]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/mm/dma-mapping.c
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and...
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/vmalloc.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/cacheflush.h>
30
31 struct dma_map_ops *dma_ops;
32 EXPORT_SYMBOL(dma_ops);
33
34 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
35 bool coherent)
36 {
37 if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
38 return pgprot_writecombine(prot);
39 return prot;
40 }
41
42 static struct gen_pool *atomic_pool;
43
44 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
45 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
46
47 static int __init early_coherent_pool(char *p)
48 {
49 atomic_pool_size = memparse(p, &p);
50 return 0;
51 }
52 early_param("coherent_pool", early_coherent_pool);
53
54 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
55 {
56 unsigned long val;
57 void *ptr = NULL;
58
59 if (!atomic_pool) {
60 WARN(1, "coherent pool not initialised!\n");
61 return NULL;
62 }
63
64 val = gen_pool_alloc(atomic_pool, size);
65 if (val) {
66 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
67
68 *ret_page = phys_to_page(phys);
69 ptr = (void *)val;
70 memset(ptr, 0, size);
71 }
72
73 return ptr;
74 }
75
76 static bool __in_atomic_pool(void *start, size_t size)
77 {
78 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
79 }
80
81 static int __free_from_pool(void *start, size_t size)
82 {
83 if (!__in_atomic_pool(start, size))
84 return 0;
85
86 gen_pool_free(atomic_pool, (unsigned long)start, size);
87
88 return 1;
89 }
90
91 static void *__dma_alloc_coherent(struct device *dev, size_t size,
92 dma_addr_t *dma_handle, gfp_t flags,
93 struct dma_attrs *attrs)
94 {
95 if (dev == NULL) {
96 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
97 return NULL;
98 }
99
100 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
101 dev->coherent_dma_mask <= DMA_BIT_MASK(32))
102 flags |= GFP_DMA;
103 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
104 struct page *page;
105 void *addr;
106
107 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
108 get_order(size));
109 if (!page)
110 return NULL;
111
112 *dma_handle = phys_to_dma(dev, page_to_phys(page));
113 addr = page_address(page);
114 memset(addr, 0, size);
115 return addr;
116 } else {
117 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
118 }
119 }
120
121 static void __dma_free_coherent(struct device *dev, size_t size,
122 void *vaddr, dma_addr_t dma_handle,
123 struct dma_attrs *attrs)
124 {
125 bool freed;
126 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
127
128 if (dev == NULL) {
129 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
130 return;
131 }
132
133 freed = dma_release_from_contiguous(dev,
134 phys_to_page(paddr),
135 size >> PAGE_SHIFT);
136 if (!freed)
137 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
138 }
139
140 static void *__dma_alloc(struct device *dev, size_t size,
141 dma_addr_t *dma_handle, gfp_t flags,
142 struct dma_attrs *attrs)
143 {
144 struct page *page;
145 void *ptr, *coherent_ptr;
146 bool coherent = is_device_dma_coherent(dev);
147 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
148
149 size = PAGE_ALIGN(size);
150
151 if (!coherent && !gfpflags_allow_blocking(flags)) {
152 struct page *page = NULL;
153 void *addr = __alloc_from_pool(size, &page, flags);
154
155 if (addr)
156 *dma_handle = phys_to_dma(dev, page_to_phys(page));
157
158 return addr;
159 }
160
161 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
162 if (!ptr)
163 goto no_mem;
164
165 /* no need for non-cacheable mapping if coherent */
166 if (coherent)
167 return ptr;
168
169 /* remove any dirty cache lines on the kernel alias */
170 __dma_flush_range(ptr, ptr + size);
171
172 /* create a coherent mapping */
173 page = virt_to_page(ptr);
174 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
175 prot, NULL);
176 if (!coherent_ptr)
177 goto no_map;
178
179 return coherent_ptr;
180
181 no_map:
182 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
183 no_mem:
184 *dma_handle = DMA_ERROR_CODE;
185 return NULL;
186 }
187
188 static void __dma_free(struct device *dev, size_t size,
189 void *vaddr, dma_addr_t dma_handle,
190 struct dma_attrs *attrs)
191 {
192 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
193
194 size = PAGE_ALIGN(size);
195
196 if (!is_device_dma_coherent(dev)) {
197 if (__free_from_pool(vaddr, size))
198 return;
199 vunmap(vaddr);
200 }
201 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
202 }
203
204 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
205 unsigned long offset, size_t size,
206 enum dma_data_direction dir,
207 struct dma_attrs *attrs)
208 {
209 dma_addr_t dev_addr;
210
211 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
212 if (!is_device_dma_coherent(dev))
