]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/mm/fault.c
arm64: Move PTE_RDONLY bit handling out of set_pte_at()
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46
47 #include <acpi/ghes.h>
48
49 struct fault_info {
50 int (*fn)(unsigned long addr, unsigned int esr,
51 struct pt_regs *regs);
52 int sig;
53 int code;
54 const char *name;
55 };
56
57 static const struct fault_info fault_info[];
58
59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
60 {
61 return fault_info + (esr & 63);
62 }
63
64 #ifdef CONFIG_KPROBES
65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
66 {
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, esr))
73 ret = 1;
74 preempt_enable();
75 }
76
77 return ret;
78 }
79 #else
80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
81 {
82 return 0;
83 }
84 #endif
85
86 /*
87 * Dump out the page tables associated with 'addr' in the currently active mm.
88 */
89 void show_pte(unsigned long addr)
90 {
91 struct mm_struct *mm;
92 pgd_t *pgd;
93
94 if (addr < TASK_SIZE) {
95 /* TTBR0 */
96 mm = current->active_mm;
97 if (mm == &init_mm) {
98 pr_alert("[%016lx] user address but active_mm is swapper\n",
99 addr);
100 return;
101 }
102 } else if (addr >= VA_START) {
103 /* TTBR1 */
104 mm = &init_mm;
105 } else {
106 pr_alert("[%016lx] address between user and kernel address ranges\n",
107 addr);
108 return;
109 }
110
111 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
112 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
113 VA_BITS, mm->pgd);
114 pgd = pgd_offset(mm, addr);
115 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
116
117 do {
118 pud_t *pud;
119 pmd_t *pmd;
120 pte_t *pte;
121
122 if (pgd_none(*pgd) || pgd_bad(*pgd))
123 break;
124
125 pud = pud_offset(pgd, addr);
126 pr_cont(", *pud=%016llx", pud_val(*pud));
127 if (pud_none(*pud) || pud_bad(*pud))
128 break;
129
130 pmd = pmd_offset(pud, addr);
131 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
132 if (pmd_none(*pmd) || pmd_bad(*pmd))
133 break;
134
135 pte = pte_offset_map(pmd, addr);
136 pr_cont(", *pte=%016llx", pte_val(*pte));
137 pte_unmap(pte);
138 } while(0);
139
140 pr_cont("\n");
141 }
142
143 #ifdef CONFIG_ARM64_HW_AFDBM
144 /*
145 * This function sets the access flags (dirty, accessed), as well as write
146 * permission, and only to a more permissive setting.
147 *
148 * It needs to cope with hardware update of the accessed/dirty state by other
149 * agents in the system and can safely skip the __sync_icache_dcache() call as,
150 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
151 *
152 * Returns whether or not the PTE actually changed.
153 */
154 int ptep_set_access_flags(struct vm_area_struct *vma,
155 unsigned long address, pte_t *ptep,
156 pte_t entry, int dirty)
157 {
158 pteval_t old_pteval, pteval;
159
160 if (pte_same(*ptep, entry))
161 return 0;
162
163 /* only preserve the access flags and write permission */
164 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
165
166 /*
167 * Setting the flags must be done atomically to avoid racing with the
168 * hardware update of the access/dirty state. The PTE_RDONLY bit must
169 * be set to the most permissive (lowest value) of *ptep and entry
170 * (calculated as: a & b == ~(~a | ~b)).
171 */
172 pte_val(entry) ^= PTE_RDONLY;
173 pteval = READ_ONCE(pte_val(*ptep));
174 do {
175 old_pteval = pteval;
176 pteval ^= PTE_RDONLY;
177 pteval |= pte_val(entry);
178 pteval ^= PTE_RDONLY;
179 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
180 } while (pteval != old_pteval);
181
182 flush_tlb_fix_spurious_fault(vma, address);
183 return 1;
184 }
185 #endif
186
187 static bool is_el1_instruction_abort(unsigned int esr)
188 {
189 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
190 }
191
192 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
193 unsigned long addr)
194 {
195 unsigned int ec = ESR_ELx_EC(esr);
196 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
197
198 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
199 return false;
200
201 if (fsc_type == ESR_ELx_FSC_PERM)
202 return true;
203
204 if (addr < USER_DS && system_uses_ttbr0_pan())
205 return fsc_type == ESR_ELx_FSC_FAULT &&
206 (regs->pstate & PSR_PAN_BIT);
207
208 return false;
209 }
210
211 /*
212 * The kernel tried to access some page that wasn't present.
