]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/mm/fault.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 #include <linux/preempt.h>
33
34 #include <asm/bug.h>
35 #include <asm/cpufeature.h>
36 #include <asm/exception.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/esr.h>
39 #include <asm/sysreg.h>
40 #include <asm/system_misc.h>
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43
44 static const char *fault_name(unsigned int esr);
45
46 #ifdef CONFIG_KPROBES
47 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
48 {
49 int ret = 0;
50
51 /* kprobe_running() needs smp_processor_id() */
52 if (!user_mode(regs)) {
53 preempt_disable();
54 if (kprobe_running() && kprobe_fault_handler(regs, esr))
55 ret = 1;
56 preempt_enable();
57 }
58
59 return ret;
60 }
61 #else
62 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
63 {
64 return 0;
65 }
66 #endif
67
68 /*
69 * Dump out the page tables associated with 'addr' in mm 'mm'.
70 */
71 void show_pte(struct mm_struct *mm, unsigned long addr)
72 {
73 pgd_t *pgd;
74
75 if (!mm)
76 mm = &init_mm;
77
78 pr_alert("pgd = %p\n", mm->pgd);
79 pgd = pgd_offset(mm, addr);
80 pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
81
82 do {
83 pud_t *pud;
84 pmd_t *pmd;
85 pte_t *pte;
86
87 if (pgd_none(*pgd) || pgd_bad(*pgd))
88 break;
89
90 pud = pud_offset(pgd, addr);
91 pr_cont(", *pud=%016llx", pud_val(*pud));
92 if (pud_none(*pud) || pud_bad(*pud))
93 break;
94
95 pmd = pmd_offset(pud, addr);
96 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
97 if (pmd_none(*pmd) || pmd_bad(*pmd))
98 break;
99
100 pte = pte_offset_map(pmd, addr);
101 pr_cont(", *pte=%016llx", pte_val(*pte));
102 pte_unmap(pte);
103 } while(0);
104
105 pr_cont("\n");
106 }
107
108 #ifdef CONFIG_ARM64_HW_AFDBM
109 /*
110 * This function sets the access flags (dirty, accessed), as well as write
111 * permission, and only to a more permissive setting.
112 *
113 * It needs to cope with hardware update of the accessed/dirty state by other
114 * agents in the system and can safely skip the __sync_icache_dcache() call as,
115 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
116 *
117 * Returns whether or not the PTE actually changed.
118 */
119 int ptep_set_access_flags(struct vm_area_struct *vma,
120 unsigned long address, pte_t *ptep,
121 pte_t entry, int dirty)
122 {
123 pteval_t old_pteval;
124 unsigned int tmp;
125
126 if (pte_same(*ptep, entry))
127 return 0;
128
129 /* only preserve the access flags and write permission */
130 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
131
132 /*
133 * PTE_RDONLY is cleared by default in the asm below, so set it in
134 * back if necessary (read-only or clean PTE).
135 */
136 if (!pte_write(entry) || !pte_sw_dirty(entry))
137 pte_val(entry) |= PTE_RDONLY;
138
139 /*
140 * Setting the flags must be done atomically to avoid racing with the
141 * hardware update of the access/dirty state.
142 */
143 asm volatile("// ptep_set_access_flags\n"
144 " prfm pstl1strm, %2\n"
145 "1: ldxr %0, %2\n"
146 " and %0, %0, %3 // clear PTE_RDONLY\n"
147 " orr %0, %0, %4 // set flags\n"
148 " stxr %w1, %0, %2\n"
149 " cbnz %w1, 1b\n"
150 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
151 : "L" (~PTE_RDONLY), "r" (pte_val(entry)));
152
153 flush_tlb_fix_spurious_fault(vma, address);
154 return 1;
155 }
156 #endif
157
158 static bool is_el1_instruction_abort(unsigned int esr)
159 {
160 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
161 }
162
163 /*
164 * The kernel tried to access some page that wasn't present.
