]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kvm/sys_regs.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_asm.h>
33 #include <asm/kvm_coproc.h>
34 #include <asm/kvm_emulate.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_mmu.h>
37
38 #include <trace/events/kvm.h>
39
40 #include "sys_regs.h"
41
42 #include "trace.h"
43
44 /*
45 * All of this file is extremly similar to the ARM coproc.c, but the
46 * types are different. My gut feeling is that it should be pretty
47 * easy to merge, but that would be an ABI breakage -- again. VFP
48 * would also need to be abstracted.
49 *
50 * For AArch32, we only take care of what is being trapped. Anything
51 * that has to do with init and userspace access has to go via the
52 * 64bit interface.
53 */
54
55 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
56 static u32 cache_levels;
57
58 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
59 #define CSSELR_MAX 12
60
61 /* Which cache CCSIDR represents depends on CSSELR value. */
62 static u32 get_ccsidr(u32 csselr)
63 {
64 u32 ccsidr;
65
66 /* Make sure noone else changes CSSELR during this! */
67 local_irq_disable();
68 /* Put value into CSSELR */
69 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
70 isb();
71 /* Read result out of CCSIDR */
72 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
73 local_irq_enable();
74
75 return ccsidr;
76 }
77
78 /*
79 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80 */
81 static bool access_dcsw(struct kvm_vcpu *vcpu,
82 struct sys_reg_params *p,
83 const struct sys_reg_desc *r)
84 {
85 if (!p->is_write)
86 return read_from_write_only(vcpu, p);
87
88 kvm_set_way_flush(vcpu);
89 return true;
90 }
91
92 /*
93 * Generic accessor for VM registers. Only called as long as HCR_TVM
94 * is set. If the guest enables the MMU, we stop trapping the VM
95 * sys_regs and leave it in complete control of the caches.
96 */
97 static bool access_vm_reg(struct kvm_vcpu *vcpu,
98 struct sys_reg_params *p,
99 const struct sys_reg_desc *r)
100 {
101 bool was_enabled = vcpu_has_cache_enabled(vcpu);
102
103 BUG_ON(!p->is_write);
104
105 if (!p->is_aarch32) {
106 vcpu_sys_reg(vcpu, r->reg) = p->regval;
107 } else {
108 if (!p->is_32bit)
109 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
110 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
111 }
112
113 kvm_toggle_cache(vcpu, was_enabled);
114 return true;
115 }
116
117 /*
118 * Trap handler for the GICv3 SGI generation system register.
119 * Forward the request to the VGIC emulation.
120 * The cp15_64 code makes sure this automatically works
121 * for both AArch64 and AArch32 accesses.
122 */
123 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
124 struct sys_reg_params *p,
125 const struct sys_reg_desc *r)
126 {
127 if (!p->is_write)
128 return read_from_write_only(vcpu, p);
129
130 vgic_v3_dispatch_sgi(vcpu, p->regval);
131
132 return true;
133 }
134
135 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
136 struct sys_reg_params *p,
137 const struct sys_reg_desc *r)
138 {
139 if (p->is_write)
140 return ignore_write(vcpu, p);
141 else
142 return read_zero(vcpu, p);
143 }
144
145 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
146 struct sys_reg_params *p,
147 const struct sys_reg_desc *r)
148 {
149 if (p->is_write) {
150 return ignore_write(vcpu, p);
151 } else {
152 p->regval = (1 << 3);
153 return true;
154 }
155 }
156
157 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
158 struct sys_reg_params *p,
159 const struct sys_reg_desc *r)
160 {
161 if (p->is_write) {
162 return ignore_write(vcpu, p);
163 } else {
164 u32 val;
165 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
166 p->regval = val;
167 return true;
168 }
169 }
170
171 /*
172 * We want to avoid world-switching all the DBG registers all the
173 * time:
174 *
175 * - If we've touched any debug register, it is likely that we're
176 * going to touch more of them. It then makes sense to disable the
177 * traps and start doing the save/restore dance
178 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
179 * then mandatory to save/restore the registers, as the guest
180 * depends on them.
181 *
182 * For this, we use a DIRTY bit, indicating the guest has modified the
183 * debug registers, used as follow:
184 *
185 * On guest entry:
186 * - If the dirty bit is set (because we're coming back from trapping),
187 * disable the traps, save host registers, restore guest registers.
188 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
189 * set the dirty bit, disable the traps, save host registers,
190 * restore guest registers.
191 * - Otherwise, enable the traps
192 *
193 * On guest exit:
194 * - If the dirty bit is set, save guest registers, restore host
195 * registers and clear the dirty bit. This ensure that the host can
196 * now use the debug registers.
197 */
198 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
199 struct sys_reg_params *p,
200 const struct sys_reg_desc *r)
201 {
202 if (p->is_write) {
203 vcpu_sys_reg(vcpu, r->reg) = p->regval;
204 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
205 } else {
206 p->regval = vcpu_sys_reg(vcpu, r->reg);
207 }
208
209 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
210
211 return true;
212 }
213
214 /*
215 * reg_to_dbg/dbg_to_reg
216 *
217 * A 32 bit write to a debug register leave top bits alone
218 * A 32 bit read from a debug register only returns the bottom bits
219 *
220 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
221 * hyp.S code switches between host and guest values in future.
