]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm64/kvm/sys_regs.c
KVM: arm64: Don't access PMCR_EL0 when no PMU is available
[mirror_ubuntu-hirsute-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28
29 #include <trace/events/kvm.h>
30
31 #include "sys_regs.h"
32
33 #include "trace.h"
34
35 /*
36 * All of this file is extremely similar to the ARM coproc.c, but the
37 * types are different. My gut feeling is that it should be pretty
38 * easy to merge, but that would be an ABI breakage -- again. VFP
39 * would also need to be abstracted.
40 *
41 * For AArch32, we only take care of what is being trapped. Anything
42 * that has to do with init and userspace access has to go via the
43 * 64bit interface.
44 */
45
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 struct sys_reg_params *params,
48 const struct sys_reg_desc *r)
49 {
50 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 print_sys_reg_instr(params);
52 kvm_inject_undefined(vcpu);
53 return false;
54 }
55
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 struct sys_reg_params *params,
58 const struct sys_reg_desc *r)
59 {
60 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 print_sys_reg_instr(params);
62 kvm_inject_undefined(vcpu);
63 return false;
64 }
65
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68 u64 val = 0x8badf00d8badf00d;
69
70 if (vcpu->arch.sysregs_loaded_on_cpu &&
71 __vcpu_read_sys_reg_from_cpu(reg, &val))
72 return val;
73
74 return __vcpu_sys_reg(vcpu, reg);
75 }
76
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79 if (vcpu->arch.sysregs_loaded_on_cpu &&
80 __vcpu_write_sys_reg_to_cpu(val, reg))
81 return;
82
83 __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels;
88
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32 get_ccsidr(u32 csselr)
94 {
95 u32 ccsidr;
96
97 /* Make sure noone else changes CSSELR during this! */
98 local_irq_disable();
99 write_sysreg(csselr, csselr_el1);
100 isb();
101 ccsidr = read_sysreg(ccsidr_el1);
102 local_irq_enable();
103
104 return ccsidr;
105 }
106
107 /*
108 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
109 */
110 static bool access_dcsw(struct kvm_vcpu *vcpu,
111 struct sys_reg_params *p,
112 const struct sys_reg_desc *r)
113 {
114 if (!p->is_write)
115 return read_from_write_only(vcpu, p, r);
116
117 /*
118 * Only track S/W ops if we don't have FWB. It still indicates
119 * that the guest is a bit broken (S/W operations should only
120 * be done by firmware, knowing that there is only a single
121 * CPU left in the system, and certainly not from non-secure
122 * software).
123 */
124 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
125 kvm_set_way_flush(vcpu);
126
127 return true;
128 }
129
130 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
131 {
132 switch (r->aarch32_map) {
133 case AA32_LO:
134 *mask = GENMASK_ULL(31, 0);
135 *shift = 0;
136 break;
137 case AA32_HI:
138 *mask = GENMASK_ULL(63, 32);
139 *shift = 32;
140 break;
141 default:
142 *mask = GENMASK_ULL(63, 0);
143 *shift = 0;
144 break;
145 }
146 }
147
148 /*
149 * Generic accessor for VM registers. Only called as long as HCR_TVM
150 * is set. If the guest enables the MMU, we stop trapping the VM
151 * sys_regs and leave it in complete control of the caches.
152 */
153 static bool access_vm_reg(struct kvm_vcpu *vcpu,
154 struct sys_reg_params *p,
155 const struct sys_reg_desc *r)
156 {
157 bool was_enabled = vcpu_has_cache_enabled(vcpu);
158 u64 val, mask, shift;
159
160 BUG_ON(!p->is_write);
161
162 get_access_mask(r, &mask, &shift);
163
164 if (~mask) {
165 val = vcpu_read_sys_reg(vcpu, r->reg);
166 val &= ~mask;
167 } else {
168 val = 0;
169 }
170
171 val |= (p->regval & (mask >> shift)) << shift;
172 vcpu_write_sys_reg(vcpu, val, r->reg);
173
174 kvm_toggle_cache(vcpu, was_enabled);
175 return true;
176 }
177
178 static bool access_actlr(struct kvm_vcpu *vcpu,
179 struct sys_reg_params *p,
180 const struct sys_reg_desc *r)
181 {
182 u64 mask, shift;
183
184 if (p->is_write)
185 return ignore_write(vcpu, p);
186
187 get_access_mask(r, &mask, &shift);
188 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
189
190 return true;
191 }
192
193 /*
194 * Trap handler for the GICv3 SGI generation system register.
195 * Forward the request to the VGIC emulation.
196 * The cp15_64 code makes sure this automatically works
197 * for both AArch64 and AArch32 accesses.
198 */
199 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
200 struct sys_reg_params *p,
201 const struct sys_reg_desc *r)
202 {
203 bool g1;
204
205 if (!p->is_write)
206 return read_from_write_only(vcpu, p, r);
207
208 /*
209 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
213 * group.
214 */
215 if (p->Op0 == 0) { /* AArch32 */
216 switch (p->Op1) {
217 default: /* Keep GCC quiet */
218 case 0: /* ICC_SGI1R */
219 g1 = true;
220 break;
221 case 1: /* ICC_ASGI1R */
222 case 2: /* ICC_SGI0R */
223 g1 = false;
224 break;
225 }
226 } else { /* AArch64 */
227 switch (p->Op2) {
228 default: /* Keep GCC quiet */
229 case 5: /* ICC_SGI1R_EL1 */
230 g1 = true;
231 break;
232 case 6: /* ICC_ASGI1R_EL1 */
233 case 7: /* ICC_SGI0R_EL1 */
234 g1 = false;
235 break;
236 }
237 }
238
239 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
240
241 return true;
242 }
243
244 static bool access_gic_sre(struct kvm_vcpu *vcpu,
245 struct sys_reg_params *p,
246 const struct sys_reg_desc *r)
247 {
248 if (p->is_write)
249 return ignore_write(vcpu, p);
250
251 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
252 return true;
253 }
254
255 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
256 struct sys_reg_params *p,
257 const struct sys_reg_desc *r)
258 {
259 if (p->is_write)
260 return ignore_write(vcpu, p);
261 else
262 return read_zero(vcpu, p);
263 }
264
265 /*
266 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269 * treat it separately.
270 */
271 static bool trap_loregion(struct kvm_vcpu *vcpu,
272 struct sys_reg_params *p,
273 const struct sys_reg_desc *r)
274 {
275 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
276 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
277 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
278
279 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280 kvm_inject_undefined(vcpu);
281 return false;
282 }
283
284 if (p->is_write && sr == SYS_LORID_EL1)
285 return write_to_read_only(vcpu, p, r);
286
287 return trap_raz_wi(vcpu, p, r);
288 }
289
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291 struct sys_reg_params *p,
292 const struct sys_reg_desc *r)
293 {
294 if (p->is_write) {
295 return ignore_write(vcpu, p);
296 } else {
297 p->regval = (1 << 3);
298 return true;
299 }
300 }
301
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *r)
305 {
306 if (p->is_write) {
307 return ignore_write(vcpu, p);
308 } else {
309 p->regval = read_sysreg(dbgauthstatus_el1);
310 return true;
311 }
312 }
313
314 /*
315 * We want to avoid world-switching all the DBG registers all the
316 * time:
317 *
318 * - If we've touched any debug register, it is likely that we're
319 * going to touch more of them. It then makes sense to disable the
320 * traps and start doing the save/restore dance
321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322 * then mandatory to save/restore the registers, as the guest
323 * depends on them.
324 *
325 * For this, we use a DIRTY bit, indicating the guest has modified the
326 * debug registers, used as follow:
327 *
328 * On guest entry:
329 * - If the dirty bit is set (because we're coming back from trapping),
330 * disable the traps, save host registers, restore guest registers.
331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332 * set the dirty bit, disable the traps, save host registers,
333 * restore guest registers.
334 * - Otherwise, enable the traps
335 *
336 * On guest exit:
337 * - If the dirty bit is set, save guest registers, restore host
338 * registers and clear the dirty bit. This ensure that the host can
339 * now use the debug registers.
340 */
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342 struct sys_reg_params *p,
343 const struct sys_reg_desc *r)
344 {
345 if (p->is_write) {
346 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348 } else {
349 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350 }
351
352 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353
354 return true;
355 }
356
357 /*
358 * reg_to_dbg/dbg_to_reg
359 *
360 * A 32 bit write to a debug register leave top bits alone
361 * A 32 bit read from a debug register only returns the bottom bits
362 *
363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364 * hyp.S code switches between host and guest values in future.