165 */
166 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
167 unsigned int esr, struct pt_regs *regs)
168 {
169 /*
170 * Are we prepared to handle this kernel fault?
171 * We are almost certainly not prepared to handle instruction faults.
172 */
173 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
174 return;
175
176 /*
177 * No handler, we'll have to terminate things with extreme prejudice.
178 */
179 bust_spinlocks(1);
180 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
181 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
182 "paging request", addr);
183
184 show_pte(mm, addr);
185 die("Oops", regs, esr);
186 bust_spinlocks(0);
187 do_exit(SIGKILL);
188 }
189
190 /*
191 * Something tried to access memory that isn't in our memory map. User mode
192 * accesses just cause a SIGSEGV
193 */
194 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
195 unsigned int esr, unsigned int sig, int code,
196 struct pt_regs *regs)
197 {
198 struct siginfo si;
199
200 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
201 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
202 tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
203 addr, esr);
204 show_pte(tsk->mm, addr);
205 show_regs(regs);
206 }
207
208 tsk->thread.fault_address = addr;
209 tsk->thread.fault_code = esr;
210 si.si_signo = sig;
211 si.si_errno = 0;
212 si.si_code = code;
213 si.si_addr = (void __user *)addr;
214 force_sig_info(sig, &si, tsk);
215 }
216
217 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
218 {
219 struct task_struct *tsk = current;
220 struct mm_struct *mm = tsk->active_mm;
221
222 /*
223 * If we are in kernel mode at this point, we have no context to
224 * handle this fault with.
225 */
226 if (user_mode(regs))
227 __do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
228 else
229 __do_kernel_fault(mm, addr, esr, regs);
230 }
231
232 #define VM_FAULT_BADMAP 0x010000
233 #define VM_FAULT_BADACCESS 0x020000
234
235 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
236 unsigned int mm_flags, unsigned long vm_flags,
237 struct task_struct *tsk)
238 {
239 struct vm_area_struct *vma;
240 int fault;
241
242 vma = find_vma(mm, addr);
243 fault = VM_FAULT_BADMAP;
244 if (unlikely(!vma))
245 goto out;
246 if (unlikely(vma->vm_start > addr))
247 goto check_stack;
248
249 /*
250 * Ok, we have a good vm_area for this memory access, so we can handle
251 * it.
252 */
253 good_area:
254 /*
255 * Check that the permissions on the VMA allow for the fault which
256 * occurred.
257 */
258 if (!(vma->vm_flags & vm_flags)) {
259 fault = VM_FAULT_BADACCESS;
260 goto out;
261 }
262
263 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
264
265 check_stack:
266 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
267 goto good_area;
268 out:
269 return fault;
270 }
271
272 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs)
273 {
274 unsigned int ec = ESR_ELx_EC(esr);
275 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
276
277 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
278 return false;
279
280 if (system_uses_ttbr0_pan())
281 return fsc_type == ESR_ELx_FSC_FAULT &&
282 (regs->pstate & PSR_PAN_BIT);
283 else
284 return fsc_type == ESR_ELx_FSC_PERM;
285 }
286
287 static bool is_el0_instruction_abort(unsigned int esr)
288 {
289 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
290 }
291
292 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
293 struct pt_regs *regs)
294 {
295 struct task_struct *tsk;
296 struct mm_struct *mm;
297 int fault, sig, code;
298 unsigned long vm_flags = VM_READ | VM_WRITE;
299 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
300
301 if (notify_page_fault(regs, esr))
302 return 0;
303
304 tsk = current;
305 mm = tsk->mm;
306
307 /*
308 * If we're in an interrupt or have no user context, we must not take
309 * the fault.