222 */
223 static void reg_to_dbg(struct kvm_vcpu *vcpu,
224 struct sys_reg_params *p,
225 u64 *dbg_reg)
226 {
227 u64 val = p->regval;
228
229 if (p->is_32bit) {
230 val &= 0xffffffffUL;
231 val |= ((*dbg_reg >> 32) << 32);
232 }
233
234 *dbg_reg = val;
235 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
236 }
237
238 static void dbg_to_reg(struct kvm_vcpu *vcpu,
239 struct sys_reg_params *p,
240 u64 *dbg_reg)
241 {
242 p->regval = *dbg_reg;
243 if (p->is_32bit)
244 p->regval &= 0xffffffffUL;
245 }
246
247 static bool trap_bvr(struct kvm_vcpu *vcpu,
248 struct sys_reg_params *p,
249 const struct sys_reg_desc *rd)
250 {
251 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
252
253 if (p->is_write)
254 reg_to_dbg(vcpu, p, dbg_reg);
255 else
256 dbg_to_reg(vcpu, p, dbg_reg);
257
258 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
259
260 return true;
261 }
262
263 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
264 const struct kvm_one_reg *reg, void __user *uaddr)
265 {
266 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
267
268 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
269 return -EFAULT;
270 return 0;
271 }
272
273 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
279 return -EFAULT;
280 return 0;
281 }
282
283 static void reset_bvr(struct kvm_vcpu *vcpu,
284 const struct sys_reg_desc *rd)
285 {
286 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
287 }
288
289 static bool trap_bcr(struct kvm_vcpu *vcpu,
290 struct sys_reg_params *p,
291 const struct sys_reg_desc *rd)
292 {
293 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
294
295 if (p->is_write)
296 reg_to_dbg(vcpu, p, dbg_reg);
297 else
298 dbg_to_reg(vcpu, p, dbg_reg);
299
300 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
301
302 return true;
303 }
304
305 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
306 const struct kvm_one_reg *reg, void __user *uaddr)
307 {
308 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
309
310 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
311 return -EFAULT;
312
313 return 0;
314 }
315
316 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317 const struct kvm_one_reg *reg, void __user *uaddr)
318 {
319 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
320
321 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
322 return -EFAULT;
323 return 0;
324 }
325
326 static void reset_bcr(struct kvm_vcpu *vcpu,
327 const struct sys_reg_desc *rd)
328 {
329 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
330 }
331
332 static bool trap_wvr(struct kvm_vcpu *vcpu,
333 struct sys_reg_params *p,
334 const struct sys_reg_desc *rd)
335 {
336 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
337
338 if (p->is_write)
339 reg_to_dbg(vcpu, p, dbg_reg);
340 else
341 dbg_to_reg(vcpu, p, dbg_reg);
342
343 trace_trap_reg(__func__, rd->reg, p->is_write,
344 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
345
346 return true;
347 }
348
349 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
350 const struct kvm_one_reg *reg, void __user *uaddr)
351 {
352 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
353
354 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
355 return -EFAULT;
356 return 0;
357 }
358
359 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
365 return -EFAULT;
366 return 0;
367 }
368
369 static void reset_wvr(struct kvm_vcpu *vcpu,
370 const struct sys_reg_desc *rd)
371 {
372 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
373 }
374
375 static bool trap_wcr(struct kvm_vcpu *vcpu,
376 struct sys_reg_params *p,
377 const struct sys_reg_desc *rd)
378 {
379 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
380
381 if (p->is_write)
382 reg_to_dbg(vcpu, p, dbg_reg);
383 else
384 dbg_to_reg(vcpu, p, dbg_reg);
385
386 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
387
388 return true;
389 }
390
391 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
392 const struct kvm_one_reg *reg, void __user *uaddr)
393 {
394 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
395
396 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
397 return -EFAULT;
398 return 0;
399 }
400
401 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
407 return -EFAULT;
408 return 0;
409 }
410
411 static void reset_wcr(struct kvm_vcpu *vcpu,
412 const struct sys_reg_desc *rd)
413 {
414 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
415 }
416
417 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
418 {
419 u64 amair;
420
421 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
422 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
423 }
424
425 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
426 {
427 u64 mpidr;
428
429 /*
430 * Map the vcpu_id into the first three affinity level fields of
431 * the MPIDR. We limit the number of VCPUs in level 0 due to a
432 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
433 * of the GICv3 to be able to address each CPU directly when
434 * sending IPIs.
435 */
436 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
437 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
438 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
439 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
440 }
441
442 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
443 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
444 /* DBGBVRn_EL1 */ \
445 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
446 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
447 /* DBGBCRn_EL1 */ \
448 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
449 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
450 /* DBGWVRn_EL1 */ \
451 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
452 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
453 /* DBGWCRn_EL1 */ \
454 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
455 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
456
457 /*
458 * Architected system registers.
459 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
460 *
461 * We could trap ID_DFR0 and tell the guest we don't support performance
462 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
463 * NAKed, so it will read the PMCR anyway.
464 *
465 * Therefore we tell the guest we have 0 counters. Unfortunately, we
466 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
467 * all PM registers, which doesn't crash the guest kernel at least.
468 *
469 * Debug handling: We do trap most, if not all debug related system
470 * registers. The implementation is good enough to ensure that a guest
471 * can use these with minimal performance degradation. The drawback is
472 * that we don't implement any of the external debug, none of the
473 * OSlock protocol. This should be revisited if we ever encounter a
474 * more demanding guest...