213 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
214
215 return dev_addr;
216 }
217
218
219 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
220 size_t size, enum dma_data_direction dir,
221 struct dma_attrs *attrs)
222 {
223 if (!is_device_dma_coherent(dev))
224 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
225 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
226 }
227
228 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
229 int nelems, enum dma_data_direction dir,
230 struct dma_attrs *attrs)
231 {
232 struct scatterlist *sg;
233 int i, ret;
234
235 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
236 if (!is_device_dma_coherent(dev))
237 for_each_sg(sgl, sg, ret, i)
238 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
239 sg->length, dir);
240
241 return ret;
242 }
243
244 static void __swiotlb_unmap_sg_attrs(struct device *dev,
245 struct scatterlist *sgl, int nelems,
246 enum dma_data_direction dir,
247 struct dma_attrs *attrs)
248 {
249 struct scatterlist *sg;
250 int i;
251
252 if (!is_device_dma_coherent(dev))
253 for_each_sg(sgl, sg, nelems, i)
254 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
255 sg->length, dir);
256 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
257 }
258
259 static void __swiotlb_sync_single_for_cpu(struct device *dev,
260 dma_addr_t dev_addr, size_t size,
261 enum dma_data_direction dir)
262 {
263 if (!is_device_dma_coherent(dev))
264 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
265 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
266 }
267
268 static void __swiotlb_sync_single_for_device(struct device *dev,
269 dma_addr_t dev_addr, size_t size,
270 enum dma_data_direction dir)
271 {
272 swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
273 if (!is_device_dma_coherent(dev))
274 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
275 }
276
277 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
278 struct scatterlist *sgl, int nelems,
279 enum dma_data_direction dir)
280 {
281 struct scatterlist *sg;
282 int i;
283
284 if (!is_device_dma_coherent(dev))
285 for_each_sg(sgl, sg, nelems, i)
286 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
287 sg->length, dir);
288 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
289 }
290
291 static void __swiotlb_sync_sg_for_device(struct device *dev,
292 struct scatterlist *sgl, int nelems,
293 enum dma_data_direction dir)
294 {
295 struct scatterlist *sg;
296 int i;
297
298 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
299 if (!is_device_dma_coherent(dev))
300 for_each_sg(sgl, sg, nelems, i)
301 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
302 sg->length, dir);
303 }
304
305 static int __swiotlb_mmap(struct device *dev,
306 struct vm_area_struct *vma,
307 void *cpu_addr, dma_addr_t dma_addr, size_t size,
308 struct dma_attrs *attrs)
309 {
310 int ret = -ENXIO;
311 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
312 PAGE_SHIFT;
313 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
314 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
315 unsigned long off = vma->vm_pgoff;
316
317 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
318 is_device_dma_coherent(dev));
319
320 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
321 return ret;
322
323 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
324 ret = remap_pfn_range(vma, vma->vm_start,
325 pfn + off,
326 vma->vm_end - vma->vm_start,
327 vma->vm_page_prot);
328 }
329
330 return ret;
331 }
332
333 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
334 void *cpu_addr, dma_addr_t handle, size_t size,
335 struct dma_attrs *attrs)
336 {
337 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
338
339 if (!ret)
340 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
341 PAGE_ALIGN(size), 0);
342
343 return ret;
344 }
345
346 static struct dma_map_ops swiotlb_dma_ops = {
347 .alloc = __dma_alloc,
348 .free = __dma_free,
349 .mmap = __swiotlb_mmap,
350 .get_sgtable = __swiotlb_get_sgtable,
351 .map_page = __swiotlb_map_page,
352 .unmap_page = __swiotlb_unmap_page,
353 .map_sg = __swiotlb_map_sg_attrs,
354 .unmap_sg = __swiotlb_unmap_sg_attrs,
355 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
356 .sync_single_for_device = __swiotlb_sync_single_for_device,
357 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
358 .sync_sg_for_device = __swiotlb_sync_sg_for_device,
359 .dma_supported = swiotlb_dma_supported,
360 .mapping_error = swiotlb_dma_mapping_error,
361 };
362
363 static int __init atomic_pool_init(void)
364 {
365 pgprot_t prot = __pgprot(PROT_NORMAL_NC);
366 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
367 struct page *page;
368 void *addr;
369 unsigned int pool_size_order = get_order(atomic_pool_size);
370
371 if (dev_get_cma_area(NULL))
372 page = dma_alloc_from_contiguous(NULL, nr_pages,
373 pool_size_order);
374 else