365 */
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367 struct sys_reg_params *p,
368 const struct sys_reg_desc *rd,
369 u64 *dbg_reg)
370 {
371 u64 mask, shift, val;
372
373 get_access_mask(rd, &mask, &shift);
374
375 val = *dbg_reg;
376 val &= ~mask;
377 val |= (p->regval & (mask >> shift)) << shift;
378 *dbg_reg = val;
379
380 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384 struct sys_reg_params *p,
385 const struct sys_reg_desc *rd,
386 u64 *dbg_reg)
387 {
388 u64 mask, shift;
389
390 get_access_mask(rd, &mask, &shift);
391 p->regval = (*dbg_reg & mask) >> shift;
392 }
393
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395 struct sys_reg_params *p,
396 const struct sys_reg_desc *rd)
397 {
398 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
399
400 if (p->is_write)
401 reg_to_dbg(vcpu, p, rd, dbg_reg);
402 else
403 dbg_to_reg(vcpu, p, rd, dbg_reg);
404
405 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406
407 return true;
408 }
409
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
414
415 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416 return -EFAULT;
417 return 0;
418 }
419
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421 const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
424
425 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426 return -EFAULT;
427 return 0;
428 }
429
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431 const struct sys_reg_desc *rd)
432 {
433 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
434 }
435
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437 struct sys_reg_params *p,
438 const struct sys_reg_desc *rd)
439 {
440 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
441
442 if (p->is_write)
443 reg_to_dbg(vcpu, p, rd, dbg_reg);
444 else
445 dbg_to_reg(vcpu, p, rd, dbg_reg);
446
447 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
448
449 return true;
450 }
451
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453 const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
456
457 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458 return -EFAULT;
459
460 return 0;
461 }
462
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
467
468 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 return -EFAULT;
470 return 0;
471 }
472
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474 const struct sys_reg_desc *rd)
475 {
476 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
477 }
478
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480 struct sys_reg_params *p,
481 const struct sys_reg_desc *rd)
482 {
483 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
484
485 if (p->is_write)
486 reg_to_dbg(vcpu, p, rd, dbg_reg);
487 else
488 dbg_to_reg(vcpu, p, rd, dbg_reg);
489
490 trace_trap_reg(__func__, rd->reg, p->is_write,
491 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
492
493 return true;
494 }
495
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497 const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
500
501 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502 return -EFAULT;
503 return 0;
504 }
505
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
510
511 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 return -EFAULT;
513 return 0;
514 }
515
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517 const struct sys_reg_desc *rd)
518 {
519 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
520 }
521
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523 struct sys_reg_params *p,
524 const struct sys_reg_desc *rd)
525 {
526 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
527
528 if (p->is_write)
529 reg_to_dbg(vcpu, p, rd, dbg_reg);
530 else
531 dbg_to_reg(vcpu, p, rd, dbg_reg);
532
533 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
534
535 return true;
536 }
537
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
542
543 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544 return -EFAULT;
545 return 0;
546 }
547
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549 const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
552
553 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554 return -EFAULT;
555 return 0;
556 }
557
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559 const struct sys_reg_desc *rd)
560 {
561 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
562 }
563
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566 u64 amair = read_sysreg(amair_el1);
567 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572 u64 actlr = read_sysreg(actlr_el1);
573 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578 u64 mpidr;
579
580 /*
581 * Map the vcpu_id into the first three affinity level fields of
582 * the MPIDR. We limit the number of VCPUs in level 0 due to a
583 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584 * of the GICv3 to be able to address each CPU directly when
585 * sending IPIs.
586 */
587 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592
593 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
594 {
595 u64 pmcr, val;
596
597 /* No PMU available, PMCR_EL0 may UNDEF... */
598 if (!kvm_arm_support_pmu_v3())
599 return;
600
601 pmcr = read_sysreg(pmcr_el0);
602 /*
603 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
604 * except PMCR.E resetting to zero.
605 */
606 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
607 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
608 if (!system_supports_32bit_el0())
609 val |= ARMV8_PMU_PMCR_LC;
610 __vcpu_sys_reg(vcpu, r->reg) = val;
611 }
612
613 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
614 {
615 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
616 bool enabled = kvm_vcpu_has_pmu(vcpu);
617
618 enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
619 if (!enabled)
620 kvm_inject_undefined(vcpu);
621
622 return !enabled;
623 }
624
625 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
626 {
627 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
628 }
629
630 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
631 {
632 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
633 }
634
635 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
636 {
637 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
638 }
639
640 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
641 {
642 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
643 }
644
645 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
646 const struct sys_reg_desc *r)
647 {
648 u64 val;
649
650 if (pmu_access_el0_disabled(vcpu))
651 return false;
652
653 if (p->is_write) {
654 /* Only update writeable bits of PMCR */
655 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
656 val &= ~ARMV8_PMU_PMCR_MASK;
657 val |= p->regval & ARMV8_PMU_PMCR_MASK;
658 if (!system_supports_32bit_el0())
659 val |= ARMV8_PMU_PMCR_LC;
660 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
661 kvm_pmu_handle_pmcr(vcpu, val);
662 kvm_vcpu_pmu_restore_guest(vcpu);
663 } else {
664 /* PMCR.P & PMCR.C are RAZ */
665 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
666 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
667 p->regval = val;
668 }
669
670 return true;
671 }
672
673 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
674 const struct sys_reg_desc *r)
675 {
676 if (pmu_access_event_counter_el0_disabled(vcpu))
677 return false;
678
679 if (p->is_write)
680 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
681 else
682 /* return PMSELR.SEL field */
683 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
684 & ARMV8_PMU_COUNTER_MASK;
685
686 return true;
687 }
688
689 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
690 const struct sys_reg_desc *r)
691 {
692 u64 pmceid;
693
694 BUG_ON(p->is_write);
695
696 if (pmu_access_el0_disabled(vcpu))
697 return false;
698
699 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
700
701 p->regval = pmceid;
702
703 return true;
704 }
705
706 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
707 {
708 u64 pmcr, val;
709
710 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
711 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
712 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
713 kvm_inject_undefined(vcpu);
714 return false;
715 }
716
717 return true;
718 }
719
720 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
721 struct sys_reg_params *p,
722 const struct sys_reg_desc *r)
723 {
724 u64 idx = ~0UL;
725
726 if (r->CRn == 9 && r->CRm == 13) {
727 if (r->Op2 == 2) {
728 /* PMXEVCNTR_EL0 */
729 if (pmu_access_event_counter_el0_disabled(vcpu))
730 return false;
731
732 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
733 & ARMV8_PMU_COUNTER_MASK;
734 } else if (r->Op2 == 0) {
735 /* PMCCNTR_EL0 */
736 if (pmu_access_cycle_counter_el0_disabled(vcpu))
737 return false;
738
739 idx = ARMV8_PMU_CYCLE_IDX;
740 }
741 } else if (r->CRn == 0 && r->CRm == 9) {
742 /* PMCCNTR */
743 if (pmu_access_event_counter_el0_disabled(vcpu))
744 return false;
745
746 idx = ARMV8_PMU_CYCLE_IDX;
747 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
748 /* PMEVCNTRn_EL0 */
749 if (pmu_access_event_counter_el0_disabled(vcpu))
750 return false;
751
752 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
753 }
754
755 /* Catch any decoding mistake */
756 WARN_ON(idx == ~0UL);
757
758 if (!pmu_counter_idx_valid(vcpu, idx))
759 return false;
760
761 if (p->is_write) {
762 if (pmu_access_el0_disabled(vcpu))
763 return false;
764
765 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
766 } else {
767 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
768 }
769
770 return true;
771 }
772
773 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
774 const struct sys_reg_desc *r)
775 {
776 u64 idx, reg;
777
778 if (pmu_access_el0_disabled(vcpu))
779 return false;
780
781 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
782 /* PMXEVTYPER_EL0 */
783 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
784 reg = PMEVTYPER0_EL0 + idx;
785 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
786 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
787 if (idx == ARMV8_PMU_CYCLE_IDX)
788 reg = PMCCFILTR_EL0;
789 else
790 /* PMEVTYPERn_EL0 */
791 reg = PMEVTYPER0_EL0 + idx;
792 } else {
793 BUG();
794 }
795
796 if (!pmu_counter_idx_valid(vcpu, idx))
797 return false;
798
799 if (p->is_write) {
800 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
801 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
802 kvm_vcpu_pmu_restore_guest(vcpu);
803 } else {
804 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
805 }
806
807 return true;
808 }
809
810 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
811 const struct sys_reg_desc *r)
812 {
813 u64 val, mask;
814
815 if (pmu_access_el0_disabled(vcpu))
816 return false;
817
818 mask = kvm_pmu_valid_counter_mask(vcpu);
819 if (p->is_write) {
820 val = p->regval & mask;
821 if (r->Op2 & 0x1) {
822 /* accessing PMCNTENSET_EL0 */
823 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
824 kvm_pmu_enable_counter_mask(vcpu, val);
825 kvm_vcpu_pmu_restore_guest(vcpu);
826 } else {
827 /* accessing PMCNTENCLR_EL0 */
828 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
829 kvm_pmu_disable_counter_mask(vcpu, val);
830 }
831 } else {
832 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
833 }
834
835 return true;
836 }
837
838 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
839 const struct sys_reg_desc *r)
840 {
841 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
842
843 if (check_pmu_access_disabled(vcpu, 0))
844 return false;
845
846 if (p->is_write) {
847 u64 val = p->regval & mask;
848
849 if (r->Op2 & 0x1)
850 /* accessing PMINTENSET_EL1 */
851 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
852 else
853 /* accessing PMINTENCLR_EL1 */
854 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
855 } else {
856 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
857 }
858
859 return true;
860 }
861
862 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
863 const struct sys_reg_desc *r)
864 {
865 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
866
867 if (pmu_access_el0_disabled(vcpu))
868 return false;
869
870 if (p->is_write) {
871 if (r->CRm & 0x2)
872 /* accessing PMOVSSET_EL0 */
873 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
874 else
875 /* accessing PMOVSCLR_EL0 */
876 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
877 } else {
878 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
879 }
880
881 return true;
882 }
883
884 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
885 const struct sys_reg_desc *r)
886 {
887 u64 mask;
888
889 if (!p->is_write)
890 return read_from_write_only(vcpu, p, r);
891
892 if (pmu_write_swinc_el0_disabled(vcpu))
893 return false;
894
895 mask = kvm_pmu_valid_counter_mask(vcpu);
896 kvm_pmu_software_increment(vcpu, p->regval & mask);
897 return true;
898 }
899
900 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 const struct sys_reg_desc *r)
902 {
903 if (!kvm_vcpu_has_pmu(vcpu)) {
904 kvm_inject_undefined(vcpu);
905 return false;
906 }
907
908 if (p->is_write) {
909 if (!vcpu_mode_priv(vcpu)) {
910 kvm_inject_undefined(vcpu);
911 return false;
912 }
913
914 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
915 p->regval & ARMV8_PMU_USERENR_MASK;
916 } else {
917 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
918 & ARMV8_PMU_USERENR_MASK;
919 }
920
921 return true;
922 }
923
924 #define reg_to_encoding(x) \
925 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
926 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
927
928 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
929 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
930 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
931 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
932 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
933 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
934 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
935 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
936 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
937 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
938
939 /* Macro to expand the PMEVCNTRn_EL0 register */
940 #define PMU_PMEVCNTR_EL0(n) \
941 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
942 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
943
944 /* Macro to expand the PMEVTYPERn_EL0 register */
945 #define PMU_PMEVTYPER_EL0(n) \
946 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
947 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
948
949 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
950 const struct sys_reg_desc *r)
951 {
952 kvm_inject_undefined(vcpu);
953
954 return false;
955 }
956
957 /* Macro to expand the AMU counter and type registers*/
958 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
959 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
960 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
961 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
962
963 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
964 const struct sys_reg_desc *rd)
965 {
966 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
967 }
968
969 /*
970 * If we land here on a PtrAuth access, that is because we didn't
971 * fixup the access on exit by allowing the PtrAuth sysregs. The only
972 * way this happens is when the guest does not have PtrAuth support
973 * enabled.