213 */
214 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
215 struct pt_regs *regs)
216 {
217 const char *msg;
218
219 /*
220 * Are we prepared to handle this kernel fault?
221 * We are almost certainly not prepared to handle instruction faults.
222 */
223 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
224 return;
225
226 /*
227 * No handler, we'll have to terminate things with extreme prejudice.
228 */
229 bust_spinlocks(1);
230
231 if (is_permission_fault(esr, regs, addr)) {
232 if (esr & ESR_ELx_WNR)
233 msg = "write to read-only memory";
234 else
235 msg = "read from unreadable memory";
236 } else if (addr < PAGE_SIZE) {
237 msg = "NULL pointer dereference";
238 } else {
239 msg = "paging request";
240 }
241
242 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
243 addr);
244
245 show_pte(addr);
246 die("Oops", regs, esr);
247 bust_spinlocks(0);
248 do_exit(SIGKILL);
249 }
250
251 /*
252 * Something tried to access memory that isn't in our memory map. User mode
253 * accesses just cause a SIGSEGV
254 */
255 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
256 unsigned int esr, unsigned int sig, int code,
257 struct pt_regs *regs, int fault)
258 {
259 struct siginfo si;
260 const struct fault_info *inf;
261 unsigned int lsb = 0;
262
263 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
264 inf = esr_to_fault_info(esr);
265 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
266 tsk->comm, task_pid_nr(tsk), inf->name, sig,
267 addr, esr);
268 print_vma_addr(KERN_CONT ", in ", regs->pc);
269 pr_cont("\n");
270 __show_regs(regs);
271 }
272
273 tsk->thread.fault_address = addr;
274 tsk->thread.fault_code = esr;
275 si.si_signo = sig;
276 si.si_errno = 0;
277 si.si_code = code;
278 si.si_addr = (void __user *)addr;
279 /*
280 * Either small page or large page may be poisoned.
281 * In other words, VM_FAULT_HWPOISON_LARGE and
282 * VM_FAULT_HWPOISON are mutually exclusive.
283 */
284 if (fault & VM_FAULT_HWPOISON_LARGE)
285 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
286 else if (fault & VM_FAULT_HWPOISON)
287 lsb = PAGE_SHIFT;
288 si.si_addr_lsb = lsb;
289
290 force_sig_info(sig, &si, tsk);
291 }
292
293 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
294 {
295 struct task_struct *tsk = current;
296 const struct fault_info *inf;
297
298 /*
299 * If we are in kernel mode at this point, we have no context to
300 * handle this fault with.
301 */
302 if (user_mode(regs)) {
303 inf = esr_to_fault_info(esr);
304 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
305 } else
306 __do_kernel_fault(addr, esr, regs);
307 }
308
309 #define VM_FAULT_BADMAP 0x010000
310 #define VM_FAULT_BADACCESS 0x020000
311
312 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
313 unsigned int mm_flags, unsigned long vm_flags,
314 struct task_struct *tsk)
315 {
316 struct vm_area_struct *vma;
317 int fault;
318
319 vma = find_vma(mm, addr);
320 fault = VM_FAULT_BADMAP;
321 if (unlikely(!vma))
322 goto out;
323 if (unlikely(vma->vm_start > addr))
324 goto check_stack;
325
326 /*
327 * Ok, we have a good vm_area for this memory access, so we can handle
328 * it.
329 */
330 good_area:
331 /*
332 * Check that the permissions on the VMA allow for the fault which
333 * occurred.
334 */
335 if (!(vma->vm_flags & vm_flags)) {
336 fault = VM_FAULT_BADACCESS;
337 goto out;
338 }
339
340 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
341
342 check_stack:
343 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
344 goto good_area;
345 out:
346 return fault;
347 }
348
349 static bool is_el0_instruction_abort(unsigned int esr)
350 {
351 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
352 }
353
354 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
355 struct pt_regs *regs)
356 {
357 struct task_struct *tsk;
358 struct mm_struct *mm;
359 int fault, sig, code, major = 0;
360 unsigned long vm_flags = VM_READ | VM_WRITE;
361 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
362
363 if (notify_page_fault(regs, esr))
364 return 0;
365
366 tsk = current;
367 mm = tsk->mm;
368
369 /*
370 * If we're in an interrupt or have no user context, we must not take
371 * the fault.
