
1345 FUNCTION_INVARIANT(clidr_el1)
1346 FUNCTION_INVARIANT(aidr_el1)
1347
1348 /* ->val is filled in by kvm_sys_reg_table_init() */
1349 static struct sys_reg_desc invariant_sys_regs[] = {
1350 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1351 NULL, get_midr_el1 },
1352 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1353 NULL, get_revidr_el1 },
1354 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1355 NULL, get_id_pfr0_el1 },
1356 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1357 NULL, get_id_pfr1_el1 },
1358 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1359 NULL, get_id_dfr0_el1 },
1360 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1361 NULL, get_id_afr0_el1 },
1362 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1363 NULL, get_id_mmfr0_el1 },
1364 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1365 NULL, get_id_mmfr1_el1 },
1366 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1367 NULL, get_id_mmfr2_el1 },
1368 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1369 NULL, get_id_mmfr3_el1 },
1370 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1371 NULL, get_id_isar0_el1 },
1372 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1373 NULL, get_id_isar1_el1 },
1374 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1375 NULL, get_id_isar2_el1 },
1376 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1377 NULL, get_id_isar3_el1 },
1378 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1379 NULL, get_id_isar4_el1 },
1380 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1381 NULL, get_id_isar5_el1 },
1382 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1383 NULL, get_clidr_el1 },
1384 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1385 NULL, get_aidr_el1 },
1386 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1387 NULL, get_ctr_el0 },
1388 };
1389
1390 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1391 {
1392 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1393 return -EFAULT;
1394 return 0;
1395 }
1396
1397 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1398 {
1399 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1400 return -EFAULT;
1401 return 0;
1402 }
1403
1404 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1405 {
1406 struct sys_reg_params params;
1407 const struct sys_reg_desc *r;
1408
1409 if (!index_to_params(id, &params))
1410 return -ENOENT;
1411
1412 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1413 if (!r)
1414 return -ENOENT;
1415
1416 return reg_to_user(uaddr, &r->val, id);
1417 }
1418
1419 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1420 {
1421 struct sys_reg_params params;
1422 const struct sys_reg_desc *r;
1423 int err;
1424 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1425
1426 if (!index_to_params(id, &params))
1427 return -ENOENT;
1428 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1429 if (!r)
1430 return -ENOENT;
1431
1432 err = reg_from_user(&val, uaddr, id);
1433 if (err)
1434 return err;
1435
1436 /* This is what we mean by invariant: you can't change it. */
1437 if (r->val != val)
1438 return -EINVAL;
1439
1440 return 0;
1441 }
1442
1443 static bool is_valid_cache(u32 val)
1444 {
1445 u32 level, ctype;
1446
1447 if (val >= CSSELR_MAX)
1448 return false;
1449
1450 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1451 level = (val >> 1);
1452 ctype = (cache_levels >> (level * 3)) & 7;
1453
1454 switch (ctype) {
1455 case 0: /* No cache */
1456 return false;
1457 case 1: /* Instruction cache only */
1458 return (val & 1);
1459 case 2: /* Data cache only */
1460 case 4: /* Unified cache */
1461 return !(val & 1);
1462 case 3: /* Separate instruction and data caches */
1463 return true;
1464 default: /* Reserved: we can't know instruction or data. */
1465 return false;
1466 }
1467 }
1468
1469 static int demux_c15_get(u64 id, void __user *uaddr)
1470 {
1471 u32 val;
1472 u32 __user *uval = uaddr;
1473
1474 /* Fail if we have unknown bits set. */
1475 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1476 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1477 return -ENOENT;
1478
1479 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1480 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1481 if (KVM_REG_SIZE(id) != 4)
1482 return -ENOENT;
1483 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1484 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1485 if (!is_valid_cache(val))
1486 return -ENOENT;
1487
1488 return put_user(get_ccsidr(val), uval);
1489 default:
1490 return -ENOENT;
1491 }
1492 }
1493
1494 static int demux_c15_set(u64 id, void __user *uaddr)
1495 {
1496 u32 val, newval;
1497 u32 __user *uval = uaddr;
1498
1499 /* Fail if we have unknown bits set. */
1500 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1501 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1502 return -ENOENT;
1503
1504 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1505 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1506 if (KVM_REG_SIZE(id) != 4)
1507 return -ENOENT;
1508 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1509 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1510 if (!is_valid_cache(val))
1511 return -ENOENT;
1512
1513 if (get_user(newval, uval))
1514 return -EFAULT;
1515
1516 /* This is also invariant: you can't change it. */
1517 if (newval != get_ccsidr(val))
1518 return -EINVAL;
1519 return 0;
1520 default:
1521 return -ENOENT;
1522 }
1523 }
1524
1525 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1526 {
1527 const struct sys_reg_desc *r;
1528 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1529
1530 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1531 return demux_c15_get(reg->id, uaddr);
1532
1533 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1534 return -ENOENT;
1535
1536 r = index_to_sys_reg_desc(vcpu, reg->id);
1537 if (!r)
1538 return get_invariant_sys_reg(reg->id, uaddr);
1539
1540 if (r->get_user)
1541 return (r->get_user)(vcpu, r, reg, uaddr);
1542
1543 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1544 }
1545
1546 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1547 {
1548 const struct sys_reg_desc *r;
1549 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1550