375 page = alloc_pages(GFP_DMA, pool_size_order);
376
377 if (page) {
378 int ret;
379 void *page_addr = page_address(page);
380
381 memset(page_addr, 0, atomic_pool_size);
382 __dma_flush_range(page_addr, page_addr + atomic_pool_size);
383
384 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
385 if (!atomic_pool)
386 goto free_page;
387
388 addr = dma_common_contiguous_remap(page, atomic_pool_size,
389 VM_USERMAP, prot, atomic_pool_init);
390
391 if (!addr)
392 goto destroy_genpool;
393
394 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
395 page_to_phys(page),
396 atomic_pool_size, -1);
397 if (ret)
398 goto remove_mapping;
399
400 gen_pool_set_algo(atomic_pool,
401 gen_pool_first_fit_order_align,
402 (void *)PAGE_SHIFT);
403
404 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
405 atomic_pool_size / 1024);
406 return 0;
407 }
408 goto out;
409
410 remove_mapping:
411 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
412 destroy_genpool:
413 gen_pool_destroy(atomic_pool);
414 atomic_pool = NULL;
415 free_page:
416 if (!dma_release_from_contiguous(NULL, page, nr_pages))
417 __free_pages(page, pool_size_order);
418 out:
419 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
420 atomic_pool_size / 1024);
421 return -ENOMEM;
422 }
423
424 /********************************************
425 * The following APIs are for dummy DMA ops *
426 ********************************************/
427
428 static void *__dummy_alloc(struct device *dev, size_t size,
429 dma_addr_t *dma_handle, gfp_t flags,
430 struct dma_attrs *attrs)
431 {
432 return NULL;
433 }
434
435 static void __dummy_free(struct device *dev, size_t size,
436 void *vaddr, dma_addr_t dma_handle,
437 struct dma_attrs *attrs)
438 {
439 }
440
441 static int __dummy_mmap(struct device *dev,
442 struct vm_area_struct *vma,
443 void *cpu_addr, dma_addr_t dma_addr, size_t size,
444 struct dma_attrs *attrs)
445 {
446 return -ENXIO;
447 }
448
449 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
450 unsigned long offset, size_t size,
451 enum dma_data_direction dir,
452 struct dma_attrs *attrs)
453 {
454 return DMA_ERROR_CODE;
455 }
456
457 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
458 size_t size, enum dma_data_direction dir,
459 struct dma_attrs *attrs)
460 {
461 }
462
463 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
464 int nelems, enum dma_data_direction dir,
465 struct dma_attrs *attrs)
466 {
467 return 0;
468 }
469
470 static void __dummy_unmap_sg(struct device *dev,
471 struct scatterlist *sgl, int nelems,
472 enum dma_data_direction dir,
473 struct dma_attrs *attrs)
474 {
475 }
476
477 static void __dummy_sync_single(struct device *dev,
478 dma_addr_t dev_addr, size_t size,
479 enum dma_data_direction dir)
480 {
481 }
482
483 static void __dummy_sync_sg(struct device *dev,
484 struct scatterlist *sgl, int nelems,
485 enum dma_data_direction dir)
486 {
487 }
488
489 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
490 {
491 return 1;
492 }
493
494 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
495 {
496 return 0;
497 }
498
499 struct dma_map_ops dummy_dma_ops = {
500 .alloc = __dummy_alloc,
501 .free = __dummy_free,
502 .mmap = __dummy_mmap,
503 .map_page = __dummy_map_page,
504 .unmap_page = __dummy_unmap_page,
505 .map_sg = __dummy_map_sg,
506 .unmap_sg = __dummy_unmap_sg,
507 .sync_single_for_cpu = __dummy_sync_single,
508 .sync_single_for_device = __dummy_sync_single,
509 .sync_sg_for_cpu = __dummy_sync_sg,
510 .sync_sg_for_device = __dummy_sync_sg,
511 .mapping_error = __dummy_mapping_error,
512 .dma_supported = __dummy_dma_supported,
513 };
514 EXPORT_SYMBOL(dummy_dma_ops);
515
516 static int __init arm64_dma_init(void)
517 {
518 int ret;
519
520 dma_ops = &swiotlb_dma_ops;
521
522 ret = atomic_pool_init();
523
524 return ret;
525 }
526 arch_initcall(arm64_dma_init);
527
528 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
529
530 static int __init dma_debug_do_init(void)
531 {
532 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
533 return 0;
534 }
535 fs_initcall(dma_debug_do_init);
536
537
538 #ifdef CONFIG_IOMMU_DMA
539 #include <linux/dma-iommu.h>
540 #include <linux/platform_device.h>
541 #include <linux/amba/bus.h>
542
543 /* Thankfully, all cache ops are by VA so we can ignore phys here */
544 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
545 {
546 __dma_flush_range(virt, virt + PAGE_SIZE);
547 }
548
549 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
550 dma_addr_t *handle, gfp_t gfp,
551 struct dma_attrs *attrs)
552 {
553 bool coherent = is_device_dma_coherent(dev);
554 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
555 void *addr;
556
557 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
558 return NULL;
559 /*
560 * Some drivers rely on this, and we probably don't want the
561 * possibility of stale kernel data being read by devices anyway.