372 */
373 if (faulthandler_disabled() || !mm)
374 goto no_context;
375
376 if (user_mode(regs))
377 mm_flags |= FAULT_FLAG_USER;
378
379 if (is_el0_instruction_abort(esr)) {
380 vm_flags = VM_EXEC;
381 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
382 vm_flags = VM_WRITE;
383 mm_flags |= FAULT_FLAG_WRITE;
384 }
385
386 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
387 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
388 if (regs->orig_addr_limit == KERNEL_DS)
389 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
390
391 if (is_el1_instruction_abort(esr))
392 die("Attempting to execute userspace memory", regs, esr);
393
394 if (!search_exception_tables(regs->pc))
395 die("Accessing user space memory outside uaccess.h routines", regs, esr);
396 }
397
398 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
399
400 /*
401 * As per x86, we may deadlock here. However, since the kernel only
402 * validly references user space from well defined areas of the code,
403 * we can bug out early if this is from code which shouldn't.
404 */
405 if (!down_read_trylock(&mm->mmap_sem)) {
406 if (!user_mode(regs) && !search_exception_tables(regs->pc))
407 goto no_context;
408 retry:
409 down_read(&mm->mmap_sem);
410 } else {
411 /*
412 * The above down_read_trylock() might have succeeded in which
413 * case, we'll have missed the might_sleep() from down_read().
414 */
415 might_sleep();
416 #ifdef CONFIG_DEBUG_VM
417 if (!user_mode(regs) && !search_exception_tables(regs->pc))
418 goto no_context;
419 #endif
420 }
421
422 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
423 major |= fault & VM_FAULT_MAJOR;
424
425 if (fault & VM_FAULT_RETRY) {
426 /*
427 * If we need to retry but a fatal signal is pending,
428 * handle the signal first. We do not need to release
429 * the mmap_sem because it would already be released
430 * in __lock_page_or_retry in mm/filemap.c.
431 */
432 if (fatal_signal_pending(current)) {
433 if (!user_mode(regs))
434 goto no_context;
435 return 0;
436 }
437
438 /*
439 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
440 * starvation.
441 */
442 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
443 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
444 mm_flags |= FAULT_FLAG_TRIED;
445 goto retry;
446 }
447 }
448 up_read(&mm->mmap_sem);
449
450 /*
451 * Handle the "normal" (no error) case first.
452 */
453 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
454 VM_FAULT_BADACCESS)))) {
455 /*
456 * Major/minor page fault accounting is only done
457 * once. If we go through a retry, it is extremely
458 * likely that the page will be found in page cache at
459 * that point.
460 */
461 if (major) {
462 tsk->maj_flt++;
463 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
464 addr);
465 } else {
466 tsk->min_flt++;
467 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
468 addr);
469 }
470
471 return 0;
472 }
473
474 /*
475 * If we are in kernel mode at this point, we have no context to
476 * handle this fault with.
477 */
478 if (!user_mode(regs))
479 goto no_context;
480
481 if (fault & VM_FAULT_OOM) {
482 /*
483 * We ran out of memory, call the OOM killer, and return to
484 * userspace (which will retry the fault, or kill us if we got
485 * oom-killed).
486 */
487 pagefault_out_of_memory();
488 return 0;
489 }
490
491 if (fault & VM_FAULT_SIGBUS) {
492 /*
493 * We had some memory, but were unable to successfully fix up
494 * this page fault.
495 */
496 sig = SIGBUS;
497 code = BUS_ADRERR;
498 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
499 sig = SIGBUS;
500 code = BUS_MCEERR_AR;
501 } else {
502 /*
503 * Something tried to access memory that isn't in our memory
504 * map.
505 */
506 sig = SIGSEGV;
507 code = fault == VM_FAULT_BADACCESS ?
508 SEGV_ACCERR : SEGV_MAPERR;
509 }
510
511 __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
512 return 0;
513
514 no_context:
515 __do_kernel_fault(addr, esr, regs);
516 return 0;
517 }
518
519 /*
520 * First Level Translation Fault Handler
521 *
522 * We enter here because the first level page table doesn't contain a valid
523 * entry for the address.
524 *
525 * If the address is in kernel space (>= TASK_SIZE), then we are probably
526 * faulting in the vmalloc() area.
527 *
528 * If the init_task's first level page tables contains the relevant entry, we
529 * copy the it to this task. If not, we send the process a signal, fixup the
530 * exception, or oops the kernel.
531 *
532 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
533 * or a critical region, and should only copy the information from the master
534 * page table, nothing more.