475 */
476 static const struct sys_reg_desc sys_reg_descs[] = {
477 /* DC ISW */
478 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
479 access_dcsw },
480 /* DC CSW */
481 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
482 access_dcsw },
483 /* DC CISW */
484 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
485 access_dcsw },
486
487 DBG_BCR_BVR_WCR_WVR_EL1(0),
488 DBG_BCR_BVR_WCR_WVR_EL1(1),
489 /* MDCCINT_EL1 */
490 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
491 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
492 /* MDSCR_EL1 */
493 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
494 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
495 DBG_BCR_BVR_WCR_WVR_EL1(2),
496 DBG_BCR_BVR_WCR_WVR_EL1(3),
497 DBG_BCR_BVR_WCR_WVR_EL1(4),
498 DBG_BCR_BVR_WCR_WVR_EL1(5),
499 DBG_BCR_BVR_WCR_WVR_EL1(6),
500 DBG_BCR_BVR_WCR_WVR_EL1(7),
501 DBG_BCR_BVR_WCR_WVR_EL1(8),
502 DBG_BCR_BVR_WCR_WVR_EL1(9),
503 DBG_BCR_BVR_WCR_WVR_EL1(10),
504 DBG_BCR_BVR_WCR_WVR_EL1(11),
505 DBG_BCR_BVR_WCR_WVR_EL1(12),
506 DBG_BCR_BVR_WCR_WVR_EL1(13),
507 DBG_BCR_BVR_WCR_WVR_EL1(14),
508 DBG_BCR_BVR_WCR_WVR_EL1(15),
509
510 /* MDRAR_EL1 */
511 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
512 trap_raz_wi },
513 /* OSLAR_EL1 */
514 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
515 trap_raz_wi },
516 /* OSLSR_EL1 */
517 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
518 trap_oslsr_el1 },
519 /* OSDLR_EL1 */
520 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
521 trap_raz_wi },
522 /* DBGPRCR_EL1 */
523 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
524 trap_raz_wi },
525 /* DBGCLAIMSET_EL1 */
526 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
527 trap_raz_wi },
528 /* DBGCLAIMCLR_EL1 */
529 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
530 trap_raz_wi },
531 /* DBGAUTHSTATUS_EL1 */
532 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
533 trap_dbgauthstatus_el1 },
534
535 /* MDCCSR_EL1 */
536 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
537 trap_raz_wi },
538 /* DBGDTR_EL0 */
539 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
540 trap_raz_wi },
541 /* DBGDTR[TR]X_EL0 */
542 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
543 trap_raz_wi },
544
545 /* DBGVCR32_EL2 */
546 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
547 NULL, reset_val, DBGVCR32_EL2, 0 },
548
549 /* MPIDR_EL1 */
550 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
551 NULL, reset_mpidr, MPIDR_EL1 },
552 /* SCTLR_EL1 */
553 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
554 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
555 /* CPACR_EL1 */
556 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
557 NULL, reset_val, CPACR_EL1, 0 },
558 /* TTBR0_EL1 */
559 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
560 access_vm_reg, reset_unknown, TTBR0_EL1 },
561 /* TTBR1_EL1 */
562 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
563 access_vm_reg, reset_unknown, TTBR1_EL1 },
564 /* TCR_EL1 */
565 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
566 access_vm_reg, reset_val, TCR_EL1, 0 },
567
568 /* AFSR0_EL1 */
569 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
570 access_vm_reg, reset_unknown, AFSR0_EL1 },
571 /* AFSR1_EL1 */
572 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
573 access_vm_reg, reset_unknown, AFSR1_EL1 },
574 /* ESR_EL1 */
575 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
576 access_vm_reg, reset_unknown, ESR_EL1 },
577 /* FAR_EL1 */
578 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
579 access_vm_reg, reset_unknown, FAR_EL1 },
580 /* PAR_EL1 */
581 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
582 NULL, reset_unknown, PAR_EL1 },
583
584 /* PMINTENSET_EL1 */
585 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
586 trap_raz_wi },
587 /* PMINTENCLR_EL1 */
588 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
589 trap_raz_wi },
590
591 /* MAIR_EL1 */
592 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
593 access_vm_reg, reset_unknown, MAIR_EL1 },
594 /* AMAIR_EL1 */
595 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
596 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
597
598 /* VBAR_EL1 */
599 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
600 NULL, reset_val, VBAR_EL1, 0 },
601
602 /* ICC_SGI1R_EL1 */
603 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
604 access_gic_sgi },
605 /* ICC_SRE_EL1 */
606 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
607 trap_raz_wi },
608
609 /* CONTEXTIDR_EL1 */
610 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
611 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
612 /* TPIDR_EL1 */
613 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
614 NULL, reset_unknown, TPIDR_EL1 },
615
616 /* CNTKCTL_EL1 */
617 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
618 NULL, reset_val, CNTKCTL_EL1, 0},
619
620 /* CSSELR_EL1 */
621 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
622 NULL, reset_unknown, CSSELR_EL1 },
623
624 /* PMCR_EL0 */
625 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
626 trap_raz_wi },
627 /* PMCNTENSET_EL0 */
628 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
629 trap_raz_wi },
630 /* PMCNTENCLR_EL0 */
631 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
632 trap_raz_wi },
633 /* PMOVSCLR_EL0 */
634 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
635 trap_raz_wi },
636 /* PMSWINC_EL0 */
637 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
638 trap_raz_wi },
639 /* PMSELR_EL0 */
640 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
641 trap_raz_wi },
642 /* PMCEID0_EL0 */
643 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
644 trap_raz_wi },
645 /* PMCEID1_EL0 */
646 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
647 trap_raz_wi },
648 /* PMCCNTR_EL0 */
649 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
650 trap_raz_wi },
651 /* PMXEVTYPER_EL0 */
652 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
653 trap_raz_wi },
654 /* PMXEVCNTR_EL0 */
655 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
656 trap_raz_wi },
657 /* PMUSERENR_EL0 */
658 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
659 trap_raz_wi },
660 /* PMOVSSET_EL0 */
661 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
662 trap_raz_wi },
663
664 /* TPIDR_EL0 */
665 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
666 NULL, reset_unknown, TPIDR_EL0 },
667 /* TPIDRRO_EL0 */
668 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
669 NULL, reset_unknown, TPIDRRO_EL0 },
670
671 /* DACR32_EL2 */
672 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
673 NULL, reset_unknown, DACR32_EL2 },
674 /* IFSR32_EL2 */
675 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
676 NULL, reset_unknown, IFSR32_EL2 },
677 /* FPEXC32_EL2 */
678 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
679 NULL, reset_val, FPEXC32_EL2, 0x70 },
680 };
681
682 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
683 struct sys_reg_params *p,
684 const struct sys_reg_desc *r)
685 {
686 if (p->is_write) {
687 return ignore_write(vcpu, p);
688 } else {
689 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
690 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
691 u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
692
693 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
694 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
695 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
696 | (6 << 16) | (el3 << 14) | (el3 << 12));
697 return true;
698 }
699 }
700
701 static bool trap_debug32(struct kvm_vcpu *vcpu,
702 struct sys_reg_params *p,
703 const struct sys_reg_desc *r)
704 {
705 if (p->is_write) {
706 vcpu_cp14(vcpu, r->reg) = p->regval;
707 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
708 } else {
709 p->regval = vcpu_cp14(vcpu, r->reg);
710 }
711
712 return true;
713 }
714
715 /* AArch32 debug register mappings
716 *
717 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
718 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
719 *
720 * All control registers and watchpoint value registers are mapped to
721 * the lower 32 bits of their AArch64 equivalents. We share the trap
722 * handlers with the above AArch64 code which checks what mode the
723 * system is in.
