]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/mm/fault.c
Merge tag 'imx-fixes-4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/shawngu...
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35
36 #include <asm/bug.h>
37 #include <asm/cpufeature.h>
38 #include <asm/exception.h>
39 #include <asm/debug-monitors.h>
40 #include <asm/esr.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45
46 #include <acpi/ghes.h>
47
48 struct fault_info {
49 int (*fn)(unsigned long addr, unsigned int esr,
50 struct pt_regs *regs);
51 int sig;
52 int code;
53 const char *name;
54 };
55
56 static const struct fault_info fault_info[];
57
58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59 {
60 return fault_info + (esr & 63);
61 }
62
63 #ifdef CONFIG_KPROBES
64 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
65 {
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (!user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, esr))
72 ret = 1;
73 preempt_enable();
74 }
75
76 return ret;
77 }
78 #else
79 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
80 {
81 return 0;
82 }
83 #endif
84
85 /*
86 * Dump out the page tables associated with 'addr' in the currently active mm.
87 */
88 void show_pte(unsigned long addr)
89 {
90 struct mm_struct *mm;
91 pgd_t *pgd;
92
93 if (addr < TASK_SIZE) {
94 /* TTBR0 */
95 mm = current->active_mm;
96 if (mm == &init_mm) {
97 pr_alert("[%016lx] user address but active_mm is swapper\n",
98 addr);
99 return;
100 }
101 } else if (addr >= VA_START) {
102 /* TTBR1 */
103 mm = &init_mm;
104 } else {
105 pr_alert("[%016lx] address between user and kernel address ranges\n",
106 addr);
107 return;
108 }
109
110 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
111 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
112 VA_BITS, mm->pgd);
113 pgd = pgd_offset(mm, addr);
114 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115
116 do {
117 pud_t *pud;
118 pmd_t *pmd;
119 pte_t *pte;
120
121 if (pgd_none(*pgd) || pgd_bad(*pgd))
122 break;
123
124 pud = pud_offset(pgd, addr);
125 pr_cont(", *pud=%016llx", pud_val(*pud));
126 if (pud_none(*pud) || pud_bad(*pud))
127 break;
128
129 pmd = pmd_offset(pud, addr);
130 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131 if (pmd_none(*pmd) || pmd_bad(*pmd))
132 break;
133
134 pte = pte_offset_map(pmd, addr);
135 pr_cont(", *pte=%016llx", pte_val(*pte));
136 pte_unmap(pte);
137 } while(0);
138
139 pr_cont("\n");
140 }
141
142 #ifdef CONFIG_ARM64_HW_AFDBM
143 /*
144 * This function sets the access flags (dirty, accessed), as well as write
145 * permission, and only to a more permissive setting.
146 *
147 * It needs to cope with hardware update of the accessed/dirty state by other
148 * agents in the system and can safely skip the __sync_icache_dcache() call as,
149 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
150 *
151 * Returns whether or not the PTE actually changed.
152 */
153 int ptep_set_access_flags(struct vm_area_struct *vma,
154 unsigned long address, pte_t *ptep,
155 pte_t entry, int dirty)
156 {
157 pteval_t old_pteval;
158 unsigned int tmp;
159
160 if (pte_same(*ptep, entry))
161 return 0;
162
163 /* only preserve the access flags and write permission */
164 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
165
166 /* set PTE_RDONLY if actual read-only or clean PTE */
167 if (!pte_write(entry) || !pte_sw_dirty(entry))
168 pte_val(entry) |= PTE_RDONLY;
169
170 /*
171 * Setting the flags must be done atomically to avoid racing with the
172 * hardware update of the access/dirty state. The PTE_RDONLY bit must
173 * be set to the most permissive (lowest value) of *ptep and entry
174 * (calculated as: a & b == ~(~a | ~b)).
175 */
176 pte_val(entry) ^= PTE_RDONLY;
177 asm volatile("// ptep_set_access_flags\n"
178 " prfm pstl1strm, %2\n"
179 "1: ldxr %0, %2\n"
180 " eor %0, %0, %3 // negate PTE_RDONLY in *ptep\n"
181 " orr %0, %0, %4 // set flags\n"
182 " eor %0, %0, %3 // negate final PTE_RDONLY\n"
183 " stxr %w1, %0, %2\n"
184 " cbnz %w1, 1b\n"
185 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
186 : "L" (PTE_RDONLY), "r" (pte_val(entry)));
187
188 flush_tlb_fix_spurious_fault(vma, address);
189 return 1;
190 }
191 #endif
192
193 static bool is_el1_instruction_abort(unsigned int esr)
194 {
195 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
196 }
197
198 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
199 unsigned long addr)
200 {
201 unsigned int ec = ESR_ELx_EC(esr);
202 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
203
204 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
205 return false;
206
207 if (fsc_type == ESR_ELx_FSC_PERM)
208 return true;
209
210 if (addr < USER_DS && system_uses_ttbr0_pan())
211 return fsc_type == ESR_ELx_FSC_FAULT &&
212 (regs->pstate & PSR_PAN_BIT);
213
214 return false;
215 }
216
217 /*
218 * The kernel tried to access some page that wasn't present.