535 */
536 static int __kprobes do_translation_fault(unsigned long addr,
537 unsigned int esr,
538 struct pt_regs *regs)
539 {
540 if (addr < TASK_SIZE)
541 return do_page_fault(addr, esr, regs);
542
543 do_bad_area(addr, esr, regs);
544 return 0;
545 }
546
547 static int do_alignment_fault(unsigned long addr, unsigned int esr,
548 struct pt_regs *regs)
549 {
550 do_bad_area(addr, esr, regs);
551 return 0;
552 }
553
554 /*
555 * This abort handler always returns "fault".
556 */
557 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
558 {
559 return 1;
560 }
561
562 /*
563 * This abort handler deals with Synchronous External Abort.
564 * It calls notifiers, and then returns "fault".
565 */
566 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
567 {
568 struct siginfo info;
569 const struct fault_info *inf;
570 int ret = 0;
571
572 inf = esr_to_fault_info(esr);
573 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
574 inf->name, esr, addr);
575
576 /*
577 * Synchronous aborts may interrupt code which had interrupts masked.
578 * Before calling out into the wider kernel tell the interested
579 * subsystems.
580 */
581 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
582 if (interrupts_enabled(regs))
583 nmi_enter();
584
585 ret = ghes_notify_sea();
586
587 if (interrupts_enabled(regs))
588 nmi_exit();
589 }
590
591 info.si_signo = SIGBUS;
592 info.si_errno = 0;
593 info.si_code = 0;
594 if (esr & ESR_ELx_FnV)
595 info.si_addr = NULL;
596 else
597 info.si_addr = (void __user *)addr;
598 arm64_notify_die("", regs, &info, esr);
599
600 return ret;
601 }
602
603 static const struct fault_info fault_info[] = {
604 { do_bad, SIGBUS, 0, "ttbr address size fault" },
605 { do_bad, SIGBUS, 0, "level 1 address size fault" },
606 { do_bad, SIGBUS, 0, "level 2 address size fault" },
607 { do_bad, SIGBUS, 0, "level 3 address size fault" },
608 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
609 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
610 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
611 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
612 { do_bad, SIGBUS, 0, "unknown 8" },
613 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
614 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
615 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
616 { do_bad, SIGBUS, 0, "unknown 12" },
617 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
618 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
619 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
620 { do_sea, SIGBUS, 0, "synchronous external abort" },
621 { do_bad, SIGBUS, 0, "unknown 17" },
622 { do_bad, SIGBUS, 0, "unknown 18" },
623 { do_bad, SIGBUS, 0, "unknown 19" },
624 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" },
625 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" },
626 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" },
627 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" },
628 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" },
629 { do_bad, SIGBUS, 0, "unknown 25" },
630 { do_bad, SIGBUS, 0, "unknown 26" },
631 { do_bad, SIGBUS, 0, "unknown 27" },
632 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" },
633 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" },
634 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" },
635 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" },
636 { do_bad, SIGBUS, 0, "unknown 32" },
637 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
638 { do_bad, SIGBUS, 0, "unknown 34" },
639 { do_bad, SIGBUS, 0, "unknown 35" },
640 { do_bad, SIGBUS, 0, "unknown 36" },
641 { do_bad, SIGBUS, 0, "unknown 37" },
642 { do_bad, SIGBUS, 0, "unknown 38" },
643 { do_bad, SIGBUS, 0, "unknown 39" },
644 { do_bad, SIGBUS, 0, "unknown 40" },
645 { do_bad, SIGBUS, 0, "unknown 41" },
646 { do_bad, SIGBUS, 0, "unknown 42" },
647 { do_bad, SIGBUS, 0, "unknown 43" },
648 { do_bad, SIGBUS, 0, "unknown 44" },
649 { do_bad, SIGBUS, 0, "unknown 45" },
650 { do_bad, SIGBUS, 0, "unknown 46" },
651 { do_bad, SIGBUS, 0, "unknown 47" },
652 { do_bad, SIGBUS, 0, "TLB conflict abort" },
653 { do_bad, SIGBUS, 0, "unknown 49" },
654 { do_bad, SIGBUS, 0, "unknown 50" },
655 { do_bad, SIGBUS, 0, "unknown 51" },
656 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
657 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
658 { do_bad, SIGBUS, 0, "unknown 54" },
659 { do_bad, SIGBUS, 0, "unknown 55" },
660 { do_bad, SIGBUS, 0, "unknown 56" },
661 { do_bad, SIGBUS, 0, "unknown 57" },
662 { do_bad, SIGBUS, 0, "unknown 58" },
663 { do_bad, SIGBUS, 0, "unknown 59" },
664 { do_bad, SIGBUS, 0, "unknown 60" },
665 { do_bad, SIGBUS, 0, "section domain fault" },
666 { do_bad, SIGBUS, 0, "page domain fault" },
667 { do_bad, SIGBUS, 0, "unknown 63" },
668 };
669
670 /*
671 * Handle Synchronous External Aborts that occur in a guest kernel.