724 */
725
726 static bool trap_xvr(struct kvm_vcpu *vcpu,
727 struct sys_reg_params *p,
728 const struct sys_reg_desc *rd)
729 {
730 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
731
732 if (p->is_write) {
733 u64 val = *dbg_reg;
734
735 val &= 0xffffffffUL;
736 val |= p->regval << 32;
737 *dbg_reg = val;
738
739 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
740 } else {
741 p->regval = *dbg_reg >> 32;
742 }
743
744 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
745
746 return true;
747 }
748
749 #define DBG_BCR_BVR_WCR_WVR(n) \
750 /* DBGBVRn */ \
751 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
752 /* DBGBCRn */ \
753 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
754 /* DBGWVRn */ \
755 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
756 /* DBGWCRn */ \
757 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
758
759 #define DBGBXVR(n) \
760 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
761
762 /*
763 * Trapped cp14 registers. We generally ignore most of the external
764 * debug, on the principle that they don't really make sense to a
765 * guest. Revisit this one day, would this principle change.
766 */
767 static const struct sys_reg_desc cp14_regs[] = {
768 /* DBGIDR */
769 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
770 /* DBGDTRRXext */
771 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
772
773 DBG_BCR_BVR_WCR_WVR(0),
774 /* DBGDSCRint */
775 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
776 DBG_BCR_BVR_WCR_WVR(1),
777 /* DBGDCCINT */
778 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
779 /* DBGDSCRext */
780 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
781 DBG_BCR_BVR_WCR_WVR(2),
782 /* DBGDTR[RT]Xint */
783 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
784 /* DBGDTR[RT]Xext */
785 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
786 DBG_BCR_BVR_WCR_WVR(3),
787 DBG_BCR_BVR_WCR_WVR(4),
788 DBG_BCR_BVR_WCR_WVR(5),
789 /* DBGWFAR */
790 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
791 /* DBGOSECCR */
792 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
793 DBG_BCR_BVR_WCR_WVR(6),
794 /* DBGVCR */
795 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
796 DBG_BCR_BVR_WCR_WVR(7),
797 DBG_BCR_BVR_WCR_WVR(8),
798 DBG_BCR_BVR_WCR_WVR(9),
799 DBG_BCR_BVR_WCR_WVR(10),
800 DBG_BCR_BVR_WCR_WVR(11),
801 DBG_BCR_BVR_WCR_WVR(12),
802 DBG_BCR_BVR_WCR_WVR(13),
803 DBG_BCR_BVR_WCR_WVR(14),
804 DBG_BCR_BVR_WCR_WVR(15),
805
806 /* DBGDRAR (32bit) */
807 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
808
809 DBGBXVR(0),
810 /* DBGOSLAR */
811 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
812 DBGBXVR(1),
813 /* DBGOSLSR */
814 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
815 DBGBXVR(2),
816 DBGBXVR(3),
817 /* DBGOSDLR */
818 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
819 DBGBXVR(4),
820 /* DBGPRCR */
821 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
822 DBGBXVR(5),
823 DBGBXVR(6),
824 DBGBXVR(7),
825 DBGBXVR(8),
826 DBGBXVR(9),
827 DBGBXVR(10),
828 DBGBXVR(11),
829 DBGBXVR(12),
830 DBGBXVR(13),
831 DBGBXVR(14),
832 DBGBXVR(15),
833
834 /* DBGDSAR (32bit) */
835 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
836
837 /* DBGDEVID2 */
838 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
839 /* DBGDEVID1 */
840 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
841 /* DBGDEVID */
842 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
843 /* DBGCLAIMSET */
844 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
845 /* DBGCLAIMCLR */
846 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
847 /* DBGAUTHSTATUS */
848 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
849 };
850
851 /* Trapped cp14 64bit registers */
852 static const struct sys_reg_desc cp14_64_regs[] = {
853 /* DBGDRAR (64bit) */
854 { Op1( 0), CRm( 1), .access = trap_raz_wi },
855
856 /* DBGDSAR (64bit) */
857 { Op1( 0), CRm( 2), .access = trap_raz_wi },
858 };
859
860 /*
861 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
862 * depending on the way they are accessed (as a 32bit or a 64bit
863 * register).