219 */
220 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
221 struct pt_regs *regs)
222 {
223 const char *msg;
224
225 /*
226 * Are we prepared to handle this kernel fault?
227 * We are almost certainly not prepared to handle instruction faults.
228 */
229 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
230 return;
231
232 /*
233 * No handler, we'll have to terminate things with extreme prejudice.
234 */
235 bust_spinlocks(1);
236
237 if (is_permission_fault(esr, regs, addr)) {
238 if (esr & ESR_ELx_WNR)
239 msg = "write to read-only memory";
240 else
241 msg = "read from unreadable memory";
242 } else if (addr < PAGE_SIZE) {
243 msg = "NULL pointer dereference";
244 } else {
245 msg = "paging request";
246 }
247
248 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
249 addr);
250
251 show_pte(addr);
252 die("Oops", regs, esr);
253 bust_spinlocks(0);
254 do_exit(SIGKILL);
255 }
256
257 /*
258 * Something tried to access memory that isn't in our memory map. User mode
259 * accesses just cause a SIGSEGV
260 */
261 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
262 unsigned int esr, unsigned int sig, int code,
263 struct pt_regs *regs, int fault)
264 {
265 struct siginfo si;
266 const struct fault_info *inf;
267 unsigned int lsb = 0;
268
269 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
270 inf = esr_to_fault_info(esr);
271 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
272 tsk->comm, task_pid_nr(tsk), inf->name, sig,
273 addr, esr);
274 print_vma_addr(KERN_CONT ", in ", regs->pc);
275 pr_cont("\n");
276 __show_regs(regs);
277 }
278
279 tsk->thread.fault_address = addr;
280 tsk->thread.fault_code = esr;
281 si.si_signo = sig;
282 si.si_errno = 0;
283 si.si_code = code;
284 si.si_addr = (void __user *)addr;
285 /*
286 * Either small page or large page may be poisoned.
287 * In other words, VM_FAULT_HWPOISON_LARGE and
288 * VM_FAULT_HWPOISON are mutually exclusive.
289 */
290 if (fault & VM_FAULT_HWPOISON_LARGE)
291 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
292 else if (fault & VM_FAULT_HWPOISON)
293 lsb = PAGE_SHIFT;
294 si.si_addr_lsb = lsb;
295
296 force_sig_info(sig, &si, tsk);
297 }
298
299 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
300 {
301 struct task_struct *tsk = current;
302 const struct fault_info *inf;
303
304 /*
305 * If we are in kernel mode at this point, we have no context to
306 * handle this fault with.
307 */
308 if (user_mode(regs)) {
309 inf = esr_to_fault_info(esr);
310 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
311 } else
312 __do_kernel_fault(addr, esr, regs);
313 }
314
315 #define VM_FAULT_BADMAP 0x010000
316 #define VM_FAULT_BADACCESS 0x020000
317
318 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
319 unsigned int mm_flags, unsigned long vm_flags,
320 struct task_struct *tsk)
321 {
322 struct vm_area_struct *vma;
323 int fault;
324
325 vma = find_vma(mm, addr);
326 fault = VM_FAULT_BADMAP;
327 if (unlikely(!vma))
328 goto out;
329 if (unlikely(vma->vm_start > addr))
330 goto check_stack;
331
332 /*
333 * Ok, we have a good vm_area for this memory access, so we can handle
334 * it.
335 */
336 good_area:
337 /*
338 * Check that the permissions on the VMA allow for the fault which
339 * occurred.
340 */
341 if (!(vma->vm_flags & vm_flags)) {
342 fault = VM_FAULT_BADACCESS;
343 goto out;
344 }
345
346 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
347
348 check_stack:
349 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
350 goto good_area;
351 out:
352 return fault;
353 }
354
355 static bool is_el0_instruction_abort(unsigned int esr)
356 {
357 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
358 }
359
360 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
361 struct pt_regs *regs)
362 {
363 struct task_struct *tsk;
364 struct mm_struct *mm;
365 int fault, sig, code, major = 0;
366 unsigned long vm_flags = VM_READ | VM_WRITE;
367 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
368
369 if (notify_page_fault(regs, esr))
370 return 0;
371
372 tsk = current;
373 mm = tsk->mm;
374
375 /*
376 * If we're in an interrupt or have no user context, we must not take
377 * the fault.
