]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm64/mm/fault.c
arm64: Revert support for execute-only user mappings
[mirror_ubuntu-eoan-kernel.git] / arch / arm64 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 #include <linux/preempt.h>
24 #include <linux/hugetlb.h>
25
26 #include <asm/acpi.h>
27 #include <asm/bug.h>
28 #include <asm/cmpxchg.h>
29 #include <asm/cpufeature.h>
30 #include <asm/exception.h>
31 #include <asm/daifflags.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/esr.h>
34 #include <asm/kasan.h>
35 #include <asm/sysreg.h>
36 #include <asm/system_misc.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/traps.h>
40
41 struct fault_info {
42 int (*fn)(unsigned long addr, unsigned int esr,
43 struct pt_regs *regs);
44 int sig;
45 int code;
46 const char *name;
47 };
48
49 static const struct fault_info fault_info[];
50 static struct fault_info debug_fault_info[];
51
52 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
53 {
54 return fault_info + (esr & ESR_ELx_FSC);
55 }
56
57 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
58 {
59 return debug_fault_info + DBG_ESR_EVT(esr);
60 }
61
62 static void data_abort_decode(unsigned int esr)
63 {
64 pr_alert("Data abort info:\n");
65
66 if (esr & ESR_ELx_ISV) {
67 pr_alert(" Access size = %u byte(s)\n",
68 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
69 pr_alert(" SSE = %lu, SRT = %lu\n",
70 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
71 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
72 pr_alert(" SF = %lu, AR = %lu\n",
73 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
74 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
75 } else {
76 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
77 }
78
79 pr_alert(" CM = %lu, WnR = %lu\n",
80 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
81 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
82 }
83
84 static void mem_abort_decode(unsigned int esr)
85 {
86 pr_alert("Mem abort info:\n");
87
88 pr_alert(" ESR = 0x%08x\n", esr);
89 pr_alert(" Exception class = %s, IL = %u bits\n",
90 esr_get_class_string(esr),
91 (esr & ESR_ELx_IL) ? 32 : 16);
92 pr_alert(" SET = %lu, FnV = %lu\n",
93 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
94 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
95 pr_alert(" EA = %lu, S1PTW = %lu\n",
96 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
97 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
98
99 if (esr_is_data_abort(esr))
100 data_abort_decode(esr);
101 }
102
103 static inline bool is_ttbr0_addr(unsigned long addr)
104 {
105 /* entry assembly clears tags for TTBR0 addrs */
106 return addr < TASK_SIZE;
107 }
108
109 static inline bool is_ttbr1_addr(unsigned long addr)
110 {
111 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
112 return arch_kasan_reset_tag(addr) >= VA_START;
113 }
114
115 /*
116 * Dump out the page tables associated with 'addr' in the currently active mm.
117 */
118 static void show_pte(unsigned long addr)
119 {
120 struct mm_struct *mm;
121 pgd_t *pgdp;
122 pgd_t pgd;
123
124 if (is_ttbr0_addr(addr)) {
125 /* TTBR0 */
126 mm = current->active_mm;
127 if (mm == &init_mm) {
128 pr_alert("[%016lx] user address but active_mm is swapper\n",
129 addr);
130 return;
131 }
132 } else if (is_ttbr1_addr(addr)) {
133 /* TTBR1 */
134 mm = &init_mm;
135 } else {
136 pr_alert("[%016lx] address between user and kernel address ranges\n",
137 addr);
138 return;
139 }
140
141 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
142 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
143 mm == &init_mm ? VA_BITS : (int)vabits_user,
144 (unsigned long)virt_to_phys(mm->pgd));
145 pgdp = pgd_offset(mm, addr);
146 pgd = READ_ONCE(*pgdp);
147 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
148
149 do {
150 pud_t *pudp, pud;
151 pmd_t *pmdp, pmd;
152 pte_t *ptep, pte;
153
154 if (pgd_none(pgd) || pgd_bad(pgd))
155 break;
156
157 pudp = pud_offset(pgdp, addr);
158 pud = READ_ONCE(*pudp);
159 pr_cont(", pud=%016llx", pud_val(pud));
160 if (pud_none(pud) || pud_bad(pud))
161 break;
162
163 pmdp = pmd_offset(pudp, addr);
164 pmd = READ_ONCE(*pmdp);
165 pr_cont(", pmd=%016llx", pmd_val(pmd));
166 if (pmd_none(pmd) || pmd_bad(pmd))
167 break;
168
169 ptep = pte_offset_map(pmdp, addr);
170 pte = READ_ONCE(*ptep);
171 pr_cont(", pte=%016llx", pte_val(pte));
172 pte_unmap(ptep);
173 } while(0);
174
175 pr_cont("\n");
176 }
177
178 /*
179 * This function sets the access flags (dirty, accessed), as well as write
180 * permission, and only to a more permissive setting.