864 */
865 static const struct sys_reg_desc cp15_regs[] = {
866 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
867
868 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
869 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
870 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
871 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
872 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
873 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
874 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
875 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
876 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
877 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
878 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
879
880 /*
881 * DC{C,I,CI}SW operations:
882 */
883 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
884 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
885 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
886
887 /* PMU */
888 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
889 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
890 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
891 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
892 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
893 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
894 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
895 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
896 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
897 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
898 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
899 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
900 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
901
902 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
903 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
904 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
905 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
906
907 /* ICC_SRE */
908 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
909
910 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
911 };
912
913 static const struct sys_reg_desc cp15_64_regs[] = {
914 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
915 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
916 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
917 };
918
919 /* Target specific emulation tables */
920 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
921
922 void kvm_register_target_sys_reg_table(unsigned int target,
923 struct kvm_sys_reg_target_table *table)
924 {
925 target_tables[target] = table;
926 }
927
928 /* Get specific register table for this target. */
929 static const struct sys_reg_desc *get_target_table(unsigned target,
930 bool mode_is_64,
931 size_t *num)
932 {
933 struct kvm_sys_reg_target_table *table;
934
935 table = target_tables[target];
936 if (mode_is_64) {
937 *num = table->table64.num;
938 return table->table64.table;
939 } else {
940 *num = table->table32.num;
941 return table->table32.table;
942 }
943 }
944
945 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
946 const struct sys_reg_desc table[],
947 unsigned int num)
948 {
949 unsigned int i;
950
951 for (i = 0; i < num; i++) {
952 const struct sys_reg_desc *r = &table[i];
953
954 if (params->Op0 != r->Op0)
955 continue;
956 if (params->Op1 != r->Op1)
957 continue;
958 if (params->CRn != r->CRn)
959 continue;
960 if (params->CRm != r->CRm)
961 continue;
962 if (params->Op2 != r->Op2)
963 continue;
964
965 return r;
966 }
967 return NULL;
968 }
969
970 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
971 {
972 kvm_inject_undefined(vcpu);
973 return 1;
974 }
975
976 /*
977 * emulate_cp -- tries to match a sys_reg access in a handling table, and
978 * call the corresponding trap handler.
979 *
980 * @params: pointer to the descriptor of the access
981 * @table: array of trap descriptors
982 * @num: size of the trap descriptor array
983 *
984 * Return 0 if the access has been handled, and -1 if not.
985 */
986 static int emulate_cp(struct kvm_vcpu *vcpu,
987 struct sys_reg_params *params,
988 const struct sys_reg_desc *table,
989 size_t num)
990 {
991 const struct sys_reg_desc *r;
992
993 if (!table)
994 return -1; /* Not handled */
995
996 r = find_reg(params, table, num);
997
998 if (r) {
999 /*
1000 * Not having an accessor means that we have
1001 * configured a trap that we don't know how to
1002 * handle. This certainly qualifies as a gross bug
1003 * that should be fixed right away.
1004 */
1005 BUG_ON(!r->access);
1006
1007 if (likely(r->access(vcpu, params, r))) {
1008 /* Skip instruction, since it was emulated */
1009 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1010 }
1011
1012 /* Handled */
1013 return 0;
1014 }
1015
1016 /* Not handled */
1017 return -1;
1018 }
1019
1020 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1021 struct sys_reg_params *params)
1022 {
1023 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1024 int cp;
1025
1026 switch(hsr_ec) {
1027 case ESR_ELx_EC_CP15_32:
1028 case ESR_ELx_EC_CP15_64:
1029 cp = 15;
1030 break;
1031 case ESR_ELx_EC_CP14_MR:
1032 case ESR_ELx_EC_CP14_64:
1033 cp = 14;
1034 break;
1035 default:
1036 WARN_ON((cp = -1));
1037 }
1038
1039 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1040 cp, *vcpu_pc(vcpu));
1041 print_sys_reg_instr(params);
1042 kvm_inject_undefined(vcpu);
1043 }
1044
1045 /**
1046 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1047 * @vcpu: The VCPU pointer
1048 * @run: The kvm_run struct
1049 */
1050 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1051 const struct sys_reg_desc *global,
1052 size_t nr_global,
1053 const struct sys_reg_desc *target_specific,
1054 size_t nr_specific)
1055 {
1056 struct sys_reg_params params;
1057 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1058 int Rt = (hsr >> 5) & 0xf;
1059 int Rt2 = (hsr >> 10) & 0xf;
1060
1061 params.is_aarch32 = true;
1062 params.is_32bit = false;
1063 params.CRm = (hsr >> 1) & 0xf;
1064 params.is_write = ((hsr & 1) == 0);
1065
1066 params.Op0 = 0;
1067 params.Op1 = (hsr >> 16) & 0xf;
1068 params.Op2 = 0;
1069 params.CRn = 0;
1070
1071 /*
1072 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1073 * backends between AArch32 and AArch64, we get away with it.
1074 */
1075 if (params.is_write) {
1076 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1077 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1078 }
1079
1080 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1081 goto out;
1082 if (!emulate_cp(vcpu, &params, global, nr_global))
1083 goto out;
1084
1085 unhandled_cp_access(vcpu, &params);
1086
1087 out:
1088 /* Split up the value between registers for the read side */
1089 if (!params.is_write) {
1090 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1091 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1092 }
1093
1094 return 1;
1095 }
1096
1097 /**
1098 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1099 * @vcpu: The VCPU pointer
1100 * @run: The kvm_run struct
1101 */
1102 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1103 const struct sys_reg_desc *global,
1104 size_t nr_global,
1105 const struct sys_reg_desc *target_specific,
1106 size_t nr_specific)
1107 {
1108 struct sys_reg_params params;
1109 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1110 int Rt = (hsr >> 5) & 0xf;
1111
1112 params.is_aarch32 = true;
1113 params.is_32bit = true;
1114 params.CRm = (hsr >> 1) & 0xf;
1115 params.regval = vcpu_get_reg(vcpu, Rt);
1116 params.is_write = ((hsr & 1) == 0);
1117 params.CRn = (hsr >> 10) & 0xf;
1118 params.Op0 = 0;
1119 params.Op1 = (hsr >> 14) & 0x7;
1120 params.Op2 = (hsr >> 17) & 0x7;
1121
1122 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1123 !emulate_cp(vcpu, &params, global, nr_global)) {
1124 if (!params.is_write)
1125 vcpu_set_reg(vcpu, Rt, params.regval);
1126 return 1;
1127 }
1128
1129 unhandled_cp_access(vcpu, &params);
1130 return 1;
1131 }
1132
1133 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1134 {
1135 const struct sys_reg_desc *target_specific;
1136 size_t num;
1137
1138 target_specific = get_target_table(vcpu->arch.target, false, &num);
1139 return kvm_handle_cp_64(vcpu,
1140 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1141 target_specific, num);
1142 }
1143
1144 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1145 {
1146 const struct sys_reg_desc *target_specific;
1147 size_t num;
1148
1149 target_specific = get_target_table(vcpu->arch.target, false, &num);
1150 return kvm_handle_cp_32(vcpu,
1151 cp15_regs, ARRAY_SIZE(cp15_regs),
1152 target_specific, num);
1153 }
1154
1155 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1156 {
1157 return kvm_handle_cp_64(vcpu,
1158 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1159 NULL, 0);
1160 }
1161
1162 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1163 {
1164 return kvm_handle_cp_32(vcpu,
1165 cp14_regs, ARRAY_SIZE(cp14_regs),
1166 NULL, 0);
1167 }
1168
1169 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1170 struct sys_reg_params *params)
1171 {
1172 size_t num;
1173 const struct sys_reg_desc *table, *r;
1174
1175 table = get_target_table(vcpu->arch.target, true, &num);
1176
1177 /* Search target-specific then generic table. */
1178 r = find_reg(params, table, num);
1179 if (!r)
1180 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1181
1182 if (likely(r)) {
1183 /*
1184 * Not having an accessor means that we have
1185 * configured a trap that we don't know how to
1186 * handle. This certainly qualifies as a gross bug
1187 * that should be fixed right away.