310 */
311 if (faulthandler_disabled() || !mm)
312 goto no_context;
313
314 if (user_mode(regs))
315 mm_flags |= FAULT_FLAG_USER;
316
317 if (is_el0_instruction_abort(esr)) {
318 vm_flags = VM_EXEC;
319 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
320 vm_flags = VM_WRITE;
321 mm_flags |= FAULT_FLAG_WRITE;
322 }
323
324 if (addr < USER_DS && is_permission_fault(esr, regs)) {
325 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
326 if (regs->orig_addr_limit == KERNEL_DS)
327 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
328
329 if (is_el1_instruction_abort(esr))
330 die("Attempting to execute userspace memory", regs, esr);
331
332 if (!search_exception_tables(regs->pc))
333 die("Accessing user space memory outside uaccess.h routines", regs, esr);
334 }
335
336 /*
337 * As per x86, we may deadlock here. However, since the kernel only
338 * validly references user space from well defined areas of the code,
339 * we can bug out early if this is from code which shouldn't.
340 */
341 if (!down_read_trylock(&mm->mmap_sem)) {
342 if (!user_mode(regs) && !search_exception_tables(regs->pc))
343 goto no_context;
344 retry:
345 down_read(&mm->mmap_sem);
346 } else {
347 /*
348 * The above down_read_trylock() might have succeeded in which
349 * case, we'll have missed the might_sleep() from down_read().
350 */
351 might_sleep();
352 #ifdef CONFIG_DEBUG_VM
353 if (!user_mode(regs) && !search_exception_tables(regs->pc))
354 goto no_context;
355 #endif
356 }
357
358 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
359
360 /*
361 * If we need to retry but a fatal signal is pending, handle the
362 * signal first. We do not need to release the mmap_sem because it
363 * would already be released in __lock_page_or_retry in mm/filemap.c.
364 */
365 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
366 return 0;
367
368 /*
369 * Major/minor page fault accounting is only done on the initial
370 * attempt. If we go through a retry, it is extremely likely that the
371 * page will be found in page cache at that point.
372 */
373
374 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
375 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
376 if (fault & VM_FAULT_MAJOR) {
377 tsk->maj_flt++;
378 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
379 addr);
380 } else {
381 tsk->min_flt++;
382 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
383 addr);
384 }
385 if (fault & VM_FAULT_RETRY) {
386 /*
387 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
388 * starvation.
389 */
390 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
391 mm_flags |= FAULT_FLAG_TRIED;
392 goto retry;
393 }
394 }
395
396 up_read(&mm->mmap_sem);
397
398 /*
399 * Handle the "normal" case first - VM_FAULT_MAJOR
400 */
401 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
402 VM_FAULT_BADACCESS))))
403 return 0;
404
405 /*
406 * If we are in kernel mode at this point, we have no context to
407 * handle this fault with.
408 */
409 if (!user_mode(regs))
410 goto no_context;
411
412 if (fault & VM_FAULT_OOM) {
413 /*
414 * We ran out of memory, call the OOM killer, and return to
415 * userspace (which will retry the fault, or kill us if we got
416 * oom-killed).
417 */
418 pagefault_out_of_memory();
419 return 0;
420 }
421
422 if (fault & VM_FAULT_SIGBUS) {
423 /*
424 * We had some memory, but were unable to successfully fix up
425 * this page fault.
426 */
427 sig = SIGBUS;
428 code = BUS_ADRERR;
429 } else {
430 /*
431 * Something tried to access memory that isn't in our memory
432 * map.
433 */
434 sig = SIGSEGV;
435 code = fault == VM_FAULT_BADACCESS ?
436 SEGV_ACCERR : SEGV_MAPERR;
437 }
438
439 __do_user_fault(tsk, addr, esr, sig, code, regs);
440 return 0;
441
442 no_context:
443 __do_kernel_fault(mm, addr, esr, regs);
444 return 0;
445 }
446
447 /*
448 * First Level Translation Fault Handler
449 *
450 * We enter here because the first level page table doesn't contain a valid
451 * entry for the address.
452 *
453 * If the address is in kernel space (>= TASK_SIZE), then we are probably
454 * faulting in the vmalloc() area.