562 */
563 gfp |= __GFP_ZERO;
564
565 if (gfp & __GFP_WAIT) {
566 struct page **pages;
567 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
568
569 pages = iommu_dma_alloc(dev, size, gfp, ioprot, handle,
570 flush_page);
571 if (!pages)
572 return NULL;
573
574 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
575 __builtin_return_address(0));
576 if (!addr)
577 iommu_dma_free(dev, pages, size, handle);
578 } else {
579 struct page *page;
580 /*
581 * In atomic context we can't remap anything, so we'll only
582 * get the virtually contiguous buffer we need by way of a
583 * physically contiguous allocation.
584 */
585 if (coherent) {
586 page = alloc_pages(gfp, get_order(size));
587 addr = page ? page_address(page) : NULL;
588 } else {
589 addr = __alloc_from_pool(size, &page, gfp);
590 }
591 if (!addr)
592 return NULL;
593
594 *handle = iommu_dma_map_page(dev, page, 0, size, ioprot);
595 if (iommu_dma_mapping_error(dev, *handle)) {
596 if (coherent)
597 __free_pages(page, get_order(size));
598 else
599 __free_from_pool(addr, size);
600 addr = NULL;
601 }
602 }
603 return addr;
604 }
605
606 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
607 dma_addr_t handle, struct dma_attrs *attrs)
608 {
609 /*
610 * @cpu_addr will be one of 3 things depending on how it was allocated:
611 * - A remapped array of pages from iommu_dma_alloc(), for all
612 * non-atomic allocations.
613 * - A non-cacheable alias from the atomic pool, for atomic
614 * allocations by non-coherent devices.
615 * - A normal lowmem address, for atomic allocations by
616 * coherent devices.
617 * Hence how dodgy the below logic looks...
618 */
619 if (__in_atomic_pool(cpu_addr, size)) {
620 iommu_dma_unmap_page(dev, handle, size, 0, NULL);
621 __free_from_pool(cpu_addr, size);
622 } else if (is_vmalloc_addr(cpu_addr)){
623 struct vm_struct *area = find_vm_area(cpu_addr);
624
625 if (WARN_ON(!area || !area->pages))
626 return;
627 iommu_dma_free(dev, area->pages, size, &handle);
628 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
629 } else {
630 iommu_dma_unmap_page(dev, handle, size, 0, NULL);
631 __free_pages(virt_to_page(cpu_addr), get_order(size));
632 }
633 }
634
635 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
636 void *cpu_addr, dma_addr_t dma_addr, size_t size,
637 struct dma_attrs *attrs)
638 {
639 struct vm_struct *area;
640 int ret;
641
642 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
643 is_device_dma_coherent(dev));
644
645 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
646 return ret;
647
648 area = find_vm_area(cpu_addr);
649 if (WARN_ON(!area || !area->pages))
650 return -ENXIO;
651
652 return iommu_dma_mmap(area->pages, size, vma);
653 }
654
655 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
656 void *cpu_addr, dma_addr_t dma_addr,
657 size_t size, struct dma_attrs *attrs)
658 {
659 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
660 struct vm_struct *area = find_vm_area(cpu_addr);
661
662 if (WARN_ON(!area || !area->pages))
663 return -ENXIO;
664
665 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
666 GFP_KERNEL);
667 }
668
669 static void __iommu_sync_single_for_cpu(struct device *dev,
670 dma_addr_t dev_addr, size_t size,
671 enum dma_data_direction dir)
672 {
673 phys_addr_t phys;
674
675 if (is_device_dma_coherent(dev))
676 return;
677
678 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
679 __dma_unmap_area(phys_to_virt(phys), size, dir);
680 }
681
682 static void __iommu_sync_single_for_device(struct device *dev,
683 dma_addr_t dev_addr, size_t size,
684 enum dma_data_direction dir)
685 {
686 phys_addr_t phys;
687
688 if (is_device_dma_coherent(dev))
689 return;
690
691 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
692 __dma_map_area(phys_to_virt(phys), size, dir);
693 }
694
695 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
696 unsigned long offset, size_t size,
697 enum dma_data_direction dir,
698 struct dma_attrs *attrs)
699 {
700 bool coherent = is_device_dma_coherent(dev);
701 int prot = dma_direction_to_prot(dir, coherent);
702 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
703
704 if (!iommu_dma_mapping_error(dev, dev_addr) &&