1188 */
1189 BUG_ON(!r->access);
1190
1191 if (likely(r->access(vcpu, params, r))) {
1192 /* Skip instruction, since it was emulated */
1193 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1194 return 1;
1195 }
1196 /* If access function fails, it should complain. */
1197 } else {
1198 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1199 *vcpu_pc(vcpu));
1200 print_sys_reg_instr(params);
1201 }
1202 kvm_inject_undefined(vcpu);
1203 return 1;
1204 }
1205
1206 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1207 const struct sys_reg_desc *table, size_t num)
1208 {
1209 unsigned long i;
1210
1211 for (i = 0; i < num; i++)
1212 if (table[i].reset)
1213 table[i].reset(vcpu, &table[i]);
1214 }
1215
1216 /**
1217 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1218 * @vcpu: The VCPU pointer
1219 * @run: The kvm_run struct
1220 */
1221 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1222 {
1223 struct sys_reg_params params;
1224 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1225 int Rt = (esr >> 5) & 0x1f;
1226 int ret;
1227
1228 trace_kvm_handle_sys_reg(esr);
1229
1230 params.is_aarch32 = false;
1231 params.is_32bit = false;
1232 params.Op0 = (esr >> 20) & 3;
1233 params.Op1 = (esr >> 14) & 0x7;
1234 params.CRn = (esr >> 10) & 0xf;
1235 params.CRm = (esr >> 1) & 0xf;
1236 params.Op2 = (esr >> 17) & 0x7;
1237 params.regval = vcpu_get_reg(vcpu, Rt);
1238 params.is_write = !(esr & 1);
1239
1240 ret = emulate_sys_reg(vcpu, &params);
1241
1242 if (!params.is_write)
1243 vcpu_set_reg(vcpu, Rt, params.regval);
1244 return ret;
1245 }
1246
1247 /******************************************************************************
1248 * Userspace API
1249 *****************************************************************************/
1250
1251 static bool index_to_params(u64 id, struct sys_reg_params *params)
1252 {
1253 switch (id & KVM_REG_SIZE_MASK) {
1254 case KVM_REG_SIZE_U64:
1255 /* Any unused index bits means it's not valid. */
1256 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1257 | KVM_REG_ARM_COPROC_MASK
1258 | KVM_REG_ARM64_SYSREG_OP0_MASK
1259 | KVM_REG_ARM64_SYSREG_OP1_MASK
1260 | KVM_REG_ARM64_SYSREG_CRN_MASK
1261 | KVM_REG_ARM64_SYSREG_CRM_MASK
1262 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1263 return false;
1264 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1265 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1266 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1267 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1268 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1269 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1270 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1271 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1272 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1273 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1274 return true;
1275 default:
1276 return false;
1277 }
1278 }
1279
1280 /* Decode an index value, and find the sys_reg_desc entry. */
1281 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1282 u64 id)
1283 {
1284 size_t num;
1285 const struct sys_reg_desc *table, *r;
1286 struct sys_reg_params params;
1287
1288 /* We only do sys_reg for now. */
1289 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1290 return NULL;
1291
1292 if (!index_to_params(id, &params))
1293 return NULL;
1294
1295 table = get_target_table(vcpu->arch.target, true, &num);
1296 r = find_reg(&params, table, num);
1297 if (!r)
1298 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1299
1300 /* Not saved in the sys_reg array? */
1301 if (r && !r->reg)
1302 r = NULL;
1303
1304 return r;
1305 }
1306
1307 /*
1308 * These are the invariant sys_reg registers: we let the guest see the
1309 * host versions of these, so they're part of the guest state.
1310 *
1311 * A future CPU may provide a mechanism to present different values to
1312 * the guest, or a future kvm may trap them.