672 *
673 * The return value will be zero if the SEA was successfully handled
674 * and non-zero if there was an error processing the error or there was
675 * no error to process.
676 */
677 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
678 {
679 int ret = -ENOENT;
680
681 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
682 ret = ghes_notify_sea();
683
684 return ret;
685 }
686
687 /*
688 * Dispatch a data abort to the relevant handler.
689 */
690 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
691 struct pt_regs *regs)
692 {
693 const struct fault_info *inf = esr_to_fault_info(esr);
694 struct siginfo info;
695
696 if (!inf->fn(addr, esr, regs))
697 return;
698
699 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
700 inf->name, esr, addr);
701
702 info.si_signo = inf->sig;
703 info.si_errno = 0;
704 info.si_code = inf->code;
705 info.si_addr = (void __user *)addr;
706 arm64_notify_die("", regs, &info, esr);
707 }
708
709 /*
710 * Handle stack alignment exceptions.
711 */
712 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
713 unsigned int esr,
714 struct pt_regs *regs)
715 {
716 struct siginfo info;
717 struct task_struct *tsk = current;
718
719 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
720 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
721 tsk->comm, task_pid_nr(tsk),
722 esr_get_class_string(esr), (void *)regs->pc,
723 (void *)regs->sp);
724
725 info.si_signo = SIGBUS;
726 info.si_errno = 0;
727 info.si_code = BUS_ADRALN;
728 info.si_addr = (void __user *)addr;
729 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
730 }
731
732 int __init early_brk64(unsigned long addr, unsigned int esr,
733 struct pt_regs *regs);
734
735 /*
736 * __refdata because early_brk64 is __init, but the reference to it is
737 * clobbered at arch_initcall time.
738 * See traps.c and debug-monitors.c:debug_traps_init().
739 */
740 static struct fault_info __refdata debug_fault_info[] = {
741 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
742 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
743 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
744 { do_bad, SIGBUS, 0, "unknown 3" },
745 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
746 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
747 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
748 { do_bad, SIGBUS, 0, "unknown 7" },
749 };
750
751 void __init hook_debug_fault_code(int nr,
752 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
753 int sig, int code, const char *name)
754 {
755 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
756
757 debug_fault_info[nr].fn = fn;
758 debug_fault_info[nr].sig = sig;
759 debug_fault_info[nr].code = code;
760 debug_fault_info[nr].name = name;
761 }
762
763 asmlinkage int __exception do_debug_exception(unsigned long addr,
764 unsigned int esr,
765 struct pt_regs *regs)
766 {
767 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
768 struct siginfo info;
769 int rv;
770
771 /*
772 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
773 * already disabled to preserve the last enabled/disabled addresses.
774 */
775 if (interrupts_enabled(regs))
776 trace_hardirqs_off();
777
778 if (!inf->fn(addr, esr, regs)) {
779 rv = 1;
780 } else {
781 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
782 inf->name, esr, addr);
783
784 info.si_signo = inf->sig;
785 info.si_errno = 0;
786 info.si_code = inf->code;
787 info.si_addr = (void __user *)addr;
788 arm64_notify_die("", regs, &info, 0);
789 rv = 0;
790 }
791
792 if (interrupts_enabled(regs))
793 trace_hardirqs_on();
794
795 return rv;
796 }
797 NOKPROBE_SYMBOL(do_debug_exception);
798
799 #ifdef CONFIG_ARM64_PAN
800 int cpu_enable_pan(void *__unused)
801 {
802 /*
803 * We modify PSTATE. This won't work from irq context as the PSTATE
804 * is discarded once we return from the exception.
805 */
806 WARN_ON_ONCE(in_interrupt());
807
808 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
809 asm(SET_PSTATE_PAN(1));
810 return 0;
811 }
812 #endif /* CONFIG_ARM64_PAN */