]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm64/mm/dma-mapping.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/memblock.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-noncoherent.h>
29 #include <linux/dma-contiguous.h>
30 #include <linux/vmalloc.h>
31 #include <linux/swiotlb.h>
32 #include <linux/pci.h>
33
34 #include <asm/cacheflush.h>
35
36 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
37 unsigned long attrs)
38 {
39 if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
40 return pgprot_writecombine(prot);
41 return prot;
42 }
43
44 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
45 size_t size, enum dma_data_direction dir)
46 {
47 __dma_map_area(phys_to_virt(paddr), size, dir);
48 }
49
50 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
51 size_t size, enum dma_data_direction dir)
52 {
53 __dma_unmap_area(phys_to_virt(paddr), size, dir);
54 }
55
56 void arch_dma_prep_coherent(struct page *page, size_t size)
57 {
58 __dma_flush_area(page_address(page), size);
59 }
60
61 #ifdef CONFIG_IOMMU_DMA
62 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
63 struct page *page, size_t size)
64 {
65 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
66
67 if (!ret)
68 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
69
70 return ret;
71 }
72
73 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
74 unsigned long pfn, size_t size)
75 {
76 int ret = -ENXIO;
77 unsigned long nr_vma_pages = vma_pages(vma);
78 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
79 unsigned long off = vma->vm_pgoff;
80
81 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
82 ret = remap_pfn_range(vma, vma->vm_start,
83 pfn + off,
84 vma->vm_end - vma->vm_start,
85 vma->vm_page_prot);
86 }
87
88 return ret;
89 }
90 #endif /* CONFIG_IOMMU_DMA */
91
92 static int __init arm64_dma_init(void)
93 {
94 WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
95 TAINT_CPU_OUT_OF_SPEC,
96 "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
97 ARCH_DMA_MINALIGN, cache_line_size());
98 return dma_atomic_pool_init(GFP_DMA32, __pgprot(PROT_NORMAL_NC));
99 }
100 arch_initcall(arm64_dma_init);
101
102 #ifdef CONFIG_IOMMU_DMA
103 #include <linux/dma-iommu.h>
104 #include <linux/platform_device.h>
105 #include <linux/amba/bus.h>
106
107 /* Thankfully, all cache ops are by VA so we can ignore phys here */
108 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
109 {
110 __dma_flush_area(virt, PAGE_SIZE);
111 }
112
113 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
114 dma_addr_t *handle, gfp_t gfp,
115 unsigned long attrs)
116 {
117 bool coherent = dev_is_dma_coherent(dev);
118 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
119 size_t iosize = size;
120 void *addr;
121
122 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
123 return NULL;
124
125 size = PAGE_ALIGN(size);
126
127 /*
128 * Some drivers rely on this, and we probably don't want the
129 * possibility of stale kernel data being read by devices anyway.
130 */
131 gfp |= __GFP_ZERO;
132
133 if (!gfpflags_allow_blocking(gfp)) {
134 struct page *page;
135 /*
136 * In atomic context we can't remap anything, so we'll only
137 * get the virtually contiguous buffer we need by way of a
138 * physically contiguous allocation.