1313 */
1314
1315 #define FUNCTION_INVARIANT(reg) \
1316 static void get_##reg(struct kvm_vcpu *v, \
1317 const struct sys_reg_desc *r) \
1318 { \
1319 u64 val; \
1320 \
1321 asm volatile("mrs %0, " __stringify(reg) "\n" \
1322 : "=r" (val)); \
1323 ((struct sys_reg_desc *)r)->val = val; \
1324 }
1325
1326 FUNCTION_INVARIANT(midr_el1)
1327 FUNCTION_INVARIANT(ctr_el0)
1328 FUNCTION_INVARIANT(revidr_el1)
1329 FUNCTION_INVARIANT(id_pfr0_el1)
1330 FUNCTION_INVARIANT(id_pfr1_el1)
1331 FUNCTION_INVARIANT(id_dfr0_el1)
1332 FUNCTION_INVARIANT(id_afr0_el1)
1333 FUNCTION_INVARIANT(id_mmfr0_el1)
1334 FUNCTION_INVARIANT(id_mmfr1_el1)
1335 FUNCTION_INVARIANT(id_mmfr2_el1)
1336 FUNCTION_INVARIANT(id_mmfr3_el1)
1337 FUNCTION_INVARIANT(id_isar0_el1)
1338 FUNCTION_INVARIANT(id_isar1_el1)
1339 FUNCTION_INVARIANT(id_isar2_el1)
1340 FUNCTION_INVARIANT(id_isar3_el1)
1341 FUNCTION_INVARIANT(id_isar4_el1)
1342 FUNCTION_INVARIANT(id_isar5_el1)
1343 FUNCTION_INVARIANT(clidr_el1)
1344 FUNCTION_INVARIANT(aidr_el1)
1345
1346 /* ->val is filled in by kvm_sys_reg_table_init() */
1347 static struct sys_reg_desc invariant_sys_regs[] = {
1348 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1349 NULL, get_midr_el1 },
1350 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1351 NULL, get_revidr_el1 },
1352 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1353 NULL, get_id_pfr0_el1 },
1354 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1355 NULL, get_id_pfr1_el1 },
1356 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1357 NULL, get_id_dfr0_el1 },
1358 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1359 NULL, get_id_afr0_el1 },
1360 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1361 NULL, get_id_mmfr0_el1 },
1362 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1363 NULL, get_id_mmfr1_el1 },
1364 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1365 NULL, get_id_mmfr2_el1 },
1366 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1367 NULL, get_id_mmfr3_el1 },
1368 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1369 NULL, get_id_isar0_el1 },
1370 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1371 NULL, get_id_isar1_el1 },
1372 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1373 NULL, get_id_isar2_el1 },
1374 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1375 NULL, get_id_isar3_el1 },
1376 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1377 NULL, get_id_isar4_el1 },
1378 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1379 NULL, get_id_isar5_el1 },
1380 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1381 NULL, get_clidr_el1 },
1382 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1383 NULL, get_aidr_el1 },
1384 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1385 NULL, get_ctr_el0 },
1386 };
1387
1388 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1389 {
1390 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1391 return -EFAULT;
1392 return 0;
1393 }
1394
1395 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1396 {
1397 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1398 return -EFAULT;
1399 return 0;
1400 }
1401
1402 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1403 {
1404 struct sys_reg_params params;
1405 const struct sys_reg_desc *r;
1406
1407 if (!index_to_params(id, &params))
1408 return -ENOENT;
1409
1410 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1411 if (!r)
1412 return -ENOENT;
1413
1414 return reg_to_user(uaddr, &r->val, id);
1415 }
1416
1417 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1418 {
1419 struct sys_reg_params params;
1420 const struct sys_reg_desc *r;
1421 int err;
1422 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1423
1424 if (!index_to_params(id, &params))
1425 return -ENOENT;
1426 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1427 if (!r)
1428 return -ENOENT;
1429
1430 err = reg_from_user(&val, uaddr, id);
1431 if (err)
1432 return err;
1433
1434 /* This is what we mean by invariant: you can't change it. */
1435 if (r->val != val)
1436 return -EINVAL;
1437
1438 return 0;
1439 }
1440
1441 static bool is_valid_cache(u32 val)
1442 {
1443 u32 level, ctype;
1444
1445 if (val >= CSSELR_MAX)
1446 return false;
1447
1448 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1449 level = (val >> 1);
1450 ctype = (cache_levels >> (level * 3)) & 7;
1451
1452 switch (ctype) {
1453 case 0: /* No cache */
1454 return false;
1455 case 1: /* Instruction cache only */
1456 return (val & 1);
1457 case 2: /* Data cache only */
1458 case 4: /* Unified cache */
1459 return !(val & 1);
1460 case 3: /* Separate instruction and data caches */
1461 return true;
1462 default: /* Reserved: we can't know instruction or data. */
1463 return false;
1464 }
1465 }
1466
1467 static int demux_c15_get(u64 id, void __user *uaddr)
1468 {
1469 u32 val;
1470 u32 __user *uval = uaddr;
1471
1472 /* Fail if we have unknown bits set. */
1473 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1474 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1475 return -ENOENT;
1476
1477 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1478 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1479 if (KVM_REG_SIZE(id) != 4)
1480 return -ENOENT;
1481 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1482 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1483 if (!is_valid_cache(val))
1484 return -ENOENT;
1485
1486 return put_user(get_ccsidr(val), uval);
1487 default:
1488 return -ENOENT;
1489 }
1490 }
1491
1492 static int demux_c15_set(u64 id, void __user *uaddr)
1493 {
1494 u32 val, newval;
1495 u32 __user *uval = uaddr;
1496
1497 /* Fail if we have unknown bits set. */
1498 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1499 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1500 return -ENOENT;
1501
1502 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1503 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1504 if (KVM_REG_SIZE(id) != 4)
1505 return -ENOENT;
1506 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1507 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1508 if (!is_valid_cache(val))
1509 return -ENOENT;
1510
1511 if (get_user(newval, uval))
1512 return -EFAULT;
1513
1514 /* This is also invariant: you can't change it. */
1515 if (newval != get_ccsidr(val))
1516 return -EINVAL;
1517 return 0;
1518 default:
1519 return -ENOENT;
1520 }
1521 }
1522
1523 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1524 {
1525 const struct sys_reg_desc *r;
1526 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1527
1528 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1529 return demux_c15_get(reg->id, uaddr);
1530