181 *
182 * It needs to cope with hardware update of the accessed/dirty state by other
183 * agents in the system and can safely skip the __sync_icache_dcache() call as,
184 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
185 *
186 * Returns whether or not the PTE actually changed.
187 */
188 int ptep_set_access_flags(struct vm_area_struct *vma,
189 unsigned long address, pte_t *ptep,
190 pte_t entry, int dirty)
191 {
192 pteval_t old_pteval, pteval;
193 pte_t pte = READ_ONCE(*ptep);
194
195 if (pte_same(pte, entry))
196 return 0;
197
198 /* only preserve the access flags and write permission */
199 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
200
201 /*
202 * Setting the flags must be done atomically to avoid racing with the
203 * hardware update of the access/dirty state. The PTE_RDONLY bit must
204 * be set to the most permissive (lowest value) of *ptep and entry
205 * (calculated as: a & b == ~(~a | ~b)).
206 */
207 pte_val(entry) ^= PTE_RDONLY;
208 pteval = pte_val(pte);
209 do {
210 old_pteval = pteval;
211 pteval ^= PTE_RDONLY;
212 pteval |= pte_val(entry);
213 pteval ^= PTE_RDONLY;
214 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215 } while (pteval != old_pteval);
216
217 flush_tlb_fix_spurious_fault(vma, address);
218 return 1;
219 }
220
221 static bool is_el1_instruction_abort(unsigned int esr)
222 {
223 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
224 }
225
226 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
227 struct pt_regs *regs)
228 {
229 unsigned int ec = ESR_ELx_EC(esr);
230 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
231
232 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
233 return false;
234
235 if (fsc_type == ESR_ELx_FSC_PERM)
236 return true;
237
238 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
239 return fsc_type == ESR_ELx_FSC_FAULT &&
240 (regs->pstate & PSR_PAN_BIT);
241
242 return false;
243 }
244
245 static void die_kernel_fault(const char *msg, unsigned long addr,
246 unsigned int esr, struct pt_regs *regs)
247 {
248 bust_spinlocks(1);
249
250 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
251 addr);
252
253 mem_abort_decode(esr);
254
255 show_pte(addr);
256 die("Oops", regs, esr);
257 bust_spinlocks(0);
258 do_exit(SIGKILL);
259 }
260
261 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
262 struct pt_regs *regs)
263 {
264 const char *msg;
265
266 /*
267 * Are we prepared to handle this kernel fault?
268 * We are almost certainly not prepared to handle instruction faults.
269 */
270 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
271 return;
272
273 if (is_el1_permission_fault(addr, esr, regs)) {
274 if (esr & ESR_ELx_WNR)
275 msg = "write to read-only memory";
276 else
277 msg = "read from unreadable memory";
278 } else if (addr < PAGE_SIZE) {
279 msg = "NULL pointer dereference";
280 } else {
281 msg = "paging request";
282 }
283
284 die_kernel_fault(msg, addr, esr, regs);
285 }
286
287 static void set_thread_esr(unsigned long address, unsigned int esr)
288 {
289 current->thread.fault_address = address;
290
291 /*
292 * If the faulting address is in the kernel, we must sanitize the ESR.