139 */
140 if (coherent) {
141 page = alloc_pages(gfp, get_order(size));
142 addr = page ? page_address(page) : NULL;
143 } else {
144 addr = dma_alloc_from_pool(size, &page, gfp);
145 }
146 if (!addr)
147 return NULL;
148
149 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
150 if (*handle == DMA_MAPPING_ERROR) {
151 if (coherent)
152 __free_pages(page, get_order(size));
153 else
154 dma_free_from_pool(addr, size);
155 addr = NULL;
156 }
157 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
158 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
159 struct page *page;
160
161 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
162 get_order(size), gfp & __GFP_NOWARN);
163 if (!page)
164 return NULL;
165
166 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
167 if (*handle == DMA_MAPPING_ERROR) {
168 dma_release_from_contiguous(dev, page,
169 size >> PAGE_SHIFT);
170 return NULL;
171 }
172 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
173 prot,
174 __builtin_return_address(0));
175 if (addr) {
176 if (!coherent)
177 __dma_flush_area(page_to_virt(page), iosize);
178 memset(addr, 0, size);
179 } else {
180 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
181 dma_release_from_contiguous(dev, page,
182 size >> PAGE_SHIFT);
183 }
184 } else {
185 pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
186 struct page **pages;
187
188 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
189 handle, flush_page);
190 if (!pages)
191 return NULL;
192
193 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
194 __builtin_return_address(0));
195 if (!addr)
196 iommu_dma_free(dev, pages, iosize, handle);
197 }
198 return addr;
199 }
200
201 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
202 dma_addr_t handle, unsigned long attrs)
203 {
204 size_t iosize = size;
205
206 size = PAGE_ALIGN(size);
207 /*
208 * @cpu_addr will be one of 4 things depending on how it was allocated:
209 * - A remapped array of pages for contiguous allocations.
210 * - A remapped array of pages from iommu_dma_alloc(), for all
211 * non-atomic allocations.
212 * - A non-cacheable alias from the atomic pool, for atomic
213 * allocations by non-coherent devices.
214 * - A normal lowmem address, for atomic allocations by
215 * coherent devices.
216 * Hence how dodgy the below logic looks...
217 */
218 if (dma_in_atomic_pool(cpu_addr, size)) {
219 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
220 dma_free_from_pool(cpu_addr, size);
221 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
222 struct page *page = vmalloc_to_page(cpu_addr);
223
224 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
225 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
226 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
227 } else if (is_vmalloc_addr(cpu_addr)){
228 struct vm_struct *area = find_vm_area(cpu_addr);
229
230 if (WARN_ON(!area || !area->pages))
231 return;
232 iommu_dma_free(dev, area->pages, iosize, &handle);
233 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
234 } else {
235 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
236 __free_pages(virt_to_page(cpu_addr), get_order(size));
237 }
238 }
239
240 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
241 void *cpu_addr, dma_addr_t dma_addr, size_t size,
242 unsigned long attrs)
243 {
244 struct vm_struct *area;
245 int ret;
246
247 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
248
249 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
250 return ret;
251
252 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
253 /*
254 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
255 * hence in the vmalloc space.
256 */
257 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
258 return __swiotlb_mmap_pfn(vma, pfn, size);
259 }
260
261 area = find_vm_area(cpu_addr);
262 if (WARN_ON(!area || !area->pages))
263 return -ENXIO;
264
265 return iommu_dma_mmap(area->pages, size, vma);
266 }
267
268 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
269 void *cpu_addr, dma_addr_t dma_addr,
270 size_t size, unsigned long attrs)
271 {
272 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
273 struct vm_struct *area = find_vm_area(cpu_addr);
274
275 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
276 /*
277 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
278 * hence in the vmalloc space.
279 */
280 struct page *page = vmalloc_to_page(cpu_addr);
281 return __swiotlb_get_sgtable_page(sgt, page, size);
282 }
283
284 if (WARN_ON(!area || !area->pages))
285 return -ENXIO;
286
287 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
288 GFP_KERNEL);
289 }
290
291 static void __iommu_sync_single_for_cpu(struct device *dev,
292 dma_addr_t dev_addr, size_t size,
293 enum dma_data_direction dir)
294 {
295 phys_addr_t phys;
296
297 if (dev_is_dma_coherent(dev))
