]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/mm/dma-mapping.c
arm64/iommu: handle non-remapped addresses in ->mmap and ->get_sgtable
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32
33 #include <asm/cacheflush.h>
34
35 static int swiotlb __ro_after_init;
36
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38 bool coherent)
39 {
40 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41 return pgprot_writecombine(prot);
42 return prot;
43 }
44
45 static struct gen_pool *atomic_pool __ro_after_init;
46
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49
50 static int __init early_coherent_pool(char *p)
51 {
52 atomic_pool_size = memparse(p, &p);
53 return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59 unsigned long val;
60 void *ptr = NULL;
61
62 if (!atomic_pool) {
63 WARN(1, "coherent pool not initialised!\n");
64 return NULL;
65 }
66
67 val = gen_pool_alloc(atomic_pool, size);
68 if (val) {
69 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70
71 *ret_page = phys_to_page(phys);
72 ptr = (void *)val;
73 memset(ptr, 0, size);
74 }
75
76 return ptr;
77 }
78
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83
84 static int __free_from_pool(void *start, size_t size)
85 {
86 if (!__in_atomic_pool(start, size))
87 return 0;
88
89 gen_pool_free(atomic_pool, (unsigned long)start, size);
90
91 return 1;
92 }
93
94 static void *__dma_alloc_coherent(struct device *dev, size_t size,
95 dma_addr_t *dma_handle, gfp_t flags,
96 unsigned long attrs)
97 {
98 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
99 dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100 flags |= GFP_DMA;
101 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102 struct page *page;
103 void *addr;
104
105 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106 get_order(size), flags);
107 if (!page)
108 return NULL;
109
110 *dma_handle = phys_to_dma(dev, page_to_phys(page));
111 addr = page_address(page);
112 memset(addr, 0, size);
113 return addr;
114 } else {
115 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116 }
117 }
118
119 static void __dma_free_coherent(struct device *dev, size_t size,
120 void *vaddr, dma_addr_t dma_handle,
121 unsigned long attrs)
122 {
123 bool freed;
124 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125
126
127 freed = dma_release_from_contiguous(dev,
128 phys_to_page(paddr),
129 size >> PAGE_SHIFT);
130 if (!freed)
131 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
132 }
133
134 static void *__dma_alloc(struct device *dev, size_t size,
135 dma_addr_t *dma_handle, gfp_t flags,
136 unsigned long attrs)
137 {
138 struct page *page;
139 void *ptr, *coherent_ptr;
140 bool coherent = is_device_dma_coherent(dev);
141 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
142
143 size = PAGE_ALIGN(size);
144
145 if (!coherent && !gfpflags_allow_blocking(flags)) {
146 struct page *page = NULL;
147 void *addr = __alloc_from_pool(size, &page, flags);
148
149 if (addr)
150 *dma_handle = phys_to_dma(dev, page_to_phys(page));
151
152 return addr;
153 }
154
155 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
156 if (!ptr)
157 goto no_mem;
158
159 /* no need for non-cacheable mapping if coherent */
160 if (coherent)
161 return ptr;
162
163 /* remove any dirty cache lines on the kernel alias */
164 __dma_flush_area(ptr, size);
165
166 /* create a coherent mapping */
167 page = virt_to_page(ptr);
168 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
169 prot, __builtin_return_address(0));
170 if (!coherent_ptr)
171 goto no_map;
172
173 return coherent_ptr;
174
175 no_map:
176 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
177 no_mem:
178 return NULL;
179 }
180
181 static void __dma_free(struct device *dev, size_t size,
182 void *vaddr, dma_addr_t dma_handle,
183 unsigned long attrs)
184 {
185 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
186
187 size = PAGE_ALIGN(size);
188
189 if (!is_device_dma_coherent(dev)) {
190 if (__free_from_pool(vaddr, size))
191 return;
192 vunmap(vaddr);
193 }
194 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
195 }
196
197 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
198 unsigned long offset, size_t size,
199 enum dma_data_direction dir,
200 unsigned long attrs)
201 {
202 dma_addr_t dev_addr;
203
204 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