974 */
975 #define __PTRAUTH_KEY(k) \
976 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
977 .visibility = ptrauth_visibility}
978
979 #define PTRAUTH_KEY(k) \
980 __PTRAUTH_KEY(k ## KEYLO_EL1), \
981 __PTRAUTH_KEY(k ## KEYHI_EL1)
982
983 static bool access_arch_timer(struct kvm_vcpu *vcpu,
984 struct sys_reg_params *p,
985 const struct sys_reg_desc *r)
986 {
987 enum kvm_arch_timers tmr;
988 enum kvm_arch_timer_regs treg;
989 u64 reg = reg_to_encoding(r);
990
991 switch (reg) {
992 case SYS_CNTP_TVAL_EL0:
993 case SYS_AARCH32_CNTP_TVAL:
994 tmr = TIMER_PTIMER;
995 treg = TIMER_REG_TVAL;
996 break;
997 case SYS_CNTP_CTL_EL0:
998 case SYS_AARCH32_CNTP_CTL:
999 tmr = TIMER_PTIMER;
1000 treg = TIMER_REG_CTL;
1001 break;
1002 case SYS_CNTP_CVAL_EL0:
1003 case SYS_AARCH32_CNTP_CVAL:
1004 tmr = TIMER_PTIMER;
1005 treg = TIMER_REG_CVAL;
1006 break;
1007 default:
1008 BUG();
1009 }
1010
1011 if (p->is_write)
1012 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1013 else
1014 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1015
1016 return true;
1017 }
1018
1019 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1020 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1021 struct sys_reg_desc const *r, bool raz)
1022 {
1023 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1024 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1025 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1026
1027 if (id == SYS_ID_AA64PFR0_EL1) {
1028 if (!vcpu_has_sve(vcpu))
1029 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1030 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1031 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1032 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1033 val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1034 val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1035 } else if (id == SYS_ID_AA64PFR1_EL1) {
1036 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1037 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1038 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1039 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1040 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1041 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1042 } else if (id == SYS_ID_AA64DFR0_EL1) {
1043 u64 cap = 0;
1044
1045 /* Limit guests to PMUv3 for ARMv8.1 */
1046 if (kvm_vcpu_has_pmu(vcpu))
1047 cap = ID_AA64DFR0_PMUVER_8_1;
1048
1049 val = cpuid_feature_cap_perfmon_field(val,
1050 ID_AA64DFR0_PMUVER_SHIFT,
1051 cap);
1052 } else if (id == SYS_ID_DFR0_EL1) {
1053 /* Limit guests to PMUv3 for ARMv8.1 */
1054 val = cpuid_feature_cap_perfmon_field(val,
1055 ID_DFR0_PERFMON_SHIFT,
1056 ID_DFR0_PERFMON_8_1);
1057 }
1058
1059 return val;
1060 }
1061
1062 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1063 const struct sys_reg_desc *r)
1064 {
1065 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1066 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1067
1068 switch (id) {
1069 case SYS_ID_AA64ZFR0_EL1:
1070 if (!vcpu_has_sve(vcpu))
1071 return REG_RAZ;
1072 break;
1073 }
1074
1075 return 0;
1076 }
1077
1078 /* cpufeature ID register access trap handlers */
1079
1080 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1081 struct sys_reg_params *p,
1082 const struct sys_reg_desc *r,
1083 bool raz)
1084 {
1085 if (p->is_write)
1086 return write_to_read_only(vcpu, p, r);
1087
1088 p->regval = read_id_reg(vcpu, r, raz);
1089 return true;
1090 }
1091
1092 static bool access_id_reg(struct kvm_vcpu *vcpu,
1093 struct sys_reg_params *p,
1094 const struct sys_reg_desc *r)
1095 {
1096 bool raz = sysreg_visible_as_raz(vcpu, r);
1097
1098 return __access_id_reg(vcpu, p, r, raz);
1099 }
1100
1101 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1102 struct sys_reg_params *p,
1103 const struct sys_reg_desc *r)
1104 {
1105 return __access_id_reg(vcpu, p, r, true);
1106 }
1107
1108 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1109 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1110 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1111
1112 /* Visibility overrides for SVE-specific control registers */
1113 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1114 const struct sys_reg_desc *rd)
1115 {
1116 if (vcpu_has_sve(vcpu))
1117 return 0;
1118
1119 return REG_HIDDEN;
1120 }
1121
1122 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1123 const struct sys_reg_desc *rd,
1124 const struct kvm_one_reg *reg, void __user *uaddr)
1125 {
1126 const u64 id = sys_reg_to_index(rd);
1127 u8 csv2, csv3;
1128 int err;
1129 u64 val;
1130
1131 err = reg_from_user(&val, uaddr, id);
1132 if (err)
1133 return err;
1134
1135 /*
1136 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1137 * it doesn't promise more than what is actually provided (the
1138 * guest could otherwise be covered in ectoplasmic residue).
1139 */
1140 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1141 if (csv2 > 1 ||
1142 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1143 return -EINVAL;
1144
1145 /* Same thing for CSV3 */
1146 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1147 if (csv3 > 1 ||
1148 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1149 return -EINVAL;
1150
1151 /* We can only differ with CSV[23], and anything else is an error */
1152 val ^= read_id_reg(vcpu, rd, false);
1153 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1154 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1155 if (val)
1156 return -EINVAL;
1157
1158 vcpu->kvm->arch.pfr0_csv2 = csv2;
1159 vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1160
1161 return 0;
1162 }
1163
1164 /*
1165 * cpufeature ID register user accessors
1166 *
1167 * For now, these registers are immutable for userspace, so no values
1168 * are stored, and for set_id_reg() we don't allow the effective value
1169 * to be changed.