293 * From userspace's point of view, kernel-only mappings don't exist
294 * at all, so we report them as level 0 translation faults.
295 * (This is not quite the way that "no mapping there at all" behaves:
296 * an alignment fault not caused by the memory type would take
297 * precedence over translation fault for a real access to empty
298 * space. Unfortunately we can't easily distinguish "alignment fault
299 * not caused by memory type" from "alignment fault caused by memory
300 * type", so we ignore this wrinkle and just return the translation
301 * fault.)
302 */
303 if (!is_ttbr0_addr(current->thread.fault_address)) {
304 switch (ESR_ELx_EC(esr)) {
305 case ESR_ELx_EC_DABT_LOW:
306 /*
307 * These bits provide only information about the
308 * faulting instruction, which userspace knows already.
309 * We explicitly clear bits which are architecturally
310 * RES0 in case they are given meanings in future.
311 * We always report the ESR as if the fault was taken
312 * to EL1 and so ISV and the bits in ISS[23:14] are
313 * clear. (In fact it always will be a fault to EL1.)
314 */
315 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
316 ESR_ELx_CM | ESR_ELx_WNR;
317 esr |= ESR_ELx_FSC_FAULT;
318 break;
319 case ESR_ELx_EC_IABT_LOW:
320 /*
321 * Claim a level 0 translation fault.
322 * All other bits are architecturally RES0 for faults
323 * reported with that DFSC value, so we clear them.
324 */
325 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
326 esr |= ESR_ELx_FSC_FAULT;
327 break;
328 default:
329 /*
330 * This should never happen (entry.S only brings us
331 * into this code for insn and data aborts from a lower
332 * exception level). Fail safe by not providing an ESR
333 * context record at all.
334 */
335 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
336 esr = 0;
337 break;
338 }
339 }
340
341 current->thread.fault_code = esr;
342 }
343
344 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
345 {
346 /*
347 * If we are in kernel mode at this point, we have no context to
348 * handle this fault with.
349 */
350 if (user_mode(regs)) {
351 const struct fault_info *inf = esr_to_fault_info(esr);
352
353 set_thread_esr(addr, esr);
354 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
355 inf->name);
356 } else {
357 __do_kernel_fault(addr, esr, regs);
358 }
359 }
360
361 #define VM_FAULT_BADMAP 0x010000
362 #define VM_FAULT_BADACCESS 0x020000
363
364 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
365 unsigned int mm_flags, unsigned long vm_flags)
366 {
367 struct vm_area_struct *vma = find_vma(mm, addr);
368
369 if (unlikely(!vma))
370 return VM_FAULT_BADMAP;
371
372 /*
373 * Ok, we have a good vm_area for this memory access, so we can handle
374 * it.
375 */
376 if (unlikely(vma->vm_start > addr)) {
377 if (!(vma->vm_flags & VM_GROWSDOWN))
378 return VM_FAULT_BADMAP;
379 if (expand_stack(vma, addr))
380 return VM_FAULT_BADMAP;
381 }
382
383 /*
384 * Check that the permissions on the VMA allow for the fault which
385 * occurred.
386 */
387 if (!(vma->vm_flags & vm_flags))
388 return VM_FAULT_BADACCESS;
389 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
390 }
391
392 static bool is_el0_instruction_abort(unsigned int esr)
393 {
394 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
395 }
396
397 /*
398 * Note: not valid for EL1 DC IVAC, but we never use that such that it
399 * should fault. EL0 cannot issue DC IVAC (undef).