378 */
379 if (faulthandler_disabled() || !mm)
380 goto no_context;
381
382 if (user_mode(regs))
383 mm_flags |= FAULT_FLAG_USER;
384
385 if (is_el0_instruction_abort(esr)) {
386 vm_flags = VM_EXEC;
387 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
388 vm_flags = VM_WRITE;
389 mm_flags |= FAULT_FLAG_WRITE;
390 }
391
392 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
393 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
394 if (regs->orig_addr_limit == KERNEL_DS)
395 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
396
397 if (is_el1_instruction_abort(esr))
398 die("Attempting to execute userspace memory", regs, esr);
399
400 if (!search_exception_tables(regs->pc))
401 die("Accessing user space memory outside uaccess.h routines", regs, esr);
402 }
403
404 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
405
406 /*
407 * As per x86, we may deadlock here. However, since the kernel only
408 * validly references user space from well defined areas of the code,
409 * we can bug out early if this is from code which shouldn't.
410 */
411 if (!down_read_trylock(&mm->mmap_sem)) {
412 if (!user_mode(regs) && !search_exception_tables(regs->pc))
413 goto no_context;
414 retry:
415 down_read(&mm->mmap_sem);
416 } else {
417 /*
418 * The above down_read_trylock() might have succeeded in which
419 * case, we'll have missed the might_sleep() from down_read().
420 */
421 might_sleep();
422 #ifdef CONFIG_DEBUG_VM
423 if (!user_mode(regs) && !search_exception_tables(regs->pc))
424 goto no_context;
425 #endif
426 }
427
428 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
429 major |= fault & VM_FAULT_MAJOR;
430
431 if (fault & VM_FAULT_RETRY) {
432 /*
433 * If we need to retry but a fatal signal is pending,
434 * handle the signal first. We do not need to release
435 * the mmap_sem because it would already be released
436 * in __lock_page_or_retry in mm/filemap.c.
437 */
438 if (fatal_signal_pending(current))
439 return 0;
440
441 /*
442 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
443 * starvation.
444 */
445 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
446 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
447 mm_flags |= FAULT_FLAG_TRIED;
448 goto retry;
449 }
450 }
451 up_read(&mm->mmap_sem);
452
453 /*
454 * Handle the "normal" (no error) case first.
455 */
456 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
457 VM_FAULT_BADACCESS)))) {
458 /*
459 * Major/minor page fault accounting is only done
460 * once. If we go through a retry, it is extremely
461 * likely that the page will be found in page cache at
462 * that point.
463 */
464 if (major) {
465 tsk->maj_flt++;
466 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
467 addr);
468 } else {
469 tsk->min_flt++;
470 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
471 addr);
472 }
473
474 return 0;
475 }
476
477 /*
478 * If we are in kernel mode at this point, we have no context to
479 * handle this fault with.
480 */
481 if (!user_mode(regs))
482 goto no_context;
483
484 if (fault & VM_FAULT_OOM) {
485 /*
486 * We ran out of memory, call the OOM killer, and return to
487 * userspace (which will retry the fault, or kill us if we got
488 * oom-killed).
489 */
490 pagefault_out_of_memory();
491 return 0;
492 }
493
494 if (fault & VM_FAULT_SIGBUS) {
495 /*
496 * We had some memory, but were unable to successfully fix up
497 * this page fault.
498 */
499 sig = SIGBUS;
500 code = BUS_ADRERR;
501 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
502 sig = SIGBUS;
503 code = BUS_MCEERR_AR;
504 } else {
505 /*
506 * Something tried to access memory that isn't in our memory
507 * map.
508 */
509 sig = SIGSEGV;
510 code = fault == VM_FAULT_BADACCESS ?
511 SEGV_ACCERR : SEGV_MAPERR;
512 }
513
514 __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
515 return 0;
516
517 no_context:
518 __do_kernel_fault(addr, esr, regs);
519 return 0;
520 }
521
522 /*
523 * First Level Translation Fault Handler
524 *
525 * We enter here because the first level page table doesn't contain a valid
526 * entry for the address.
527 *
528 * If the address is in kernel space (>= TASK_SIZE), then we are probably
529 * faulting in the vmalloc() area.