1170 */
1171 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1172 const struct sys_reg_desc *rd, void __user *uaddr,
1173 bool raz)
1174 {
1175 const u64 id = sys_reg_to_index(rd);
1176 const u64 val = read_id_reg(vcpu, rd, raz);
1177
1178 return reg_to_user(uaddr, &val, id);
1179 }
1180
1181 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1182 const struct sys_reg_desc *rd, void __user *uaddr,
1183 bool raz)
1184 {
1185 const u64 id = sys_reg_to_index(rd);
1186 int err;
1187 u64 val;
1188
1189 err = reg_from_user(&val, uaddr, id);
1190 if (err)
1191 return err;
1192
1193 /* This is what we mean by invariant: you can't change it. */
1194 if (val != read_id_reg(vcpu, rd, raz))
1195 return -EINVAL;
1196
1197 return 0;
1198 }
1199
1200 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1201 const struct kvm_one_reg *reg, void __user *uaddr)
1202 {
1203 bool raz = sysreg_visible_as_raz(vcpu, rd);
1204
1205 return __get_id_reg(vcpu, rd, uaddr, raz);
1206 }
1207
1208 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1209 const struct kvm_one_reg *reg, void __user *uaddr)
1210 {
1211 bool raz = sysreg_visible_as_raz(vcpu, rd);
1212
1213 return __set_id_reg(vcpu, rd, uaddr, raz);
1214 }
1215
1216 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1217 const struct kvm_one_reg *reg, void __user *uaddr)
1218 {
1219 return __get_id_reg(vcpu, rd, uaddr, true);
1220 }
1221
1222 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1223 const struct kvm_one_reg *reg, void __user *uaddr)
1224 {
1225 return __set_id_reg(vcpu, rd, uaddr, true);
1226 }
1227
1228 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1229 const struct sys_reg_desc *r)
1230 {
1231 if (p->is_write)
1232 return write_to_read_only(vcpu, p, r);
1233
1234 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1235 return true;
1236 }
1237
1238 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1239 const struct sys_reg_desc *r)
1240 {
1241 if (p->is_write)
1242 return write_to_read_only(vcpu, p, r);
1243
1244 p->regval = read_sysreg(clidr_el1);
1245 return true;
1246 }
1247
1248 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1249 const struct sys_reg_desc *r)
1250 {
1251 int reg = r->reg;
1252
1253 if (p->is_write)
1254 vcpu_write_sys_reg(vcpu, p->regval, reg);
1255 else
1256 p->regval = vcpu_read_sys_reg(vcpu, reg);
1257 return true;
1258 }
1259
1260 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1261 const struct sys_reg_desc *r)
1262 {
1263 u32 csselr;
1264
1265 if (p->is_write)
1266 return write_to_read_only(vcpu, p, r);
1267
1268 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1269 p->regval = get_ccsidr(csselr);
1270
1271 /*
1272 * Guests should not be doing cache operations by set/way at all, and
1273 * for this reason, we trap them and attempt to infer the intent, so
1274 * that we can flush the entire guest's address space at the appropriate
1275 * time.
1276 * To prevent this trapping from causing performance problems, let's
1277 * expose the geometry of all data and unified caches (which are
1278 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1279 * [If guests should attempt to infer aliasing properties from the
1280 * geometry (which is not permitted by the architecture), they would
1281 * only do so for virtually indexed caches.]
1282 */
1283 if (!(csselr & 1)) // data or unified cache
1284 p->regval &= ~GENMASK(27, 3);
1285 return true;
1286 }
1287
1288 /* sys_reg_desc initialiser for known cpufeature ID registers */
1289 #define ID_SANITISED(name) { \
1290 SYS_DESC(SYS_##name), \
1291 .access = access_id_reg, \
1292 .get_user = get_id_reg, \
1293 .set_user = set_id_reg, \
1294 .visibility = id_visibility, \
1295 }
1296
1297 /*
1298 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1299 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1300 * (1 <= crm < 8, 0 <= Op2 < 8).
1301 */
1302 #define ID_UNALLOCATED(crm, op2) { \
1303 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1304 .access = access_raz_id_reg, \
1305 .get_user = get_raz_id_reg, \
1306 .set_user = set_raz_id_reg, \
1307 }
1308
1309 /*
1310 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1311 * For now, these are exposed just like unallocated ID regs: they appear
1312 * RAZ for the guest.
1313 */
1314 #define ID_HIDDEN(name) { \
1315 SYS_DESC(SYS_##name), \
1316 .access = access_raz_id_reg, \
1317 .get_user = get_raz_id_reg, \
1318 .set_user = set_raz_id_reg, \
1319 }
1320
1321 /*
1322 * Architected system registers.
1323 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1324 *
1325 * Debug handling: We do trap most, if not all debug related system
1326 * registers. The implementation is good enough to ensure that a guest
1327 * can use these with minimal performance degradation. The drawback is
1328 * that we don't implement any of the external debug, none of the
1329 * OSlock protocol. This should be revisited if we ever encounter a
1330 * more demanding guest...
1331 */
1332 static const struct sys_reg_desc sys_reg_descs[] = {
1333 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1334 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1335 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1336
1337 DBG_BCR_BVR_WCR_WVR_EL1(0),
1338 DBG_BCR_BVR_WCR_WVR_EL1(1),
1339 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1340 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1341 DBG_BCR_BVR_WCR_WVR_EL1(2),
1342 DBG_BCR_BVR_WCR_WVR_EL1(3),
1343 DBG_BCR_BVR_WCR_WVR_EL1(4),
1344 DBG_BCR_BVR_WCR_WVR_EL1(5),
1345 DBG_BCR_BVR_WCR_WVR_EL1(6),
1346 DBG_BCR_BVR_WCR_WVR_EL1(7),
1347 DBG_BCR_BVR_WCR_WVR_EL1(8),
1348 DBG_BCR_BVR_WCR_WVR_EL1(9),
1349 DBG_BCR_BVR_WCR_WVR_EL1(10),
1350 DBG_BCR_BVR_WCR_WVR_EL1(11),
1351 DBG_BCR_BVR_WCR_WVR_EL1(12),
1352 DBG_BCR_BVR_WCR_WVR_EL1(13),
1353 DBG_BCR_BVR_WCR_WVR_EL1(14),
1354 DBG_BCR_BVR_WCR_WVR_EL1(15),
1355
1356 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1357 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1358 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1359 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1360 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1361 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1362 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1363 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1364
1365 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1366 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1367 // DBGDTR[TR]X_EL0 share the same encoding
1368 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1369
1370 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1371
1372 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1373
1374 /*
1375 * ID regs: all ID_SANITISED() entries here must have corresponding
1376 * entries in arm64_ftr_regs[].
1377 */
1378
1379 /* AArch64 mappings of the AArch32 ID registers */
1380 /* CRm=1 */
1381 ID_SANITISED(ID_PFR0_EL1),
1382 ID_SANITISED(ID_PFR1_EL1),
1383 ID_SANITISED(ID_DFR0_EL1),
1384 ID_HIDDEN(ID_AFR0_EL1),
1385 ID_SANITISED(ID_MMFR0_EL1),
1386 ID_SANITISED(ID_MMFR1_EL1),
1387 ID_SANITISED(ID_MMFR2_EL1),
1388 ID_SANITISED(ID_MMFR3_EL1),
1389
1390 /* CRm=2 */
1391 ID_SANITISED(ID_ISAR0_EL1),
1392 ID_SANITISED(ID_ISAR1_EL1),
1393 ID_SANITISED(ID_ISAR2_EL1),
1394 ID_SANITISED(ID_ISAR3_EL1),
1395 ID_SANITISED(ID_ISAR4_EL1),
1396 ID_SANITISED(ID_ISAR5_EL1),
1397 ID_SANITISED(ID_MMFR4_EL1),
1398 ID_SANITISED(ID_ISAR6_EL1),
1399
1400 /* CRm=3 */
1401 ID_SANITISED(MVFR0_EL1),
1402 ID_SANITISED(MVFR1_EL1),
1403 ID_SANITISED(MVFR2_EL1),
1404 ID_UNALLOCATED(3,3),
1405 ID_SANITISED(ID_PFR2_EL1),
1406 ID_HIDDEN(ID_DFR1_EL1),
1407 ID_SANITISED(ID_MMFR5_EL1),
1408 ID_UNALLOCATED(3,7),
1409
1410 /* AArch64 ID registers */
1411 /* CRm=4 */
1412 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1413 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1414 ID_SANITISED(ID_AA64PFR1_EL1),
1415 ID_UNALLOCATED(4,2),
1416 ID_UNALLOCATED(4,3),
1417 ID_SANITISED(ID_AA64ZFR0_EL1),
1418 ID_UNALLOCATED(4,5),
1419 ID_UNALLOCATED(4,6),
1420 ID_UNALLOCATED(4,7),
1421
1422 /* CRm=5 */
1423 ID_SANITISED(ID_AA64DFR0_EL1),
1424 ID_SANITISED(ID_AA64DFR1_EL1),
1425 ID_UNALLOCATED(5,2),
1426 ID_UNALLOCATED(5,3),
1427 ID_HIDDEN(ID_AA64AFR0_EL1),
1428 ID_HIDDEN(ID_AA64AFR1_EL1),
1429 ID_UNALLOCATED(5,6),
1430 ID_UNALLOCATED(5,7),
1431
1432 /* CRm=6 */
1433 ID_SANITISED(ID_AA64ISAR0_EL1),
1434 ID_SANITISED(ID_AA64ISAR1_EL1),
1435 ID_UNALLOCATED(6,2),
1436 ID_UNALLOCATED(6,3),
1437 ID_UNALLOCATED(6,4),
1438 ID_UNALLOCATED(6,5),
1439 ID_UNALLOCATED(6,6),
1440 ID_UNALLOCATED(6,7),
1441
1442 /* CRm=7 */
1443 ID_SANITISED(ID_AA64MMFR0_EL1),
1444 ID_SANITISED(ID_AA64MMFR1_EL1),
1445 ID_SANITISED(ID_AA64MMFR2_EL1),
1446 ID_UNALLOCATED(7,3),
1447 ID_UNALLOCATED(7,4),
1448 ID_UNALLOCATED(7,5),
1449 ID_UNALLOCATED(7,6),
1450 ID_UNALLOCATED(7,7),
1451
1452 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1453 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1454 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1455
1456 { SYS_DESC(SYS_RGSR_EL1), undef_access },
1457 { SYS_DESC(SYS_GCR_EL1), undef_access },
1458
1459 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1460 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1461 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1462 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1463
1464 PTRAUTH_KEY(APIA),
1465 PTRAUTH_KEY(APIB),
1466 PTRAUTH_KEY(APDA),
1467 PTRAUTH_KEY(APDB),
1468 PTRAUTH_KEY(APGA),
1469
1470 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1471 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1472 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1473
1474 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1475 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1476 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1477 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1478 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1479 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1480 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1481 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1482
1483 { SYS_DESC(SYS_TFSR_EL1), undef_access },
1484 { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1485
1486 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1487 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1488
1489 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1490 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1491
1492 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1493 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1494
1495 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1496 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1497 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1498 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1499 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1500
1501 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1502 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1503
1504 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1505 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1506 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1507 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1508 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1509 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1510 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1511 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1512 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1513 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1514 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1515 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1516
1517 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1518 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1519
1520 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1521
1522 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1523
1524 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1525 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1526 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1527 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1528
1529 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1530 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1531 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1532 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1533 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1534 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1535 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1536 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1537 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1538 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1539 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1540 /*
1541 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1542 * in 32bit mode. Here we choose to reset it as zero for consistency.