400 */
401 static bool is_write_abort(unsigned int esr)
402 {
403 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
404 }
405
406 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
407 struct pt_regs *regs)
408 {
409 const struct fault_info *inf;
410 struct mm_struct *mm = current->mm;
411 vm_fault_t fault, major = 0;
412 unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
413 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
414
415 if (kprobe_page_fault(regs, esr))
416 return 0;
417
418 /*
419 * If we're in an interrupt or have no user context, we must not take
420 * the fault.
421 */
422 if (faulthandler_disabled() || !mm)
423 goto no_context;
424
425 if (user_mode(regs))
426 mm_flags |= FAULT_FLAG_USER;
427
428 if (is_el0_instruction_abort(esr)) {
429 vm_flags = VM_EXEC;
430 mm_flags |= FAULT_FLAG_INSTRUCTION;
431 } else if (is_write_abort(esr)) {
432 vm_flags = VM_WRITE;
433 mm_flags |= FAULT_FLAG_WRITE;
434 }
435
436 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
437 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
438 if (regs->orig_addr_limit == KERNEL_DS)
439 die_kernel_fault("access to user memory with fs=KERNEL_DS",
440 addr, esr, regs);
441
442 if (is_el1_instruction_abort(esr))
443 die_kernel_fault("execution of user memory",
444 addr, esr, regs);
445
446 if (!search_exception_tables(regs->pc))
447 die_kernel_fault("access to user memory outside uaccess routines",
448 addr, esr, regs);
449 }
450
451 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
452
453 /*
454 * As per x86, we may deadlock here. However, since the kernel only
455 * validly references user space from well defined areas of the code,
456 * we can bug out early if this is from code which shouldn't.
457 */
458 if (!down_read_trylock(&mm->mmap_sem)) {
459 if (!user_mode(regs) && !search_exception_tables(regs->pc))
460 goto no_context;
461 retry:
462 down_read(&mm->mmap_sem);
463 } else {
464 /*
465 * The above down_read_trylock() might have succeeded in which
466 * case, we'll have missed the might_sleep() from down_read().
467 */
468 might_sleep();
469 #ifdef CONFIG_DEBUG_VM
470 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
471 up_read(&mm->mmap_sem);
472 goto no_context;
473 }
474 #endif
475 }
476
477 fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
478 major |= fault & VM_FAULT_MAJOR;
479
480 if (fault & VM_FAULT_RETRY) {
481 /*
482 * If we need to retry but a fatal signal is pending,
483 * handle the signal first. We do not need to release
484 * the mmap_sem because it would already be released
485 * in __lock_page_or_retry in mm/filemap.c.
486 */
487 if (fatal_signal_pending(current)) {
488 if (!user_mode(regs))
489 goto no_context;
490 return 0;
491 }
492
493 /*
494 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
495 * starvation.
496 */
497 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
498 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
499 mm_flags |= FAULT_FLAG_TRIED;
500 goto retry;
501 }
502 }
503 up_read(&mm->mmap_sem);
504
505 /*
506 * Handle the "normal" (no error) case first.
507 */
508 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
509 VM_FAULT_BADACCESS)))) {
510 /*
511 * Major/minor page fault accounting is only done
512 * once. If we go through a retry, it is extremely
513 * likely that the page will be found in page cache at
514 * that point.
515 */
516 if (major) {
517 current->maj_flt++;
518 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
519 addr);
520 } else {
521 current->min_flt++;
522 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
523 addr);
524 }
525
526 return 0;
527 }
528
529 /*
530 * If we are in kernel mode at this point, we have no context to
531 * handle this fault with.
532 */
533 if (!user_mode(regs))
534 goto no_context;
535
536 if (fault & VM_FAULT_OOM) {
537 /*
538 * We ran out of memory, call the OOM killer, and return to
539 * userspace (which will retry the fault, or kill us if we got
540 * oom-killed).