205 if (!is_device_dma_coherent(dev) &&
206 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
207 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
208
209 return dev_addr;
210 }
211
212
213 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
214 size_t size, enum dma_data_direction dir,
215 unsigned long attrs)
216 {
217 if (!is_device_dma_coherent(dev) &&
218 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
219 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
220 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
221 }
222
223 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
224 int nelems, enum dma_data_direction dir,
225 unsigned long attrs)
226 {
227 struct scatterlist *sg;
228 int i, ret;
229
230 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
231 if (!is_device_dma_coherent(dev) &&
232 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
233 for_each_sg(sgl, sg, ret, i)
234 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
235 sg->length, dir);
236
237 return ret;
238 }
239
240 static void __swiotlb_unmap_sg_attrs(struct device *dev,
241 struct scatterlist *sgl, int nelems,
242 enum dma_data_direction dir,
243 unsigned long attrs)
244 {
245 struct scatterlist *sg;
246 int i;
247
248 if (!is_device_dma_coherent(dev) &&
249 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
250 for_each_sg(sgl, sg, nelems, i)
251 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
252 sg->length, dir);
253 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
254 }
255
256 static void __swiotlb_sync_single_for_cpu(struct device *dev,
257 dma_addr_t dev_addr, size_t size,
258 enum dma_data_direction dir)
259 {
260 if (!is_device_dma_coherent(dev))
261 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
262 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
263 }
264
265 static void __swiotlb_sync_single_for_device(struct device *dev,
266 dma_addr_t dev_addr, size_t size,
267 enum dma_data_direction dir)
268 {
269 swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
270 if (!is_device_dma_coherent(dev))
271 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
272 }
273
274 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
275 struct scatterlist *sgl, int nelems,
276 enum dma_data_direction dir)
277 {
278 struct scatterlist *sg;
279 int i;
280
281 if (!is_device_dma_coherent(dev))
282 for_each_sg(sgl, sg, nelems, i)
283 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
284 sg->length, dir);
285 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
286 }
287
288 static void __swiotlb_sync_sg_for_device(struct device *dev,
289 struct scatterlist *sgl, int nelems,
290 enum dma_data_direction dir)
291 {
292 struct scatterlist *sg;
293 int i;
294
295 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
296 if (!is_device_dma_coherent(dev))
297 for_each_sg(sgl, sg, nelems, i)
298 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
299 sg->length, dir);
300 }
301
302 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
303 unsigned long pfn, size_t size)
304 {
305 int ret = -ENXIO;
306 unsigned long nr_vma_pages = vma_pages(vma);
307 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
308 unsigned long off = vma->vm_pgoff;
309
310 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
311 ret = remap_pfn_range(vma, vma->vm_start,
312 pfn + off,
313 vma->vm_end - vma->vm_start,
314 vma->vm_page_prot);
315 }
316
317 return ret;
318 }
319
320 static int __swiotlb_mmap(struct device *dev,
321 struct vm_area_struct *vma,
322 void *cpu_addr, dma_addr_t dma_addr, size_t size,
323 unsigned long attrs)
324 {
325 int ret;
326 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
327
328 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
329 is_device_dma_coherent(dev));
330
331 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
332 return ret;
333
334 return __swiotlb_mmap_pfn(vma, pfn, size);
335 }
336
337 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
338 struct page *page, size_t size)
339 {
340 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
341
342 if (!ret)
343 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
344
345 return ret;
346 }
347
348 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
349 void *cpu_addr, dma_addr_t handle, size_t size,
350 unsigned long attrs)
351 {