1543 */
1544 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1545 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1546
1547 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1548 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1549
1550 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1551
1552 { SYS_DESC(SYS_AMCR_EL0), undef_access },
1553 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1554 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1555 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1556 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1557 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1558 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1559 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1560 AMU_AMEVCNTR0_EL0(0),
1561 AMU_AMEVCNTR0_EL0(1),
1562 AMU_AMEVCNTR0_EL0(2),
1563 AMU_AMEVCNTR0_EL0(3),
1564 AMU_AMEVCNTR0_EL0(4),
1565 AMU_AMEVCNTR0_EL0(5),
1566 AMU_AMEVCNTR0_EL0(6),
1567 AMU_AMEVCNTR0_EL0(7),
1568 AMU_AMEVCNTR0_EL0(8),
1569 AMU_AMEVCNTR0_EL0(9),
1570 AMU_AMEVCNTR0_EL0(10),
1571 AMU_AMEVCNTR0_EL0(11),
1572 AMU_AMEVCNTR0_EL0(12),
1573 AMU_AMEVCNTR0_EL0(13),
1574 AMU_AMEVCNTR0_EL0(14),
1575 AMU_AMEVCNTR0_EL0(15),
1576 AMU_AMEVTYPER0_EL0(0),
1577 AMU_AMEVTYPER0_EL0(1),
1578 AMU_AMEVTYPER0_EL0(2),
1579 AMU_AMEVTYPER0_EL0(3),
1580 AMU_AMEVTYPER0_EL0(4),
1581 AMU_AMEVTYPER0_EL0(5),
1582 AMU_AMEVTYPER0_EL0(6),
1583 AMU_AMEVTYPER0_EL0(7),
1584 AMU_AMEVTYPER0_EL0(8),
1585 AMU_AMEVTYPER0_EL0(9),
1586 AMU_AMEVTYPER0_EL0(10),
1587 AMU_AMEVTYPER0_EL0(11),
1588 AMU_AMEVTYPER0_EL0(12),
1589 AMU_AMEVTYPER0_EL0(13),
1590 AMU_AMEVTYPER0_EL0(14),
1591 AMU_AMEVTYPER0_EL0(15),
1592 AMU_AMEVCNTR1_EL0(0),
1593 AMU_AMEVCNTR1_EL0(1),
1594 AMU_AMEVCNTR1_EL0(2),
1595 AMU_AMEVCNTR1_EL0(3),
1596 AMU_AMEVCNTR1_EL0(4),
1597 AMU_AMEVCNTR1_EL0(5),
1598 AMU_AMEVCNTR1_EL0(6),
1599 AMU_AMEVCNTR1_EL0(7),
1600 AMU_AMEVCNTR1_EL0(8),
1601 AMU_AMEVCNTR1_EL0(9),
1602 AMU_AMEVCNTR1_EL0(10),
1603 AMU_AMEVCNTR1_EL0(11),
1604 AMU_AMEVCNTR1_EL0(12),
1605 AMU_AMEVCNTR1_EL0(13),
1606 AMU_AMEVCNTR1_EL0(14),
1607 AMU_AMEVCNTR1_EL0(15),
1608 AMU_AMEVTYPER1_EL0(0),
1609 AMU_AMEVTYPER1_EL0(1),
1610 AMU_AMEVTYPER1_EL0(2),
1611 AMU_AMEVTYPER1_EL0(3),
1612 AMU_AMEVTYPER1_EL0(4),
1613 AMU_AMEVTYPER1_EL0(5),
1614 AMU_AMEVTYPER1_EL0(6),
1615 AMU_AMEVTYPER1_EL0(7),
1616 AMU_AMEVTYPER1_EL0(8),
1617 AMU_AMEVTYPER1_EL0(9),
1618 AMU_AMEVTYPER1_EL0(10),
1619 AMU_AMEVTYPER1_EL0(11),
1620 AMU_AMEVTYPER1_EL0(12),
1621 AMU_AMEVTYPER1_EL0(13),
1622 AMU_AMEVTYPER1_EL0(14),
1623 AMU_AMEVTYPER1_EL0(15),
1624
1625 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1626 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1627 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1628
1629 /* PMEVCNTRn_EL0 */
1630 PMU_PMEVCNTR_EL0(0),
1631 PMU_PMEVCNTR_EL0(1),
1632 PMU_PMEVCNTR_EL0(2),
1633 PMU_PMEVCNTR_EL0(3),
1634 PMU_PMEVCNTR_EL0(4),
1635 PMU_PMEVCNTR_EL0(5),
1636 PMU_PMEVCNTR_EL0(6),
1637 PMU_PMEVCNTR_EL0(7),
1638 PMU_PMEVCNTR_EL0(8),
1639 PMU_PMEVCNTR_EL0(9),
1640 PMU_PMEVCNTR_EL0(10),
1641 PMU_PMEVCNTR_EL0(11),
1642 PMU_PMEVCNTR_EL0(12),
1643 PMU_PMEVCNTR_EL0(13),
1644 PMU_PMEVCNTR_EL0(14),
1645 PMU_PMEVCNTR_EL0(15),
1646 PMU_PMEVCNTR_EL0(16),
1647 PMU_PMEVCNTR_EL0(17),
1648 PMU_PMEVCNTR_EL0(18),
1649 PMU_PMEVCNTR_EL0(19),
1650 PMU_PMEVCNTR_EL0(20),
1651 PMU_PMEVCNTR_EL0(21),
1652 PMU_PMEVCNTR_EL0(22),
1653 PMU_PMEVCNTR_EL0(23),
1654 PMU_PMEVCNTR_EL0(24),
1655 PMU_PMEVCNTR_EL0(25),
1656 PMU_PMEVCNTR_EL0(26),
1657 PMU_PMEVCNTR_EL0(27),
1658 PMU_PMEVCNTR_EL0(28),
1659 PMU_PMEVCNTR_EL0(29),
1660 PMU_PMEVCNTR_EL0(30),
1661 /* PMEVTYPERn_EL0 */
1662 PMU_PMEVTYPER_EL0(0),
1663 PMU_PMEVTYPER_EL0(1),
1664 PMU_PMEVTYPER_EL0(2),
1665 PMU_PMEVTYPER_EL0(3),
1666 PMU_PMEVTYPER_EL0(4),
1667 PMU_PMEVTYPER_EL0(5),
1668 PMU_PMEVTYPER_EL0(6),
1669 PMU_PMEVTYPER_EL0(7),
1670 PMU_PMEVTYPER_EL0(8),
1671 PMU_PMEVTYPER_EL0(9),
1672 PMU_PMEVTYPER_EL0(10),
1673 PMU_PMEVTYPER_EL0(11),
1674 PMU_PMEVTYPER_EL0(12),
1675 PMU_PMEVTYPER_EL0(13),
1676 PMU_PMEVTYPER_EL0(14),
1677 PMU_PMEVTYPER_EL0(15),
1678 PMU_PMEVTYPER_EL0(16),
1679 PMU_PMEVTYPER_EL0(17),
1680 PMU_PMEVTYPER_EL0(18),
1681 PMU_PMEVTYPER_EL0(19),
1682 PMU_PMEVTYPER_EL0(20),
1683 PMU_PMEVTYPER_EL0(21),
1684 PMU_PMEVTYPER_EL0(22),
1685 PMU_PMEVTYPER_EL0(23),
1686 PMU_PMEVTYPER_EL0(24),
1687 PMU_PMEVTYPER_EL0(25),
1688 PMU_PMEVTYPER_EL0(26),
1689 PMU_PMEVTYPER_EL0(27),
1690 PMU_PMEVTYPER_EL0(28),
1691 PMU_PMEVTYPER_EL0(29),
1692 PMU_PMEVTYPER_EL0(30),
1693 /*
1694 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1695 * in 32bit mode. Here we choose to reset it as zero for consistency.
1696 */
1697 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1698
1699 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1700 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1701 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1702 };
1703
1704 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1705 struct sys_reg_params *p,
1706 const struct sys_reg_desc *r)
1707 {
1708 if (p->is_write) {
1709 return ignore_write(vcpu, p);
1710 } else {
1711 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1712 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1713 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1714
1715 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1716 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1717 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1718 | (6 << 16) | (el3 << 14) | (el3 << 12));
1719 return true;
1720 }
1721 }
1722
1723 /*
1724 * AArch32 debug register mappings
1725 *
1726 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1727 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1728 *
1729 * None of the other registers share their location, so treat them as
1730 * if they were 64bit.