541 */
542 pagefault_out_of_memory();
543 return 0;
544 }
545
546 inf = esr_to_fault_info(esr);
547 set_thread_esr(addr, esr);
548 if (fault & VM_FAULT_SIGBUS) {
549 /*
550 * We had some memory, but were unable to successfully fix up
551 * this page fault.
552 */
553 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
554 inf->name);
555 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
556 unsigned int lsb;
557
558 lsb = PAGE_SHIFT;
559 if (fault & VM_FAULT_HWPOISON_LARGE)
560 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
561
562 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
563 inf->name);
564 } else {
565 /*
566 * Something tried to access memory that isn't in our memory
567 * map.
568 */
569 arm64_force_sig_fault(SIGSEGV,
570 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
571 (void __user *)addr,
572 inf->name);
573 }
574
575 return 0;
576
577 no_context:
578 __do_kernel_fault(addr, esr, regs);
579 return 0;
580 }
581
582 static int __kprobes do_translation_fault(unsigned long addr,
583 unsigned int esr,
584 struct pt_regs *regs)
585 {
586 if (is_ttbr0_addr(addr))
587 return do_page_fault(addr, esr, regs);
588
589 do_bad_area(addr, esr, regs);
590 return 0;
591 }
592
593 static int do_alignment_fault(unsigned long addr, unsigned int esr,
594 struct pt_regs *regs)
595 {
596 do_bad_area(addr, esr, regs);
597 return 0;
598 }
599
600 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
601 {
602 return 1; /* "fault" */
603 }
604
605 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
606 {
607 const struct fault_info *inf;
608 void __user *siaddr;
609
610 inf = esr_to_fault_info(esr);
611
612 /*
613 * Return value ignored as we rely on signal merging.
614 * Future patches will make this more robust.
615 */
616 apei_claim_sea(regs);
617
618 if (esr & ESR_ELx_FnV)
619 siaddr = NULL;
620 else
621 siaddr = (void __user *)addr;
622 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
623
624 return 0;
625 }
626
627 static const struct fault_info fault_info[] = {
628 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
629 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
630 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
631 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
632 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
633 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
634 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
635 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
636 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
637 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
638 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
639 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
640 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
641 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
642 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
643 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
644 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
645 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
646 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
647 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
648 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
649 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
650 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
651 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
652 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
653 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
654 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
655 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
656 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
657 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
658 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
659 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
660 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
661 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
663 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
664 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
665 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
666 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
667 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
668 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
669 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
670 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
671 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
672 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
673 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
674 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
675 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
676 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
677 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
678 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
680 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
681 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
682 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
683 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
684 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
689 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
690 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
692 };
693
694 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
695 struct pt_regs *regs)
696 {
697 const struct fault_info *inf = esr_to_fault_info(esr);
698
699 if (!inf->fn(addr, esr, regs))
700 return;
701
702 if (!user_mode(regs)) {
703 pr_alert("Unhandled fault at 0x%016lx\n", addr);
704 mem_abort_decode(esr);
705 show_pte(addr);
706 }
707
708 arm64_notify_die(inf->name, regs,
709 inf->sig, inf->code, (void __user *)addr, esr);
710 }
711
712 asmlinkage void __exception do_el0_irq_bp_hardening(void)
713 {
714 /* PC has already been checked in entry.S */
715 arm64_apply_bp_hardening();
716 }
717
718 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
719 unsigned int esr,
720 struct pt_regs *regs)
721 {
722 /*
723 * We've taken an instruction abort from userspace and not yet
724 * re-enabled IRQs. If the address is a kernel address, apply
725 * BP hardening prior to enabling IRQs and pre-emption.