1531 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1532 return -ENOENT;
1533
1534 r = index_to_sys_reg_desc(vcpu, reg->id);
1535 if (!r)
1536 return get_invariant_sys_reg(reg->id, uaddr);
1537
1538 if (r->get_user)
1539 return (r->get_user)(vcpu, r, reg, uaddr);
1540
1541 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1542 }
1543
1544 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1545 {
1546 const struct sys_reg_desc *r;
1547 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1548
1549 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1550 return demux_c15_set(reg->id, uaddr);
1551
1552 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1553 return -ENOENT;
1554
1555 r = index_to_sys_reg_desc(vcpu, reg->id);
1556 if (!r)
1557 return set_invariant_sys_reg(reg->id, uaddr);
1558
1559 if (r->set_user)
1560 return (r->set_user)(vcpu, r, reg, uaddr);
1561
1562 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1563 }
1564
1565 static unsigned int num_demux_regs(void)
1566 {
1567 unsigned int i, count = 0;
1568
1569 for (i = 0; i < CSSELR_MAX; i++)
1570 if (is_valid_cache(i))
1571 count++;
1572
1573 return count;
1574 }
1575
1576 static int write_demux_regids(u64 __user *uindices)
1577 {
1578 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1579 unsigned int i;
1580
1581 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1582 for (i = 0; i < CSSELR_MAX; i++) {
1583 if (!is_valid_cache(i))
1584 continue;
1585 if (put_user(val | i, uindices))
1586 return -EFAULT;
1587 uindices++;
1588 }
1589 return 0;
1590 }
1591
1592 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1593 {
1594 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1595 KVM_REG_ARM64_SYSREG |
1596 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1597 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1598 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1599 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1600 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1601 }
1602
1603 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1604 {
1605 if (!*uind)
1606 return true;
1607
1608 if (put_user(sys_reg_to_index(reg), *uind))
1609 return false;
1610
1611 (*uind)++;
1612 return true;
1613 }
1614
1615 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1616 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1617 {
1618 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1619 unsigned int total = 0;
1620 size_t num;
1621
1622 /* We check for duplicates here, to allow arch-specific overrides. */
1623 i1 = get_target_table(vcpu->arch.target, true, &num);
1624 end1 = i1 + num;
1625 i2 = sys_reg_descs;
1626 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1627
1628 BUG_ON(i1 == end1 || i2 == end2);
1629
1630 /* Walk carefully, as both tables may refer to the same register. */
1631 while (i1 || i2) {
1632 int cmp = cmp_sys_reg(i1, i2);
1633 /* target-specific overrides generic entry. */
1634 if (cmp <= 0) {
1635 /* Ignore registers we trap but don't save. */
1636 if (i1->reg) {
1637 if (!copy_reg_to_user(i1, &uind))
1638 return -EFAULT;
1639 total++;
1640 }
1641 } else {
1642 /* Ignore registers we trap but don't save. */
1643 if (i2->reg) {
1644 if (!copy_reg_to_user(i2, &uind))
1645 return -EFAULT;
1646 total++;
1647 }
1648 }
1649
1650 if (cmp <= 0 && ++i1 == end1)
1651 i1 = NULL;
1652 if (cmp >= 0 && ++i2 == end2)
1653 i2 = NULL;
1654 }
1655 return total;
1656 }
1657
1658 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1659 {
1660 return ARRAY_SIZE(invariant_sys_regs)
1661 + num_demux_regs()
1662 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1663 }
1664
1665 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1666 {
1667 unsigned int i;
1668 int err;
1669
1670 /* Then give them all the invariant registers' indices. */
1671 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1672 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1673 return -EFAULT;
1674 uindices++;
1675 }
1676
1677 err = walk_sys_regs(vcpu, uindices);
1678 if (err < 0)
1679 return err;
1680 uindices += err;
1681
1682 return write_demux_regids(uindices);
1683 }
1684
1685 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1686 {
1687 unsigned int i;
1688
1689 for (i = 1; i < n; i++) {
1690 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1691 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1692 return 1;
1693 }
1694 }
1695
1696 return 0;
1697 }
1698
1699 void kvm_sys_reg_table_init(void)
1700 {
1701 unsigned int i;
1702 struct sys_reg_desc clidr;
1703
1704 /* Make sure tables are unique and in order. */
1705 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1706 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1707 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1708 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1709 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1710 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1711
1712 /* We abuse the reset function to overwrite the table itself. */
1713 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1714 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1715
1716 /*
1717 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1718 *
1719 * If software reads the Cache Type fields from Ctype1
1720 * upwards, once it has seen a value of 0b000, no caches
1721 * exist at further-out levels of the hierarchy. So, for
1722 * example, if Ctype3 is the first Cache Type field with a
1723 * value of 0b000, the values of Ctype4 to Ctype7 must be
1724 * ignored.
1725 */
1726 get_clidr_el1(NULL, &clidr); /* Ugly... */
1727 cache_levels = clidr.val;
1728 for (i = 0; i < 7; i++)
1729 if (((cache_levels >> (i*3)) & 7) == 0)
1730 break;
1731 /* Clear all higher bits. */
1732 cache_levels &= (1 << (i*3))-1;
1733 }
1734
1735 /**
1736 * kvm_reset_sys_regs - sets system registers to reset value
1737 * @vcpu: The VCPU pointer
1738 *
1739 * This function finds the right table above and sets the registers on the
1740 * virtual CPU struct to their architecturally defined reset values.
1741 */
1742 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1743 {
1744 size_t num;
1745 const struct sys_reg_desc *table;
1746
1747 /* Catch someone adding a register without putting in reset entry. */
1748 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1749
1750 /* Generic chip reset first (so target could override). */
1751 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1752
1753 table = get_target_table(vcpu->arch.target, true, &num);
1754 reset_sys_reg_descs(vcpu, table, num);
1755
1756 for (num = 1; num < NR_SYS_REGS; num++)
1757 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1758 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1759 }