352 struct page *page = phys_to_page(dma_to_phys(dev, handle));
353
354 return __swiotlb_get_sgtable_page(sgt, page, size);
355 }
356
357 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
358 {
359 if (swiotlb)
360 return swiotlb_dma_supported(hwdev, mask);
361 return 1;
362 }
363
364 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
365 {
366 if (swiotlb)
367 return swiotlb_dma_mapping_error(hwdev, addr);
368 return 0;
369 }
370
371 static const struct dma_map_ops swiotlb_dma_ops = {
372 .alloc = __dma_alloc,
373 .free = __dma_free,
374 .mmap = __swiotlb_mmap,
375 .get_sgtable = __swiotlb_get_sgtable,
376 .map_page = __swiotlb_map_page,
377 .unmap_page = __swiotlb_unmap_page,
378 .map_sg = __swiotlb_map_sg_attrs,
379 .unmap_sg = __swiotlb_unmap_sg_attrs,
380 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
381 .sync_single_for_device = __swiotlb_sync_single_for_device,
382 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
383 .sync_sg_for_device = __swiotlb_sync_sg_for_device,
384 .dma_supported = __swiotlb_dma_supported,
385 .mapping_error = __swiotlb_dma_mapping_error,
386 };
387
388 static int __init atomic_pool_init(void)
389 {
390 pgprot_t prot = __pgprot(PROT_NORMAL_NC);
391 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
392 struct page *page;
393 void *addr;
394 unsigned int pool_size_order = get_order(atomic_pool_size);
395
396 if (dev_get_cma_area(NULL))
397 page = dma_alloc_from_contiguous(NULL, nr_pages,
398 pool_size_order, GFP_KERNEL);
399 else
400 page = alloc_pages(GFP_DMA, pool_size_order);
401
402 if (page) {
403 int ret;
404 void *page_addr = page_address(page);
405
406 memset(page_addr, 0, atomic_pool_size);
407 __dma_flush_area(page_addr, atomic_pool_size);
408
409 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
410 if (!atomic_pool)
411 goto free_page;
412
413 addr = dma_common_contiguous_remap(page, atomic_pool_size,
414 VM_USERMAP, prot, atomic_pool_init);
415
416 if (!addr)
417 goto destroy_genpool;
418
419 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
420 page_to_phys(page),
421 atomic_pool_size, -1);
422 if (ret)
423 goto remove_mapping;
424
425 gen_pool_set_algo(atomic_pool,
426 gen_pool_first_fit_order_align,
427 NULL);
428
429 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
430 atomic_pool_size / 1024);
431 return 0;
432 }
433 goto out;
434
435 remove_mapping:
436 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
437 destroy_genpool:
438 gen_pool_destroy(atomic_pool);
439 atomic_pool = NULL;
440 free_page:
441 if (!dma_release_from_contiguous(NULL, page, nr_pages))
442 __free_pages(page, pool_size_order);
443 out:
444 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
445 atomic_pool_size / 1024);
446 return -ENOMEM;
447 }
448
449 /********************************************
450 * The following APIs are for dummy DMA ops *
451 ********************************************/
452
453 static void *__dummy_alloc(struct device *dev, size_t size,
454 dma_addr_t *dma_handle, gfp_t flags,
455 unsigned long attrs)
456 {
457 return NULL;
458 }
459
460 static void __dummy_free(struct device *dev, size_t size,
461 void *vaddr, dma_addr_t dma_handle,
462 unsigned long attrs)
463 {
464 }
465
466 static int __dummy_mmap(struct device *dev,
467 struct vm_area_struct *vma,
468 void *cpu_addr, dma_addr_t dma_addr, size_t size,
469 unsigned long attrs)
470 {
471 return -ENXIO;
472 }
473
474 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
475 unsigned long offset, size_t size,
476 enum dma_data_direction dir,
477 unsigned long attrs)
478 {
479 return 0;
480 }
481
482 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
483 size_t size, enum dma_data_direction dir,
484 unsigned long attrs)
485 {
486 }
487
488 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
489 int nelems, enum dma_data_direction dir,
490 unsigned long attrs)
491 {
492 return 0;
493 }
494
495 static void __dummy_unmap_sg(struct device *dev,
496 struct scatterlist *sgl, int nelems,
497 enum dma_data_direction dir,
498 unsigned long attrs)
499 {
500 }
501
502 static void __dummy_sync_single(struct device *dev,
503 dma_addr_t dev_addr, size_t size,
504 enum dma_data_direction dir)
505 {
506 }
507
508 static void __dummy_sync_sg(struct device *dev,
509 struct scatterlist *sgl, int nelems,
510 enum dma_data_direction dir)
511 {
512 }
513