726 */
727 if (!is_ttbr0_addr(addr))
728 arm64_apply_bp_hardening();
729
730 local_daif_restore(DAIF_PROCCTX);
731 do_mem_abort(addr, esr, regs);
732 }
733
734
735 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
736 unsigned int esr,
737 struct pt_regs *regs)
738 {
739 if (user_mode(regs)) {
740 if (!is_ttbr0_addr(instruction_pointer(regs)))
741 arm64_apply_bp_hardening();
742 local_daif_restore(DAIF_PROCCTX);
743 }
744
745 arm64_notify_die("SP/PC alignment exception", regs,
746 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
747 }
748
749 int __init early_brk64(unsigned long addr, unsigned int esr,
750 struct pt_regs *regs);
751
752 /*
753 * __refdata because early_brk64 is __init, but the reference to it is
754 * clobbered at arch_initcall time.
755 * See traps.c and debug-monitors.c:debug_traps_init().
756 */
757 static struct fault_info __refdata debug_fault_info[] = {
758 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
759 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
760 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
761 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
762 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
763 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
764 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
765 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
766 };
767
768 void __init hook_debug_fault_code(int nr,
769 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
770 int sig, int code, const char *name)
771 {
772 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
773
774 debug_fault_info[nr].fn = fn;
775 debug_fault_info[nr].sig = sig;
776 debug_fault_info[nr].code = code;
777 debug_fault_info[nr].name = name;
778 }
779
780 /*
781 * In debug exception context, we explicitly disable preemption despite
782 * having interrupts disabled.
783 * This serves two purposes: it makes it much less likely that we would
784 * accidentally schedule in exception context and it will force a warning
785 * if we somehow manage to schedule by accident.
786 */
787 static void debug_exception_enter(struct pt_regs *regs)
788 {
789 /*
790 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
791 * already disabled to preserve the last enabled/disabled addresses.
792 */
793 if (interrupts_enabled(regs))
794 trace_hardirqs_off();
795
796 if (user_mode(regs)) {
797 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
798 } else {
799 /*
800 * We might have interrupted pretty much anything. In
801 * fact, if we're a debug exception, we can even interrupt
802 * NMI processing. We don't want this code makes in_nmi()
803 * to return true, but we need to notify RCU.
804 */
805 rcu_nmi_enter();
806 }
807
808 preempt_disable();
809
810 /* This code is a bit fragile. Test it. */
811 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
812 }
813 NOKPROBE_SYMBOL(debug_exception_enter);
814
815 static void debug_exception_exit(struct pt_regs *regs)
816 {
817 preempt_enable_no_resched();
818
819 if (!user_mode(regs))
820 rcu_nmi_exit();
821
822 if (interrupts_enabled(regs))
823 trace_hardirqs_on();
824 }
825 NOKPROBE_SYMBOL(debug_exception_exit);
826
827 #ifdef CONFIG_ARM64_ERRATUM_1463225
828 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
829
830 static int __exception
831 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
832 {
833 if (user_mode(regs))
834 return 0;
835
836 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
837 return 0;
838
839 /*
840 * We've taken a dummy step exception from the kernel to ensure
841 * that interrupts are re-enabled on the syscall path. Return back
842 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
843 * masked so that we can safely restore the mdscr and get on with
844 * handling the syscall.
845 */
846 regs->pstate |= PSR_D_BIT;
847 return 1;
848 }
849 #else
850 static int __exception
851 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
852 {
853 return 0;
854 }
855 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
856
857 asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
858 unsigned int esr,
859 struct pt_regs *regs)
860 {
861 const struct fault_info *inf = esr_to_debug_fault_info(esr);
862 unsigned long pc = instruction_pointer(regs);
863
864 if (cortex_a76_erratum_1463225_debug_handler(regs))
865 return;
866
867 debug_exception_enter(regs);
868
869 if (user_mode(regs) && !is_ttbr0_addr(pc))
870 arm64_apply_bp_hardening();
871
872 if (inf->fn(addr_if_watchpoint, esr, regs)) {
873 arm64_notify_die(inf->name, regs,
874 inf->sig, inf->code, (void __user *)pc, esr);
875 }
876
877 debug_exception_exit(regs);
878 }
879 NOKPROBE_SYMBOL(do_debug_exception);