298 return;
299
300 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
301 arch_sync_dma_for_cpu(dev, phys, size, dir);
302 }
303
304 static void __iommu_sync_single_for_device(struct device *dev,
305 dma_addr_t dev_addr, size_t size,
306 enum dma_data_direction dir)
307 {
308 phys_addr_t phys;
309
310 if (dev_is_dma_coherent(dev))
311 return;
312
313 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
314 arch_sync_dma_for_device(dev, phys, size, dir);
315 }
316
317 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
318 unsigned long offset, size_t size,
319 enum dma_data_direction dir,
320 unsigned long attrs)
321 {
322 bool coherent = dev_is_dma_coherent(dev);
323 int prot = dma_info_to_prot(dir, coherent, attrs);
324 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
325
326 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
327 dev_addr != DMA_MAPPING_ERROR)
328 __dma_map_area(page_address(page) + offset, size, dir);
329
330 return dev_addr;
331 }
332
333 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
334 size_t size, enum dma_data_direction dir,
335 unsigned long attrs)
336 {
337 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
338 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
339
340 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
341 }
342
343 static void __iommu_sync_sg_for_cpu(struct device *dev,
344 struct scatterlist *sgl, int nelems,
345 enum dma_data_direction dir)
346 {
347 struct scatterlist *sg;
348 int i;
349
350 if (dev_is_dma_coherent(dev))
351 return;
352
353 for_each_sg(sgl, sg, nelems, i)
354 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
355 }
356
357 static void __iommu_sync_sg_for_device(struct device *dev,
358 struct scatterlist *sgl, int nelems,
359 enum dma_data_direction dir)
360 {
361 struct scatterlist *sg;
362 int i;
363
364 if (dev_is_dma_coherent(dev))
365 return;
366
367 for_each_sg(sgl, sg, nelems, i)
368 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
369 }
370
371 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
372 int nelems, enum dma_data_direction dir,
373 unsigned long attrs)
374 {
375 bool coherent = dev_is_dma_coherent(dev);
376
377 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
378 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
379
380 return iommu_dma_map_sg(dev, sgl, nelems,
381 dma_info_to_prot(dir, coherent, attrs));
382 }
383
384 static void __iommu_unmap_sg_attrs(struct device *dev,
385 struct scatterlist *sgl, int nelems,
386 enum dma_data_direction dir,
387 unsigned long attrs)
388 {
389 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
390 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
391
392 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
393 }
394
395 static const struct dma_map_ops iommu_dma_ops = {
396 .alloc = __iommu_alloc_attrs,
397 .free = __iommu_free_attrs,
398 .mmap = __iommu_mmap_attrs,
399 .get_sgtable = __iommu_get_sgtable,
400 .map_page = __iommu_map_page,
401 .unmap_page = __iommu_unmap_page,
402 .map_sg = __iommu_map_sg_attrs,
403 .unmap_sg = __iommu_unmap_sg_attrs,
404 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
405 .sync_single_for_device = __iommu_sync_single_for_device,
406 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
407 .sync_sg_for_device = __iommu_sync_sg_for_device,
408 .map_resource = iommu_dma_map_resource,
409 .unmap_resource = iommu_dma_unmap_resource,
410 };
411
412 static int __init __iommu_dma_init(void)
413 {
414 return iommu_dma_init();
415 }
416 arch_initcall(__iommu_dma_init);
417
418 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
419 const struct iommu_ops *ops)
420 {
421 struct iommu_domain *domain;
422
423 if (!ops)
424 return;
425
426 /*
427 * The IOMMU core code allocates the default DMA domain, which the
428 * underlying IOMMU driver needs to support via the dma-iommu layer.
429 */
430 domain = iommu_get_domain_for_dev(dev);
431
432 if (!domain)
433 goto out_err;
434
435 if (domain->type == IOMMU_DOMAIN_DMA) {
436 if (iommu_dma_init_domain(domain, dma_base, size, dev))
437 goto out_err;
438
439 dev->dma_ops = &iommu_dma_ops;
440 }
441
442 return;
443
444 out_err:
445 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
446 dev_name(dev));
447 }
448
449 void arch_teardown_dma_ops(struct device *dev)
450 {
451 dev->dma_ops = NULL;
452 }
453
454 #else
455
456 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
457 const struct iommu_ops *iommu)
458 { }
459
460 #endif /* CONFIG_IOMMU_DMA */
461
462 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
463 const struct iommu_ops *iommu, bool coherent)
464 {
465 dev->dma_coherent = coherent;
466 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
467
468 #ifdef CONFIG_XEN
469 if (xen_initial_domain())
470 dev->dma_ops = xen_dma_ops;
471 #endif
472 }