1551 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1552 return demux_c15_set(reg->id, uaddr);
1553
1554 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1555 return -ENOENT;
1556
1557 r = index_to_sys_reg_desc(vcpu, reg->id);
1558 if (!r)
1559 return set_invariant_sys_reg(reg->id, uaddr);
1560
1561 if (r->set_user)
1562 return (r->set_user)(vcpu, r, reg, uaddr);
1563
1564 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1565 }
1566
1567 static unsigned int num_demux_regs(void)
1568 {
1569 unsigned int i, count = 0;
1570
1571 for (i = 0; i < CSSELR_MAX; i++)
1572 if (is_valid_cache(i))
1573 count++;
1574
1575 return count;
1576 }
1577
1578 static int write_demux_regids(u64 __user *uindices)
1579 {
1580 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1581 unsigned int i;
1582
1583 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1584 for (i = 0; i < CSSELR_MAX; i++) {
1585 if (!is_valid_cache(i))
1586 continue;
1587 if (put_user(val | i, uindices))
1588 return -EFAULT;
1589 uindices++;
1590 }
1591 return 0;
1592 }
1593
1594 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1595 {
1596 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1597 KVM_REG_ARM64_SYSREG |
1598 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1599 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1600 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1601 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1602 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1603 }
1604
1605 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1606 {
1607 if (!*uind)
1608 return true;
1609
1610 if (put_user(sys_reg_to_index(reg), *uind))
1611 return false;
1612
1613 (*uind)++;
1614 return true;
1615 }
1616
1617 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1618 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1619 {
1620 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1621 unsigned int total = 0;
1622 size_t num;
1623
1624 /* We check for duplicates here, to allow arch-specific overrides. */
1625 i1 = get_target_table(vcpu->arch.target, true, &num);
1626 end1 = i1 + num;
1627 i2 = sys_reg_descs;
1628 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1629
1630 BUG_ON(i1 == end1 || i2 == end2);
1631
1632 /* Walk carefully, as both tables may refer to the same register. */
1633 while (i1 || i2) {
1634 int cmp = cmp_sys_reg(i1, i2);
1635 /* target-specific overrides generic entry. */
1636 if (cmp <= 0) {
1637 /* Ignore registers we trap but don't save. */
1638 if (i1->reg) {
1639 if (!copy_reg_to_user(i1, &uind))
1640 return -EFAULT;
1641 total++;
1642 }
1643 } else {
1644 /* Ignore registers we trap but don't save. */
1645 if (i2->reg) {
1646 if (!copy_reg_to_user(i2, &uind))
1647 return -EFAULT;
1648 total++;
1649 }
1650 }
1651
1652 if (cmp <= 0 && ++i1 == end1)
1653 i1 = NULL;
1654 if (cmp >= 0 && ++i2 == end2)
1655 i2 = NULL;
1656 }
1657 return total;
1658 }
1659
1660 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1661 {
1662 return ARRAY_SIZE(invariant_sys_regs)
1663 + num_demux_regs()
1664 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1665 }
1666
1667 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1668 {
1669 unsigned int i;
1670 int err;
1671
1672 /* Then give them all the invariant registers' indices. */
1673 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1674 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1675 return -EFAULT;
1676 uindices++;
1677 }
1678
1679 err = walk_sys_regs(vcpu, uindices);
1680 if (err < 0)
1681 return err;
1682 uindices += err;
1683
1684 return write_demux_regids(uindices);
1685 }
1686
1687 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1688 {
1689 unsigned int i;
1690
1691 for (i = 1; i < n; i++) {
1692 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1693 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1694 return 1;
1695 }
1696 }
1697
1698 return 0;
1699 }
1700
1701 void kvm_sys_reg_table_init(void)
1702 {
1703 unsigned int i;
1704 struct sys_reg_desc clidr;
1705
1706 /* Make sure tables are unique and in order. */
1707 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1708 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1709 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1710 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1711 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1712 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1713
1714 /* We abuse the reset function to overwrite the table itself. */
1715 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1716 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1717
1718 /*
1719 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1720 *
1721 * If software reads the Cache Type fields from Ctype1
1722 * upwards, once it has seen a value of 0b000, no caches
1723 * exist at further-out levels of the hierarchy. So, for
1724 * example, if Ctype3 is the first Cache Type field with a
1725 * value of 0b000, the values of Ctype4 to Ctype7 must be
1726 * ignored.
1727 */
1728 get_clidr_el1(NULL, &clidr); /* Ugly... */
1729 cache_levels = clidr.val;
1730 for (i = 0; i < 7; i++)
1731 if (((cache_levels >> (i*3)) & 7) == 0)
1732 break;
1733 /* Clear all higher bits. */
1734 cache_levels &= (1 << (i*3))-1;
1735 }
1736
1737 /**
1738 * kvm_reset_sys_regs - sets system registers to reset value
1739 * @vcpu: The VCPU pointer
1740 *
1741 * This function finds the right table above and sets the registers on the
1742 * virtual CPU struct to their architecturally defined reset values.
1743 */
1744 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1745 {
1746 size_t num;
1747 const struct sys_reg_desc *table;
1748
1749 /* Catch someone adding a register without putting in reset entry. */
1750 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1751
1752 /* Generic chip reset first (so target could override). */
1753 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1754
1755 table = get_target_table(vcpu->arch.target, true, &num);
1756 reset_sys_reg_descs(vcpu, table, num);
1757
1758 for (num = 1; num < NR_SYS_REGS; num++)
1759 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1760 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1761 }