705 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
706 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
707
708 return dev_addr;
709 }
710
711 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
712 size_t size, enum dma_data_direction dir,
713 struct dma_attrs *attrs)
714 {
715 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
716 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
717
718 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
719 }
720
721 static void __iommu_sync_sg_for_cpu(struct device *dev,
722 struct scatterlist *sgl, int nelems,
723 enum dma_data_direction dir)
724 {
725 struct scatterlist *sg;
726 int i;
727
728 if (is_device_dma_coherent(dev))
729 return;
730
731 for_each_sg(sgl, sg, nelems, i)
732 __dma_unmap_area(sg_virt(sg), sg->length, dir);
733 }
734
735 static void __iommu_sync_sg_for_device(struct device *dev,
736 struct scatterlist *sgl, int nelems,
737 enum dma_data_direction dir)
738 {
739 struct scatterlist *sg;
740 int i;
741
742 if (is_device_dma_coherent(dev))
743 return;
744
745 for_each_sg(sgl, sg, nelems, i)
746 __dma_map_area(sg_virt(sg), sg->length, dir);
747 }
748
749 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
750 int nelems, enum dma_data_direction dir,
751 struct dma_attrs *attrs)
752 {
753 bool coherent = is_device_dma_coherent(dev);
754
755 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
756 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
757
758 return iommu_dma_map_sg(dev, sgl, nelems,
759 dma_direction_to_prot(dir, coherent));
760 }
761
762 static void __iommu_unmap_sg_attrs(struct device *dev,
763 struct scatterlist *sgl, int nelems,
764 enum dma_data_direction dir,
765 struct dma_attrs *attrs)
766 {
767 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
768 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
769
770 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
771 }
772
773 static struct dma_map_ops iommu_dma_ops = {
774 .alloc = __iommu_alloc_attrs,
775 .free = __iommu_free_attrs,
776 .mmap = __iommu_mmap_attrs,
777 .get_sgtable = __iommu_get_sgtable,
778 .map_page = __iommu_map_page,
779 .unmap_page = __iommu_unmap_page,
780 .map_sg = __iommu_map_sg_attrs,
781 .unmap_sg = __iommu_unmap_sg_attrs,
782 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
783 .sync_single_for_device = __iommu_sync_single_for_device,
784 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
785 .sync_sg_for_device = __iommu_sync_sg_for_device,
786 .dma_supported = iommu_dma_supported,
787 .mapping_error = iommu_dma_mapping_error,
788 };
789
790 /*
791 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
792 * everything it needs to - the device is only partially created and the
793 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
794 * need this delayed attachment dance. Once IOMMU probe ordering is sorted
795 * to move the arch_setup_dma_ops() call later, all the notifier bits below
796 * become unnecessary, and will go away.
797 */
798 struct iommu_dma_notifier_data {
799 struct list_head list;
800 struct device *dev;
801 const struct iommu_ops *ops;
802 u64 dma_base;
803 u64 size;
804 };
805 static LIST_HEAD(iommu_dma_masters);
806 static DEFINE_MUTEX(iommu_dma_notifier_lock);
807
808 /*
809 * Temporarily "borrow" a domain feature flag to to tell if we had to resort
810 * to creating our own domain here, in case we need to clean it up again.
811 */
812 #define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31)
813
814 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
815 u64 dma_base, u64 size)
816 {
817 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
818
819 /*
820 * Best case: The device is either part of a group which was
821 * already attached to a domain in a previous call, or it's
822 * been put in a default DMA domain by the IOMMU core.
823 */
824 if (!domain) {
825 /*
826 * Urgh. The IOMMU core isn't going to do default domains
827 * for non-PCI devices anyway, until it has some means of
828 * abstracting the entirely implementation-specific
829 * sideband data/SoC topology/unicorn dust that may or
830 * may not differentiate upstream masters.