514 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
515 {
516 return 1;
517 }
518
519 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
520 {
521 return 0;
522 }
523
524 const struct dma_map_ops dummy_dma_ops = {
525 .alloc = __dummy_alloc,
526 .free = __dummy_free,
527 .mmap = __dummy_mmap,
528 .map_page = __dummy_map_page,
529 .unmap_page = __dummy_unmap_page,
530 .map_sg = __dummy_map_sg,
531 .unmap_sg = __dummy_unmap_sg,
532 .sync_single_for_cpu = __dummy_sync_single,
533 .sync_single_for_device = __dummy_sync_single,
534 .sync_sg_for_cpu = __dummy_sync_sg,
535 .sync_sg_for_device = __dummy_sync_sg,
536 .mapping_error = __dummy_mapping_error,
537 .dma_supported = __dummy_dma_supported,
538 };
539 EXPORT_SYMBOL(dummy_dma_ops);
540
541 static int __init arm64_dma_init(void)
542 {
543 if (swiotlb_force == SWIOTLB_FORCE ||
544 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
545 swiotlb = 1;
546
547 return atomic_pool_init();
548 }
549 arch_initcall(arm64_dma_init);
550
551 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
552
553 static int __init dma_debug_do_init(void)
554 {
555 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
556 return 0;
557 }
558 fs_initcall(dma_debug_do_init);
559
560
561 #ifdef CONFIG_IOMMU_DMA
562 #include <linux/dma-iommu.h>
563 #include <linux/platform_device.h>
564 #include <linux/amba/bus.h>
565
566 /* Thankfully, all cache ops are by VA so we can ignore phys here */
567 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
568 {
569 __dma_flush_area(virt, PAGE_SIZE);
570 }
571
572 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
573 dma_addr_t *handle, gfp_t gfp,
574 unsigned long attrs)
575 {
576 bool coherent = is_device_dma_coherent(dev);
577 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
578 size_t iosize = size;
579 void *addr;
580
581 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
582 return NULL;
583
584 size = PAGE_ALIGN(size);
585
586 /*
587 * Some drivers rely on this, and we probably don't want the
588 * possibility of stale kernel data being read by devices anyway.
589 */
590 gfp |= __GFP_ZERO;
591
592 if (!gfpflags_allow_blocking(gfp)) {
593 struct page *page;
594 /*
595 * In atomic context we can't remap anything, so we'll only
596 * get the virtually contiguous buffer we need by way of a
597 * physically contiguous allocation.
598 */
599 if (coherent) {
600 page = alloc_pages(gfp, get_order(size));
601 addr = page ? page_address(page) : NULL;
602 } else {
603 addr = __alloc_from_pool(size, &page, gfp);
604 }
605 if (!addr)
606 return NULL;
607
608 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
609 if (iommu_dma_mapping_error(dev, *handle)) {
610 if (coherent)
611 __free_pages(page, get_order(size));
612 else
613 __free_from_pool(addr, size);
614 addr = NULL;
615 }
616 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
617 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
618 struct page *page;
619
620 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
621 get_order(size), gfp);
622 if (!page)
623 return NULL;
624
625 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
626 if (iommu_dma_mapping_error(dev, *handle)) {
627 dma_release_from_contiguous(dev, page,
628 size >> PAGE_SHIFT);
629 return NULL;
630 }
631 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
632 prot,
633 __builtin_return_address(0));
634 if (addr) {
635 if (!coherent)
636 __dma_flush_area(page_to_virt(page), iosize);
637 memset(addr, 0, size);
638 } else {
639 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
640 dma_release_from_contiguous(dev, page,
641 size >> PAGE_SHIFT);
642 }
643 } else {
644 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
645 struct page **pages;
646
647 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
648 handle, flush_page);
649 if (!pages)
650 return NULL;
651
652 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
653 __builtin_return_address(0));
654 if (!addr)
655 iommu_dma_free(dev, pages, iosize, handle);
656 }
657 return addr;
658 }
659
660 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
661 dma_addr_t handle, unsigned long attrs)
662 {
663 size_t iosize = size;
664
665 size = PAGE_ALIGN(size);
666 /*
667 * @cpu_addr will be one of 4 things depending on how it was allocated:
668 * - A remapped array of pages for contiguous allocations.