530 *
531 * If the init_task's first level page tables contains the relevant entry, we
532 * copy the it to this task. If not, we send the process a signal, fixup the
533 * exception, or oops the kernel.
534 *
535 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
536 * or a critical region, and should only copy the information from the master
537 * page table, nothing more.
538 */
539 static int __kprobes do_translation_fault(unsigned long addr,
540 unsigned int esr,
541 struct pt_regs *regs)
542 {
543 if (addr < TASK_SIZE)
544 return do_page_fault(addr, esr, regs);
545
546 do_bad_area(addr, esr, regs);
547 return 0;
548 }
549
550 static int do_alignment_fault(unsigned long addr, unsigned int esr,
551 struct pt_regs *regs)
552 {
553 do_bad_area(addr, esr, regs);
554 return 0;
555 }
556
557 /*
558 * This abort handler always returns "fault".
559 */
560 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
561 {
562 return 1;
563 }
564
565 /*
566 * This abort handler deals with Synchronous External Abort.
567 * It calls notifiers, and then returns "fault".
568 */
569 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
570 {
571 struct siginfo info;
572 const struct fault_info *inf;
573 int ret = 0;
574
575 inf = esr_to_fault_info(esr);
576 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
577 inf->name, esr, addr);
578
579 /*
580 * Synchronous aborts may interrupt code which had interrupts masked.
581 * Before calling out into the wider kernel tell the interested
582 * subsystems.
583 */
584 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
585 if (interrupts_enabled(regs))
586 nmi_enter();
587
588 ret = ghes_notify_sea();
589
590 if (interrupts_enabled(regs))
591 nmi_exit();
592 }
593
594 info.si_signo = SIGBUS;
595 info.si_errno = 0;
596 info.si_code = 0;
597 if (esr & ESR_ELx_FnV)
598 info.si_addr = NULL;
599 else
600 info.si_addr = (void __user *)addr;
601 arm64_notify_die("", regs, &info, esr);
602
603 return ret;
604 }
605
606 static const struct fault_info fault_info[] = {
607 { do_bad, SIGBUS, 0, "ttbr address size fault" },
608 { do_bad, SIGBUS, 0, "level 1 address size fault" },
609 { do_bad, SIGBUS, 0, "level 2 address size fault" },
610 { do_bad, SIGBUS, 0, "level 3 address size fault" },
611 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
612 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
613 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
614 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
615 { do_bad, SIGBUS, 0, "unknown 8" },
616 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
617 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
618 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
619 { do_bad, SIGBUS, 0, "unknown 12" },
620 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
621 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
622 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
623 { do_sea, SIGBUS, 0, "synchronous external abort" },
624 { do_bad, SIGBUS, 0, "unknown 17" },
625 { do_bad, SIGBUS, 0, "unknown 18" },
626 { do_bad, SIGBUS, 0, "unknown 19" },
627 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" },
628 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" },
629 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" },
630 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" },
631 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" },
632 { do_bad, SIGBUS, 0, "unknown 25" },
633 { do_bad, SIGBUS, 0, "unknown 26" },
634 { do_bad, SIGBUS, 0, "unknown 27" },
635 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" },
636 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" },
637 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" },
638 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" },
639 { do_bad, SIGBUS, 0, "unknown 32" },
640 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
641 { do_bad, SIGBUS, 0, "unknown 34" },
642 { do_bad, SIGBUS, 0, "unknown 35" },
643 { do_bad, SIGBUS, 0, "unknown 36" },
644 { do_bad, SIGBUS, 0, "unknown 37" },
645 { do_bad, SIGBUS, 0, "unknown 38" },
646 { do_bad, SIGBUS, 0, "unknown 39" },
647 { do_bad, SIGBUS, 0, "unknown 40" },
648 { do_bad, SIGBUS, 0, "unknown 41" },
649 { do_bad, SIGBUS, 0, "unknown 42" },
650 { do_bad, SIGBUS, 0, "unknown 43" },
651 { do_bad, SIGBUS, 0, "unknown 44" },
652 { do_bad, SIGBUS, 0, "unknown 45" },
653 { do_bad, SIGBUS, 0, "unknown 46" },
654 { do_bad, SIGBUS, 0, "unknown 47" },
655 { do_bad, SIGBUS, 0, "TLB conflict abort" },
656 { do_bad, SIGBUS, 0, "unknown 49" },
657 { do_bad, SIGBUS, 0, "unknown 50" },
658 { do_bad, SIGBUS, 0, "unknown 51" },
659 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
660 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
661 { do_bad, SIGBUS, 0, "unknown 54" },
662 { do_bad, SIGBUS, 0, "unknown 55" },
663 { do_bad, SIGBUS, 0, "unknown 56" },
664 { do_bad, SIGBUS, 0, "unknown 57" },
665 { do_bad, SIGBUS, 0, "unknown 58" },
666 { do_bad, SIGBUS, 0, "unknown 59" },
667 { do_bad, SIGBUS, 0, "unknown 60" },
668 { do_bad, SIGBUS, 0, "section domain fault" },
669 { do_bad, SIGBUS, 0, "page domain fault" },
670 { do_bad, SIGBUS, 0, "unknown 63" },
671 };
672
673 /*
674 * Handle Synchronous External Aborts that occur in a guest kernel.