1731 */
1732 #define DBG_BCR_BVR_WCR_WVR(n) \
1733 /* DBGBVRn */ \
1734 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1735 /* DBGBCRn */ \
1736 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1737 /* DBGWVRn */ \
1738 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1739 /* DBGWCRn */ \
1740 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1741
1742 #define DBGBXVR(n) \
1743 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1744
1745 /*
1746 * Trapped cp14 registers. We generally ignore most of the external
1747 * debug, on the principle that they don't really make sense to a
1748 * guest. Revisit this one day, would this principle change.
1749 */
1750 static const struct sys_reg_desc cp14_regs[] = {
1751 /* DBGIDR */
1752 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1753 /* DBGDTRRXext */
1754 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1755
1756 DBG_BCR_BVR_WCR_WVR(0),
1757 /* DBGDSCRint */
1758 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1759 DBG_BCR_BVR_WCR_WVR(1),
1760 /* DBGDCCINT */
1761 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1762 /* DBGDSCRext */
1763 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1764 DBG_BCR_BVR_WCR_WVR(2),
1765 /* DBGDTR[RT]Xint */
1766 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1767 /* DBGDTR[RT]Xext */
1768 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1769 DBG_BCR_BVR_WCR_WVR(3),
1770 DBG_BCR_BVR_WCR_WVR(4),
1771 DBG_BCR_BVR_WCR_WVR(5),
1772 /* DBGWFAR */
1773 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1774 /* DBGOSECCR */
1775 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1776 DBG_BCR_BVR_WCR_WVR(6),
1777 /* DBGVCR */
1778 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1779 DBG_BCR_BVR_WCR_WVR(7),
1780 DBG_BCR_BVR_WCR_WVR(8),
1781 DBG_BCR_BVR_WCR_WVR(9),
1782 DBG_BCR_BVR_WCR_WVR(10),
1783 DBG_BCR_BVR_WCR_WVR(11),
1784 DBG_BCR_BVR_WCR_WVR(12),
1785 DBG_BCR_BVR_WCR_WVR(13),
1786 DBG_BCR_BVR_WCR_WVR(14),
1787 DBG_BCR_BVR_WCR_WVR(15),
1788
1789 /* DBGDRAR (32bit) */
1790 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1791
1792 DBGBXVR(0),
1793 /* DBGOSLAR */
1794 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1795 DBGBXVR(1),
1796 /* DBGOSLSR */
1797 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1798 DBGBXVR(2),
1799 DBGBXVR(3),
1800 /* DBGOSDLR */
1801 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1802 DBGBXVR(4),
1803 /* DBGPRCR */
1804 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1805 DBGBXVR(5),
1806 DBGBXVR(6),
1807 DBGBXVR(7),
1808 DBGBXVR(8),
1809 DBGBXVR(9),
1810 DBGBXVR(10),
1811 DBGBXVR(11),
1812 DBGBXVR(12),
1813 DBGBXVR(13),
1814 DBGBXVR(14),
1815 DBGBXVR(15),
1816
1817 /* DBGDSAR (32bit) */
1818 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1819
1820 /* DBGDEVID2 */
1821 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1822 /* DBGDEVID1 */
1823 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1824 /* DBGDEVID */
1825 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1826 /* DBGCLAIMSET */
1827 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1828 /* DBGCLAIMCLR */
1829 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1830 /* DBGAUTHSTATUS */
1831 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1832 };
1833
1834 /* Trapped cp14 64bit registers */
1835 static const struct sys_reg_desc cp14_64_regs[] = {
1836 /* DBGDRAR (64bit) */
1837 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1838
1839 /* DBGDSAR (64bit) */
1840 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1841 };
1842
1843 /* Macro to expand the PMEVCNTRn register */
1844 #define PMU_PMEVCNTR(n) \
1845 /* PMEVCNTRn */ \
1846 { Op1(0), CRn(0b1110), \
1847 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1848 access_pmu_evcntr }
1849
1850 /* Macro to expand the PMEVTYPERn register */
1851 #define PMU_PMEVTYPER(n) \
1852 /* PMEVTYPERn */ \
1853 { Op1(0), CRn(0b1110), \
1854 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1855 access_pmu_evtyper }
1856
1857 /*
1858 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1859 * depending on the way they are accessed (as a 32bit or a 64bit
1860 * register).
1861 */
1862 static const struct sys_reg_desc cp15_regs[] = {
1863 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1864 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1865 /* ACTLR */
1866 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1867 /* ACTLR2 */
1868 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1869 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1870 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1871 /* TTBCR */
1872 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1873 /* TTBCR2 */
1874 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1875 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1876 /* DFSR */
1877 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1878 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1879 /* ADFSR */
1880 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1881 /* AIFSR */
1882 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1883 /* DFAR */
1884 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1885 /* IFAR */
1886 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1887
1888 /*
1889 * DC{C,I,CI}SW operations:
1890 */
1891 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1892 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1893 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1894
1895 /* PMU */
1896 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1897 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1898 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1899 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1900 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1901 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1902 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1903 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1904 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1905 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1906 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1907 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1908 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1909 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1910 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1911
1912 /* PRRR/MAIR0 */
1913 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1914 /* NMRR/MAIR1 */
1915 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1916 /* AMAIR0 */
1917 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1918 /* AMAIR1 */
1919 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1920
1921 /* ICC_SRE */
1922 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1923
1924 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1925
1926 /* Arch Tmers */
1927 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1928 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1929
1930 /* PMEVCNTRn */
1931 PMU_PMEVCNTR(0),
1932 PMU_PMEVCNTR(1),
1933 PMU_PMEVCNTR(2),
1934 PMU_PMEVCNTR(3),
1935 PMU_PMEVCNTR(4),
1936 PMU_PMEVCNTR(5),
1937 PMU_PMEVCNTR(6),
1938 PMU_PMEVCNTR(7),
1939 PMU_PMEVCNTR(8),
1940 PMU_PMEVCNTR(9),
1941 PMU_PMEVCNTR(10),
1942 PMU_PMEVCNTR(11),
1943 PMU_PMEVCNTR(12),
1944 PMU_PMEVCNTR(13),
1945 PMU_PMEVCNTR(14),
1946 PMU_PMEVCNTR(15),
1947 PMU_PMEVCNTR(16),
1948 PMU_PMEVCNTR(17),
1949 PMU_PMEVCNTR(18),
1950 PMU_PMEVCNTR(19),
1951 PMU_PMEVCNTR(20),
1952 PMU_PMEVCNTR(21),
1953 PMU_PMEVCNTR(22),
1954 PMU_PMEVCNTR(23),
1955 PMU_PMEVCNTR(24),
1956 PMU_PMEVCNTR(25),
1957 PMU_PMEVCNTR(26),
1958 PMU_PMEVCNTR(27),
1959 PMU_PMEVCNTR(28),
1960 PMU_PMEVCNTR(29),
1961 PMU_PMEVCNTR(30),
1962 /* PMEVTYPERn */
1963 PMU_PMEVTYPER(0),
1964 PMU_PMEVTYPER(1),
1965 PMU_PMEVTYPER(2),
1966 PMU_PMEVTYPER(3),
1967 PMU_PMEVTYPER(4),
1968 PMU_PMEVTYPER(5),
1969 PMU_PMEVTYPER(6),
1970 PMU_PMEVTYPER(7),
1971 PMU_PMEVTYPER(8),
1972 PMU_PMEVTYPER(9),
1973 PMU_PMEVTYPER(10),
1974 PMU_PMEVTYPER(11),
1975 PMU_PMEVTYPER(12),
1976 PMU_PMEVTYPER(13),
1977 PMU_PMEVTYPER(14),
1978 PMU_PMEVTYPER(15),
1979 PMU_PMEVTYPER(16),
1980 PMU_PMEVTYPER(17),
1981 PMU_PMEVTYPER(18),
1982 PMU_PMEVTYPER(19),
1983 PMU_PMEVTYPER(20),
1984 PMU_PMEVTYPER(21),
1985 PMU_PMEVTYPER(22),
1986 PMU_PMEVTYPER(23),
1987 PMU_PMEVTYPER(24),
1988 PMU_PMEVTYPER(25),
1989 PMU_PMEVTYPER(26),
1990 PMU_PMEVTYPER(27),
1991 PMU_PMEVTYPER(28),
1992 PMU_PMEVTYPER(29),
1993 PMU_PMEVTYPER(30),
1994 /* PMCCFILTR */
1995 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1996
1997 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1998 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1999 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2000 };
2001
2002 static const struct sys_reg_desc cp15_64_regs[] = {
2003 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2004 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2005 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2006 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2007 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2008 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2009 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2010 };
2011
2012 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2013 bool is_32)
2014 {
2015 unsigned int i;
2016
2017 for (i = 0; i < n; i++) {
2018 if (!is_32 && table[i].reg && !table[i].reset) {
2019 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2020 table, i);
2021 return 1;
2022 }
2023
2024 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2025 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2026 return 1;
2027 }
2028 }
2029
2030 return 0;
2031 }
2032
2033 static int match_sys_reg(const void *key, const void *elt)
2034 {
2035 const unsigned long pval = (unsigned long)key;
2036 const struct sys_reg_desc *r = elt;
2037
2038 return pval - reg_to_encoding(r);
2039 }
2040
2041 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2042 const struct sys_reg_desc table[],
2043 unsigned int num)
2044 {
2045 unsigned long pval = reg_to_encoding(params);
2046
2047 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2048 }
2049
2050 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2051 {
2052 kvm_inject_undefined(vcpu);
2053 return 1;
2054 }
2055
2056 static void perform_access(struct kvm_vcpu *vcpu,
2057 struct sys_reg_params *params,
2058 const struct sys_reg_desc *r)
2059 {
2060 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2061
2062 /* Check for regs disabled by runtime config */
2063 if (sysreg_hidden(vcpu, r)) {
2064 kvm_inject_undefined(vcpu);
2065 return;
2066 }
2067
2068 /*
2069 * Not having an accessor means that we have configured a trap
2070 * that we don't know how to handle. This certainly qualifies
2071 * as a gross bug that should be fixed right away.