455 *
456 * If the init_task's first level page tables contains the relevant entry, we
457 * copy the it to this task. If not, we send the process a signal, fixup the
458 * exception, or oops the kernel.
459 *
460 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
461 * or a critical region, and should only copy the information from the master
462 * page table, nothing more.
463 */
464 static int __kprobes do_translation_fault(unsigned long addr,
465 unsigned int esr,
466 struct pt_regs *regs)
467 {
468 if (addr < TASK_SIZE)
469 return do_page_fault(addr, esr, regs);
470
471 do_bad_area(addr, esr, regs);
472 return 0;
473 }
474
475 static int do_alignment_fault(unsigned long addr, unsigned int esr,
476 struct pt_regs *regs)
477 {
478 do_bad_area(addr, esr, regs);
479 return 0;
480 }
481
482 /*
483 * This abort handler always returns "fault".
484 */
485 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
486 {
487 return 1;
488 }
489
490 static const struct fault_info {
491 int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
492 int sig;
493 int code;
494 const char *name;
495 } fault_info[] = {
496 { do_bad, SIGBUS, 0, "ttbr address size fault" },
497 { do_bad, SIGBUS, 0, "level 1 address size fault" },
498 { do_bad, SIGBUS, 0, "level 2 address size fault" },
499 { do_bad, SIGBUS, 0, "level 3 address size fault" },
500 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
501 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
502 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
503 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
504 { do_bad, SIGBUS, 0, "unknown 8" },
505 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
506 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
507 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
508 { do_bad, SIGBUS, 0, "unknown 12" },
509 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
510 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
511 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
512 { do_bad, SIGBUS, 0, "synchronous external abort" },
513 { do_bad, SIGBUS, 0, "unknown 17" },
514 { do_bad, SIGBUS, 0, "unknown 18" },
515 { do_bad, SIGBUS, 0, "unknown 19" },
516 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" },
517 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" },
518 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" },
519 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" },
520 { do_bad, SIGBUS, 0, "synchronous parity error" },
521 { do_bad, SIGBUS, 0, "unknown 25" },
522 { do_bad, SIGBUS, 0, "unknown 26" },
523 { do_bad, SIGBUS, 0, "unknown 27" },
524 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
525 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
526 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
527 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" },
528 { do_bad, SIGBUS, 0, "unknown 32" },
529 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
530 { do_bad, SIGBUS, 0, "unknown 34" },
531 { do_bad, SIGBUS, 0, "unknown 35" },
532 { do_bad, SIGBUS, 0, "unknown 36" },
533 { do_bad, SIGBUS, 0, "unknown 37" },
534 { do_bad, SIGBUS, 0, "unknown 38" },
535 { do_bad, SIGBUS, 0, "unknown 39" },
536 { do_bad, SIGBUS, 0, "unknown 40" },
537 { do_bad, SIGBUS, 0, "unknown 41" },
538 { do_bad, SIGBUS, 0, "unknown 42" },
539 { do_bad, SIGBUS, 0, "unknown 43" },
540 { do_bad, SIGBUS, 0, "unknown 44" },
541 { do_bad, SIGBUS, 0, "unknown 45" },
542 { do_bad, SIGBUS, 0, "unknown 46" },
543 { do_bad, SIGBUS, 0, "unknown 47" },
544 { do_bad, SIGBUS, 0, "TLB conflict abort" },
545 { do_bad, SIGBUS, 0, "unknown 49" },
546 { do_bad, SIGBUS, 0, "unknown 50" },
547 { do_bad, SIGBUS, 0, "unknown 51" },
548 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
549 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
550 { do_bad, SIGBUS, 0, "unknown 54" },
551 { do_bad, SIGBUS, 0, "unknown 55" },
552 { do_bad, SIGBUS, 0, "unknown 56" },
553 { do_bad, SIGBUS, 0, "unknown 57" },
554 { do_bad, SIGBUS, 0, "unknown 58" },
555 { do_bad, SIGBUS, 0, "unknown 59" },
556 { do_bad, SIGBUS, 0, "unknown 60" },
557 { do_bad, SIGBUS, 0, "section domain fault" },
558 { do_bad, SIGBUS, 0, "page domain fault" },
559 { do_bad, SIGBUS, 0, "unknown 63" },
560 };
561
562 static const char *fault_name(unsigned int esr)
563 {
564 const struct fault_info *inf = fault_info + (esr & 63);
565 return inf->name;
566 }
567
568 /*
569 * Dispatch a data abort to the relevant handler.