675 *
676 * The return value will be zero if the SEA was successfully handled
677 * and non-zero if there was an error processing the error or there was
678 * no error to process.
679 */
680 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
681 {
682 int ret = -ENOENT;
683
684 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
685 ret = ghes_notify_sea();
686
687 return ret;
688 }
689
690 /*
691 * Dispatch a data abort to the relevant handler.
692 */
693 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
694 struct pt_regs *regs)
695 {
696 const struct fault_info *inf = esr_to_fault_info(esr);
697 struct siginfo info;
698
699 if (!inf->fn(addr, esr, regs))
700 return;
701
702 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
703 inf->name, esr, addr);
704
705 info.si_signo = inf->sig;
706 info.si_errno = 0;
707 info.si_code = inf->code;
708 info.si_addr = (void __user *)addr;
709 arm64_notify_die("", regs, &info, esr);
710 }
711
712 /*
713 * Handle stack alignment exceptions.
714 */
715 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
716 unsigned int esr,
717 struct pt_regs *regs)
718 {
719 struct siginfo info;
720 struct task_struct *tsk = current;
721
722 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
723 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
724 tsk->comm, task_pid_nr(tsk),
725 esr_get_class_string(esr), (void *)regs->pc,
726 (void *)regs->sp);
727
728 info.si_signo = SIGBUS;
729 info.si_errno = 0;
730 info.si_code = BUS_ADRALN;
731 info.si_addr = (void __user *)addr;
732 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
733 }
734
735 int __init early_brk64(unsigned long addr, unsigned int esr,
736 struct pt_regs *regs);
737
738 /*
739 * __refdata because early_brk64 is __init, but the reference to it is
740 * clobbered at arch_initcall time.
741 * See traps.c and debug-monitors.c:debug_traps_init().
742 */
743 static struct fault_info __refdata debug_fault_info[] = {
744 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
745 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
746 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
747 { do_bad, SIGBUS, 0, "unknown 3" },
748 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
749 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
750 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
751 { do_bad, SIGBUS, 0, "unknown 7" },
752 };
753
754 void __init hook_debug_fault_code(int nr,
755 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
756 int sig, int code, const char *name)
757 {
758 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
759
760 debug_fault_info[nr].fn = fn;
761 debug_fault_info[nr].sig = sig;
762 debug_fault_info[nr].code = code;
763 debug_fault_info[nr].name = name;
764 }
765
766 asmlinkage int __exception do_debug_exception(unsigned long addr,
767 unsigned int esr,
768 struct pt_regs *regs)
769 {
770 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
771 struct siginfo info;
772 int rv;
773
774 /*
775 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
776 * already disabled to preserve the last enabled/disabled addresses.
777 */
778 if (interrupts_enabled(regs))
779 trace_hardirqs_off();
780
781 if (!inf->fn(addr, esr, regs)) {
782 rv = 1;
783 } else {
784 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
785 inf->name, esr, addr);
786
787 info.si_signo = inf->sig;
788 info.si_errno = 0;
789 info.si_code = inf->code;
790 info.si_addr = (void __user *)addr;
791 arm64_notify_die("", regs, &info, 0);
792 rv = 0;
793 }
794
795 if (interrupts_enabled(regs))
796 trace_hardirqs_on();
797
798 return rv;
799 }
800 NOKPROBE_SYMBOL(do_debug_exception);
801
802 #ifdef CONFIG_ARM64_PAN
803 int cpu_enable_pan(void *__unused)
804 {
805 /*
806 * We modify PSTATE. This won't work from irq context as the PSTATE
807 * is discarded once we return from the exception.
808 */
809 WARN_ON_ONCE(in_interrupt());
810
811 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
812 asm(SET_PSTATE_PAN(1));
813 return 0;
814 }
815 #endif /* CONFIG_ARM64_PAN */