669 * - A remapped array of pages from iommu_dma_alloc(), for all
670 * non-atomic allocations.
671 * - A non-cacheable alias from the atomic pool, for atomic
672 * allocations by non-coherent devices.
673 * - A normal lowmem address, for atomic allocations by
674 * coherent devices.
675 * Hence how dodgy the below logic looks...
676 */
677 if (__in_atomic_pool(cpu_addr, size)) {
678 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
679 __free_from_pool(cpu_addr, size);
680 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
681 struct page *page = vmalloc_to_page(cpu_addr);
682
683 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
684 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
685 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
686 } else if (is_vmalloc_addr(cpu_addr)){
687 struct vm_struct *area = find_vm_area(cpu_addr);
688
689 if (WARN_ON(!area || !area->pages))
690 return;
691 iommu_dma_free(dev, area->pages, iosize, &handle);
692 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
693 } else {
694 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
695 __free_pages(virt_to_page(cpu_addr), get_order(size));
696 }
697 }
698
699 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
700 void *cpu_addr, dma_addr_t dma_addr, size_t size,
701 unsigned long attrs)
702 {
703 struct vm_struct *area;
704 int ret;
705
706 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
707 is_device_dma_coherent(dev));
708
709 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
710 return ret;
711
712 if (!is_vmalloc_addr(cpu_addr)) {
713 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
714 return __swiotlb_mmap_pfn(vma, pfn, size);
715 }
716
717 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
718 /*
719 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
720 * hence in the vmalloc space.
721 */
722 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
723 return __swiotlb_mmap_pfn(vma, pfn, size);
724 }
725
726 area = find_vm_area(cpu_addr);
727 if (WARN_ON(!area || !area->pages))
728 return -ENXIO;
729
730 return iommu_dma_mmap(area->pages, size, vma);
731 }
732
733 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
734 void *cpu_addr, dma_addr_t dma_addr,
735 size_t size, unsigned long attrs)
736 {
737 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
738 struct vm_struct *area = find_vm_area(cpu_addr);
739
740 if (!is_vmalloc_addr(cpu_addr)) {
741 struct page *page = virt_to_page(cpu_addr);
742 return __swiotlb_get_sgtable_page(sgt, page, size);
743 }
744
745 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
746 /*
747 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
748 * hence in the vmalloc space.
749 */
750 struct page *page = vmalloc_to_page(cpu_addr);
751 return __swiotlb_get_sgtable_page(sgt, page, size);
752 }
753
754 if (WARN_ON(!area || !area->pages))
755 return -ENXIO;
756
757 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
758 GFP_KERNEL);
759 }
760
761 static void __iommu_sync_single_for_cpu(struct device *dev,
762 dma_addr_t dev_addr, size_t size,
763 enum dma_data_direction dir)
764 {
765 phys_addr_t phys;
766
767 if (is_device_dma_coherent(dev))
768 return;
769
770 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
771 __dma_unmap_area(phys_to_virt(phys), size, dir);
772 }
773
774 static void __iommu_sync_single_for_device(struct device *dev,
775 dma_addr_t dev_addr, size_t size,
776 enum dma_data_direction dir)
777 {
778 phys_addr_t phys;
779
780 if (is_device_dma_coherent(dev))
781 return;
782
783 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
784 __dma_map_area(phys_to_virt(phys), size, dir);
785 }
786
787 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
788 unsigned long offset, size_t size,
789 enum dma_data_direction dir,
790 unsigned long attrs)
791 {
792 bool coherent = is_device_dma_coherent(dev);
793 int prot = dma_info_to_prot(dir, coherent, attrs);
794 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
795
796 if (!iommu_dma_mapping_error(dev, dev_addr) &&
797 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