2072 */
2073 BUG_ON(!r->access);
2074
2075 /* Skip instruction if instructed so */
2076 if (likely(r->access(vcpu, params, r)))
2077 kvm_incr_pc(vcpu);
2078 }
2079
2080 /*
2081 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2082 * call the corresponding trap handler.
2083 *
2084 * @params: pointer to the descriptor of the access
2085 * @table: array of trap descriptors
2086 * @num: size of the trap descriptor array
2087 *
2088 * Return 0 if the access has been handled, and -1 if not.
2089 */
2090 static int emulate_cp(struct kvm_vcpu *vcpu,
2091 struct sys_reg_params *params,
2092 const struct sys_reg_desc *table,
2093 size_t num)
2094 {
2095 const struct sys_reg_desc *r;
2096
2097 if (!table)
2098 return -1; /* Not handled */
2099
2100 r = find_reg(params, table, num);
2101
2102 if (r) {
2103 perform_access(vcpu, params, r);
2104 return 0;
2105 }
2106
2107 /* Not handled */
2108 return -1;
2109 }
2110
2111 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2112 struct sys_reg_params *params)
2113 {
2114 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2115 int cp = -1;
2116
2117 switch (esr_ec) {
2118 case ESR_ELx_EC_CP15_32:
2119 case ESR_ELx_EC_CP15_64:
2120 cp = 15;
2121 break;
2122 case ESR_ELx_EC_CP14_MR:
2123 case ESR_ELx_EC_CP14_64:
2124 cp = 14;
2125 break;
2126 default:
2127 WARN_ON(1);
2128 }
2129
2130 print_sys_reg_msg(params,
2131 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2132 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2133 kvm_inject_undefined(vcpu);
2134 }
2135
2136 /**
2137 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2138 * @vcpu: The VCPU pointer
2139 * @run: The kvm_run struct
2140 */
2141 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2142 const struct sys_reg_desc *global,
2143 size_t nr_global)
2144 {
2145 struct sys_reg_params params;
2146 u32 esr = kvm_vcpu_get_esr(vcpu);
2147 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2148 int Rt2 = (esr >> 10) & 0x1f;
2149
2150 params.CRm = (esr >> 1) & 0xf;
2151 params.is_write = ((esr & 1) == 0);
2152
2153 params.Op0 = 0;
2154 params.Op1 = (esr >> 16) & 0xf;
2155 params.Op2 = 0;
2156 params.CRn = 0;
2157
2158 /*
2159 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2160 * backends between AArch32 and AArch64, we get away with it.
2161 */
2162 if (params.is_write) {
2163 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2164 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2165 }
2166
2167 /*
2168 * If the table contains a handler, handle the
2169 * potential register operation in the case of a read and return
2170 * with success.
2171 */
2172 if (!emulate_cp(vcpu, &params, global, nr_global)) {
2173 /* Split up the value between registers for the read side */
2174 if (!params.is_write) {
2175 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2176 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2177 }
2178
2179 return 1;
2180 }
2181
2182 unhandled_cp_access(vcpu, &params);
2183 return 1;
2184 }
2185
2186 /**
2187 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2188 * @vcpu: The VCPU pointer
2189 * @run: The kvm_run struct
2190 */
2191 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2192 const struct sys_reg_desc *global,
2193 size_t nr_global)
2194 {
2195 struct sys_reg_params params;
2196 u32 esr = kvm_vcpu_get_esr(vcpu);
2197 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2198
2199 params.CRm = (esr >> 1) & 0xf;
2200 params.regval = vcpu_get_reg(vcpu, Rt);
2201 params.is_write = ((esr & 1) == 0);
2202 params.CRn = (esr >> 10) & 0xf;
2203 params.Op0 = 0;
2204 params.Op1 = (esr >> 14) & 0x7;
2205 params.Op2 = (esr >> 17) & 0x7;
2206
2207 if (!emulate_cp(vcpu, &params, global, nr_global)) {
2208 if (!params.is_write)
2209 vcpu_set_reg(vcpu, Rt, params.regval);
2210 return 1;
2211 }
2212
2213 unhandled_cp_access(vcpu, &params);
2214 return 1;
2215 }
2216
2217 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2218 {
2219 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2220 }
2221
2222 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2223 {
2224 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2225 }
2226
2227 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2228 {
2229 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2230 }
2231
2232 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2233 {
2234 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2235 }
2236
2237 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2238 {
2239 // See ARM DDI 0487E.a, section D12.3.2
2240 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2241 }
2242
2243 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2244 struct sys_reg_params *params)
2245 {
2246 const struct sys_reg_desc *r;
2247
2248 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2249
2250 if (likely(r)) {
2251 perform_access(vcpu, params, r);
2252 } else if (is_imp_def_sys_reg(params)) {
2253 kvm_inject_undefined(vcpu);
2254 } else {
2255 print_sys_reg_msg(params,
2256 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2257 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2258 kvm_inject_undefined(vcpu);
2259 }
2260 return 1;
2261 }
2262
2263 /**
2264 * kvm_reset_sys_regs - sets system registers to reset value
2265 * @vcpu: The VCPU pointer
2266 *
2267 * This function finds the right table above and sets the registers on the
2268 * virtual CPU struct to their architecturally defined reset values.
2269 */
2270 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2271 {
2272 unsigned long i;
2273
2274 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2275 if (sys_reg_descs[i].reset)
2276 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2277 }
2278
2279 /**
2280 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2281 * @vcpu: The VCPU pointer
2282 */
2283 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2284 {
2285 struct sys_reg_params params;
2286 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2287 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2288 int ret;
2289
2290 trace_kvm_handle_sys_reg(esr);
2291
2292 params.Op0 = (esr >> 20) & 3;
2293 params.Op1 = (esr >> 14) & 0x7;
2294 params.CRn = (esr >> 10) & 0xf;
2295 params.CRm = (esr >> 1) & 0xf;
2296 params.Op2 = (esr >> 17) & 0x7;
2297 params.regval = vcpu_get_reg(vcpu, Rt);
2298 params.is_write = !(esr & 1);
2299
2300 ret = emulate_sys_reg(vcpu, &params);
2301
2302 if (!params.is_write)
2303 vcpu_set_reg(vcpu, Rt, params.regval);
2304 return ret;
2305 }
2306
2307 /******************************************************************************
2308 * Userspace API
2309 *****************************************************************************/
2310
2311 static bool index_to_params(u64 id, struct sys_reg_params *params)
2312 {
2313 switch (id & KVM_REG_SIZE_MASK) {
2314 case KVM_REG_SIZE_U64:
2315 /* Any unused index bits means it's not valid. */
2316 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2317 | KVM_REG_ARM_COPROC_MASK
2318 | KVM_REG_ARM64_SYSREG_OP0_MASK
2319 | KVM_REG_ARM64_SYSREG_OP1_MASK
2320 | KVM_REG_ARM64_SYSREG_CRN_MASK
2321 | KVM_REG_ARM64_SYSREG_CRM_MASK
2322 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2323 return false;
2324 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2325 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2326 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2327 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2328 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2329 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2330 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2331 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2332 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2333 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2334 return true;
2335 default:
2336 return false;
2337 }
2338 }
2339
2340 const struct sys_reg_desc *find_reg_by_id(u64 id,
2341 struct sys_reg_params *params,
2342 const struct sys_reg_desc table[],
2343 unsigned int num)
2344 {
2345 if (!index_to_params(id, params))
2346 return NULL;
2347
2348 return find_reg(params, table, num);
2349 }
2350
2351 /* Decode an index value, and find the sys_reg_desc entry. */
2352 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2353 u64 id)
2354 {
2355 const struct sys_reg_desc *r;
2356 struct sys_reg_params params;
2357
2358 /* We only do sys_reg for now. */
2359 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2360 return NULL;
2361
2362 if (!index_to_params(id, &params))
2363 return NULL;
2364
2365 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2366
2367 /* Not saved in the sys_reg array and not otherwise accessible? */
2368 if (r && !(r->reg || r->get_user))
2369 r = NULL;
2370
2371 return r;
2372 }
2373
2374 /*
2375 * These are the invariant sys_reg registers: we let the guest see the
2376 * host versions of these, so they're part of the guest state.