570 */
571 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
572 struct pt_regs *regs)
573 {
574 const struct fault_info *inf = fault_info + (esr & 63);
575 struct siginfo info;
576
577 if (!inf->fn(addr, esr, regs))
578 return;
579
580 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
581 inf->name, esr, addr);
582
583 info.si_signo = inf->sig;
584 info.si_errno = 0;
585 info.si_code = inf->code;
586 info.si_addr = (void __user *)addr;
587 arm64_notify_die("", regs, &info, esr);
588 }
589
590 /*
591 * Handle stack alignment exceptions.
592 */
593 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
594 unsigned int esr,
595 struct pt_regs *regs)
596 {
597 struct siginfo info;
598 struct task_struct *tsk = current;
599
600 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
601 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
602 tsk->comm, task_pid_nr(tsk),
603 esr_get_class_string(esr), (void *)regs->pc,
604 (void *)regs->sp);
605
606 info.si_signo = SIGBUS;
607 info.si_errno = 0;
608 info.si_code = BUS_ADRALN;
609 info.si_addr = (void __user *)addr;
610 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
611 }
612
613 int __init early_brk64(unsigned long addr, unsigned int esr,
614 struct pt_regs *regs);
615
616 /*
617 * __refdata because early_brk64 is __init, but the reference to it is
618 * clobbered at arch_initcall time.
619 * See traps.c and debug-monitors.c:debug_traps_init().
620 */
621 static struct fault_info __refdata debug_fault_info[] = {
622 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
623 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
624 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
625 { do_bad, SIGBUS, 0, "unknown 3" },
626 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
627 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
628 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
629 { do_bad, SIGBUS, 0, "unknown 7" },
630 };
631
632 void __init hook_debug_fault_code(int nr,
633 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
634 int sig, int code, const char *name)
635 {
636 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
637
638 debug_fault_info[nr].fn = fn;
639 debug_fault_info[nr].sig = sig;
640 debug_fault_info[nr].code = code;
641 debug_fault_info[nr].name = name;
642 }
643
644 asmlinkage int __exception do_debug_exception(unsigned long addr,
645 unsigned int esr,
646 struct pt_regs *regs)
647 {
648 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
649 struct siginfo info;
650 int rv;
651
652 /*
653 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
654 * already disabled to preserve the last enabled/disabled addresses.
655 */
656 if (interrupts_enabled(regs))
657 trace_hardirqs_off();
658
659 if (!inf->fn(addr, esr, regs)) {
660 rv = 1;
661 } else {
662 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
663 inf->name, esr, addr);
664
665 info.si_signo = inf->sig;
666 info.si_errno = 0;
667 info.si_code = inf->code;
668 info.si_addr = (void __user *)addr;
669 arm64_notify_die("", regs, &info, 0);
670 rv = 0;
671 }
672
673 if (interrupts_enabled(regs))
674 trace_hardirqs_on();
675
676 return rv;
677 }
678 NOKPROBE_SYMBOL(do_debug_exception);
679
680 #ifdef CONFIG_ARM64_PAN
681 int cpu_enable_pan(void *__unused)
682 {
683 /*
684 * We modify PSTATE. This won't work from irq context as the PSTATE
685 * is discarded once we return from the exception.
686 */
687 WARN_ON_ONCE(in_interrupt());
688
689 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
690 asm(SET_PSTATE_PAN(1));
691 return 0;
692 }
693 #endif /* CONFIG_ARM64_PAN */