798 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
799
800 return dev_addr;
801 }
802
803 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
804 size_t size, enum dma_data_direction dir,
805 unsigned long attrs)
806 {
807 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
808 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
809
810 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
811 }
812
813 static void __iommu_sync_sg_for_cpu(struct device *dev,
814 struct scatterlist *sgl, int nelems,
815 enum dma_data_direction dir)
816 {
817 struct scatterlist *sg;
818 int i;
819
820 if (is_device_dma_coherent(dev))
821 return;
822
823 for_each_sg(sgl, sg, nelems, i)
824 __dma_unmap_area(sg_virt(sg), sg->length, dir);
825 }
826
827 static void __iommu_sync_sg_for_device(struct device *dev,
828 struct scatterlist *sgl, int nelems,
829 enum dma_data_direction dir)
830 {
831 struct scatterlist *sg;
832 int i;
833
834 if (is_device_dma_coherent(dev))
835 return;
836
837 for_each_sg(sgl, sg, nelems, i)
838 __dma_map_area(sg_virt(sg), sg->length, dir);
839 }
840
841 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
842 int nelems, enum dma_data_direction dir,
843 unsigned long attrs)
844 {
845 bool coherent = is_device_dma_coherent(dev);
846
847 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
848 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
849
850 return iommu_dma_map_sg(dev, sgl, nelems,
851 dma_info_to_prot(dir, coherent, attrs));
852 }
853
854 static void __iommu_unmap_sg_attrs(struct device *dev,
855 struct scatterlist *sgl, int nelems,
856 enum dma_data_direction dir,
857 unsigned long attrs)
858 {
859 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
860 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
861
862 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
863 }
864
865 static const struct dma_map_ops iommu_dma_ops = {
866 .alloc = __iommu_alloc_attrs,
867 .free = __iommu_free_attrs,
868 .mmap = __iommu_mmap_attrs,
869 .get_sgtable = __iommu_get_sgtable,
870 .map_page = __iommu_map_page,
871 .unmap_page = __iommu_unmap_page,
872 .map_sg = __iommu_map_sg_attrs,
873 .unmap_sg = __iommu_unmap_sg_attrs,
874 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
875 .sync_single_for_device = __iommu_sync_single_for_device,
876 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
877 .sync_sg_for_device = __iommu_sync_sg_for_device,
878 .map_resource = iommu_dma_map_resource,
879 .unmap_resource = iommu_dma_unmap_resource,
880 .mapping_error = iommu_dma_mapping_error,
881 };
882
883 static int __init __iommu_dma_init(void)
884 {
885 return iommu_dma_init();
886 }
887 arch_initcall(__iommu_dma_init);
888
889 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
890 const struct iommu_ops *ops)
891 {
892 struct iommu_domain *domain;
893
894 if (!ops)
895 return;
896
897 /*
898 * The IOMMU core code allocates the default DMA domain, which the
899 * underlying IOMMU driver needs to support via the dma-iommu layer.
900 */
901 domain = iommu_get_domain_for_dev(dev);
902
903 if (!domain)
904 goto out_err;
905
906 if (domain->type == IOMMU_DOMAIN_DMA) {
907 if (iommu_dma_init_domain(domain, dma_base, size, dev))
908 goto out_err;
909
910 dev->dma_ops = &iommu_dma_ops;
911 }
912
913 return;
914
915 out_err:
916 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
917 dev_name(dev));
918 }
919
920 void arch_teardown_dma_ops(struct device *dev)
921 {
922 dev->dma_ops = NULL;
923 }
924
925 #else
926
927 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
928 const struct iommu_ops *iommu)
929 { }
930
931 #endif /* CONFIG_IOMMU_DMA */
932
933 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
934 const struct iommu_ops *iommu, bool coherent)
935 {
936 if (!dev->dma_ops)
937 dev->dma_ops = &swiotlb_dma_ops;
938
939 dev->archdata.dma_coherent = coherent;
940 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
941
942 #ifdef CONFIG_XEN
943 if (xen_initial_domain()) {
944 dev->archdata.dev_dma_ops = dev->dma_ops;
945 dev->dma_ops = xen_dma_ops;
946 }
947 #endif
948 }