2377 *
2378 * A future CPU may provide a mechanism to present different values to
2379 * the guest, or a future kvm may trap them.
2380 */
2381
2382 #define FUNCTION_INVARIANT(reg) \
2383 static void get_##reg(struct kvm_vcpu *v, \
2384 const struct sys_reg_desc *r) \
2385 { \
2386 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2387 }
2388
2389 FUNCTION_INVARIANT(midr_el1)
2390 FUNCTION_INVARIANT(revidr_el1)
2391 FUNCTION_INVARIANT(clidr_el1)
2392 FUNCTION_INVARIANT(aidr_el1)
2393
2394 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2395 {
2396 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2397 }
2398
2399 /* ->val is filled in by kvm_sys_reg_table_init() */
2400 static struct sys_reg_desc invariant_sys_regs[] = {
2401 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2402 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2403 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2404 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2405 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2406 };
2407
2408 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2409 {
2410 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2411 return -EFAULT;
2412 return 0;
2413 }
2414
2415 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2416 {
2417 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2418 return -EFAULT;
2419 return 0;
2420 }
2421
2422 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2423 {
2424 struct sys_reg_params params;
2425 const struct sys_reg_desc *r;
2426
2427 r = find_reg_by_id(id, &params, invariant_sys_regs,
2428 ARRAY_SIZE(invariant_sys_regs));
2429 if (!r)
2430 return -ENOENT;
2431
2432 return reg_to_user(uaddr, &r->val, id);
2433 }
2434
2435 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2436 {
2437 struct sys_reg_params params;
2438 const struct sys_reg_desc *r;
2439 int err;
2440 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2441
2442 r = find_reg_by_id(id, &params, invariant_sys_regs,
2443 ARRAY_SIZE(invariant_sys_regs));
2444 if (!r)
2445 return -ENOENT;
2446
2447 err = reg_from_user(&val, uaddr, id);
2448 if (err)
2449 return err;
2450
2451 /* This is what we mean by invariant: you can't change it. */
2452 if (r->val != val)
2453 return -EINVAL;
2454
2455 return 0;
2456 }
2457
2458 static bool is_valid_cache(u32 val)
2459 {
2460 u32 level, ctype;
2461
2462 if (val >= CSSELR_MAX)
2463 return false;
2464
2465 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2466 level = (val >> 1);
2467 ctype = (cache_levels >> (level * 3)) & 7;
2468
2469 switch (ctype) {
2470 case 0: /* No cache */
2471 return false;
2472 case 1: /* Instruction cache only */
2473 return (val & 1);
2474 case 2: /* Data cache only */
2475 case 4: /* Unified cache */
2476 return !(val & 1);
2477 case 3: /* Separate instruction and data caches */
2478 return true;
2479 default: /* Reserved: we can't know instruction or data. */
2480 return false;
2481 }
2482 }
2483
2484 static int demux_c15_get(u64 id, void __user *uaddr)
2485 {
2486 u32 val;
2487 u32 __user *uval = uaddr;
2488
2489 /* Fail if we have unknown bits set. */
2490 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2491 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2492 return -ENOENT;
2493
2494 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2495 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2496 if (KVM_REG_SIZE(id) != 4)
2497 return -ENOENT;
2498 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2499 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2500 if (!is_valid_cache(val))
2501 return -ENOENT;
2502
2503 return put_user(get_ccsidr(val), uval);
2504 default:
2505 return -ENOENT;
2506 }
2507 }
2508
2509 static int demux_c15_set(u64 id, void __user *uaddr)
2510 {
2511 u32 val, newval;
2512 u32 __user *uval = uaddr;
2513
2514 /* Fail if we have unknown bits set. */
2515 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2516 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2517 return -ENOENT;
2518
2519 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2520 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2521 if (KVM_REG_SIZE(id) != 4)
2522 return -ENOENT;
2523 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2524 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2525 if (!is_valid_cache(val))
2526 return -ENOENT;
2527
2528 if (get_user(newval, uval))
2529 return -EFAULT;
2530
2531 /* This is also invariant: you can't change it. */
2532 if (newval != get_ccsidr(val))
2533 return -EINVAL;
2534 return 0;
2535 default:
2536 return -ENOENT;
2537 }
2538 }
2539
2540 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2541 {
2542 const struct sys_reg_desc *r;
2543 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2544
2545 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2546 return demux_c15_get(reg->id, uaddr);
2547
2548 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2549 return -ENOENT;
2550
2551 r = index_to_sys_reg_desc(vcpu, reg->id);
2552 if (!r)
2553 return get_invariant_sys_reg(reg->id, uaddr);
2554
2555 /* Check for regs disabled by runtime config */
2556 if (sysreg_hidden(vcpu, r))
2557 return -ENOENT;
2558
2559 if (r->get_user)
2560 return (r->get_user)(vcpu, r, reg, uaddr);
2561
2562 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2563 }
2564
2565 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2566 {
2567 const struct sys_reg_desc *r;
2568 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2569
2570 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2571 return demux_c15_set(reg->id, uaddr);
2572
2573 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2574 return -ENOENT;
2575
2576 r = index_to_sys_reg_desc(vcpu, reg->id);
2577 if (!r)
2578 return set_invariant_sys_reg(reg->id, uaddr);
2579
2580 /* Check for regs disabled by runtime config */
2581 if (sysreg_hidden(vcpu, r))
2582 return -ENOENT;
2583
2584 if (r->set_user)
2585 return (r->set_user)(vcpu, r, reg, uaddr);
2586
2587 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2588 }
2589
2590 static unsigned int num_demux_regs(void)
2591 {
2592 unsigned int i, count = 0;
2593
2594 for (i = 0; i < CSSELR_MAX; i++)
2595 if (is_valid_cache(i))
2596 count++;
2597
2598 return count;
2599 }
2600
2601 static int write_demux_regids(u64 __user *uindices)
2602 {
2603 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2604 unsigned int i;
2605
2606 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2607 for (i = 0; i < CSSELR_MAX; i++) {
2608 if (!is_valid_cache(i))
2609 continue;
2610 if (put_user(val | i, uindices))
2611 return -EFAULT;
2612 uindices++;
2613 }
2614 return 0;
2615 }
2616
2617 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2618 {
2619 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2620 KVM_REG_ARM64_SYSREG |
2621 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2622 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2623 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2624 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2625 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2626 }
2627
2628 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2629 {
2630 if (!*uind)
2631 return true;
2632
2633 if (put_user(sys_reg_to_index(reg), *uind))
2634 return false;
2635
2636 (*uind)++;
2637 return true;
2638 }
2639
2640 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2641 const struct sys_reg_desc *rd,
2642 u64 __user **uind,
2643 unsigned int *total)
2644 {
2645 /*
2646 * Ignore registers we trap but don't save,
2647 * and for which no custom user accessor is provided.
2648 */
2649 if (!(rd->reg || rd->get_user))
2650 return 0;
2651
2652 if (sysreg_hidden(vcpu, rd))
2653 return 0;
2654
2655 if (!copy_reg_to_user(rd, uind))
2656 return -EFAULT;
2657
2658 (*total)++;
2659 return 0;
2660 }
2661
2662 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2663 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2664 {
2665 const struct sys_reg_desc *i2, *end2;
2666 unsigned int total = 0;
2667 int err;
2668
2669 i2 = sys_reg_descs;
2670 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2671
2672 while (i2 != end2) {
2673 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2674 if (err)
2675 return err;
2676 }
2677 return total;
2678 }
2679
2680 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2681 {
2682 return ARRAY_SIZE(invariant_sys_regs)
2683 + num_demux_regs()
2684 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2685 }
2686
2687 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2688 {
2689 unsigned int i;
2690 int err;
2691
2692 /* Then give them all the invariant registers' indices. */
2693 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2694 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2695 return -EFAULT;
2696 uindices++;
2697 }
2698
2699 err = walk_sys_regs(vcpu, uindices);
2700 if (err < 0)
2701 return err;
2702 uindices += err;
2703
2704 return write_demux_regids(uindices);
2705 }
2706
2707 void kvm_sys_reg_table_init(void)
2708 {
2709 unsigned int i;
2710 struct sys_reg_desc clidr;
2711
2712 /* Make sure tables are unique and in order. */
2713 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2714 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2715 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2716 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2717 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2718 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2719
2720 /* We abuse the reset function to overwrite the table itself. */
2721 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2722 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2723
2724 /*
2725 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2726 *
2727 * If software reads the Cache Type fields from Ctype1
2728 * upwards, once it has seen a value of 0b000, no caches
2729 * exist at further-out levels of the hierarchy. So, for
2730 * example, if Ctype3 is the first Cache Type field with a
2731 * value of 0b000, the values of Ctype4 to Ctype7 must be
2732 * ignored.
2733 */
2734 get_clidr_el1(NULL, &clidr); /* Ugly... */
2735 cache_levels = clidr.val;
2736 for (i = 0; i < 7; i++)
2737 if (((cache_levels >> (i*3)) & 7) == 0)
2738 break;
2739 /* Clear all higher bits. */
2740 cache_levels &= (1 << (i*3))-1;
2741 }