831 * So until then, HORRIBLE HACKS!
832 */
833 domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
834 if (!domain)
835 goto out_no_domain;
836
837 domain->ops = ops;
838 domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
839
840 if (iommu_attach_device(domain, dev))
841 goto out_put_domain;
842 }
843
844 if (iommu_dma_init_domain(domain, dma_base, size))
845 goto out_detach;
846
847 dev->archdata.dma_ops = &iommu_dma_ops;
848 return true;
849
850 out_detach:
851 iommu_detach_device(domain, dev);
852 out_put_domain:
853 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
854 iommu_domain_free(domain);
855 out_no_domain:
856 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
857 dev_name(dev));
858 return false;
859 }
860
861 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
862 u64 dma_base, u64 size)
863 {
864 struct iommu_dma_notifier_data *iommudata;
865
866 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
867 if (!iommudata)
868 return;
869
870 iommudata->dev = dev;
871 iommudata->ops = ops;
872 iommudata->dma_base = dma_base;
873 iommudata->size = size;
874
875 mutex_lock(&iommu_dma_notifier_lock);
876 list_add(&iommudata->list, &iommu_dma_masters);
877 mutex_unlock(&iommu_dma_notifier_lock);
878 }
879
880 static int __iommu_attach_notifier(struct notifier_block *nb,
881 unsigned long action, void *data)
882 {
883 struct iommu_dma_notifier_data *master, *tmp;
884
885 if (action != BUS_NOTIFY_ADD_DEVICE)
886 return 0;
887
888 mutex_lock(&iommu_dma_notifier_lock);
889 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
890 if (do_iommu_attach(master->dev, master->ops,
891 master->dma_base, master->size)) {
892 list_del(&master->list);
893 kfree(master);
894 }
895 }
896 mutex_unlock(&iommu_dma_notifier_lock);
897 return 0;
898 }
899
900 static int register_iommu_dma_ops_notifier(struct bus_type *bus)
901 {
902 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
903 int ret;
904
905 if (!nb)
906 return -ENOMEM;
907 /*
908 * The device must be attached to a domain before the driver probe
909 * routine gets a chance to start allocating DMA buffers. However,
910 * the IOMMU driver also needs a chance to configure the iommu_group
911 * via its add_device callback first, so we need to make the attach
912 * happen between those two points. Since the IOMMU core uses a bus
913 * notifier with default priority for add_device, do the same but
914 * with a lower priority to ensure the appropriate ordering.
915 */
916 nb->notifier_call = __iommu_attach_notifier;
917 nb->priority = -100;
918
919 ret = bus_register_notifier(bus, nb);
920 if (ret) {
921 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
922 bus->name);
923 kfree(nb);
924 }
925 return ret;
926 }
927
928 static int __init __iommu_dma_init(void)
929 {
930 int ret;
931
932 ret = iommu_dma_init();
933 if (!ret)
934 ret = register_iommu_dma_ops_notifier(&platform_bus_type);
935 if (!ret)
936 ret = register_iommu_dma_ops_notifier(&amba_bustype);
937 return ret;
938 }
939 arch_initcall(__iommu_dma_init);
940
941 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
942 const struct iommu_ops *ops)
943 {
944 struct iommu_group *group;
945
946 if (!ops)
947 return;
948 /*
949 * TODO: As a concession to the future, we're ready to handle being
950 * called both early and late (i.e. after bus_add_device). Once all
951 * the platform bus code is reworked to call us late and the notifier
952 * junk above goes away, move the body of do_iommu_attach here.
953 */
954 group = iommu_group_get(dev);
955 if (group) {
956 do_iommu_attach(dev, ops, dma_base, size);
957 iommu_group_put(group);
958 } else {
959 queue_iommu_attach(dev, ops, dma_base, size);
960 }
961 }
962
963 void arch_teardown_dma_ops(struct device *dev)
964 {
965 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
966
967 if (domain) {
968 iommu_detach_device(domain, dev);
969 if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
970 iommu_domain_free(domain);
971 }
972
973 dev->archdata.dma_ops = NULL;
974 }
975
976 #else
977
978 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
979 struct iommu_ops *iommu)
980 { }
981
982 #endif /* CONFIG_IOMMU_DMA */
983
984 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
985 struct iommu_ops *iommu, bool coherent)
986 {
987 if (!acpi_disabled && !dev->archdata.dma_ops)
988 dev->archdata.dma_ops = dma_ops;
989
990 dev->archdata.dma_coherent = coherent;
991 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
992 }