]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/mm/fault.c
Merge tag 'irqchip-4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm...
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / mm / fault.c
1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35
36 #include <asm/bug.h>
37 #include <asm/cpufeature.h>
38 #include <asm/exception.h>
39 #include <asm/debug-monitors.h>
40 #include <asm/esr.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45
46 #include <acpi/ghes.h>
47
48 struct fault_info {
49 int (*fn)(unsigned long addr, unsigned int esr,
50 struct pt_regs *regs);
51 int sig;
52 int code;
53 const char *name;
54 };
55
56 static const struct fault_info fault_info[];
57
58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59 {
60 return fault_info + (esr & 63);
61 }
62
63 #ifdef CONFIG_KPROBES
64 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
65 {
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (!user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, esr))
72 ret = 1;
73 preempt_enable();
74 }
75
76 return ret;
77 }
78 #else
79 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
80 {
81 return 0;
82 }
83 #endif
84
85 /*
86 * Dump out the page tables associated with 'addr' in the currently active mm.
87 */
88 void show_pte(unsigned long addr)
89 {
90 struct mm_struct *mm;
91 pgd_t *pgd;
92
93 if (addr < TASK_SIZE) {
94 /* TTBR0 */
95 mm = current->active_mm;
96 if (mm == &init_mm) {
97 pr_alert("[%016lx] user address but active_mm is swapper\n",
98 addr);
99 return;
100 }
101 } else if (addr >= VA_START) {
102 /* TTBR1 */
103 mm = &init_mm;
104 } else {
105 pr_alert("[%016lx] address between user and kernel address ranges\n",
106 addr);
107 return;
108 }
109
110 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
111 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
112 VA_BITS, mm->pgd);
113 pgd = pgd_offset(mm, addr);
114 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115
116 do {
117 pud_t *pud;
118 pmd_t *pmd;
119 pte_t *pte;
120
121 if (pgd_none(*pgd) || pgd_bad(*pgd))
122 break;
123
124 pud = pud_offset(pgd, addr);
125 pr_cont(", *pud=%016llx", pud_val(*pud));
126 if (pud_none(*pud) || pud_bad(*pud))
127 break;
128
129 pmd = pmd_offset(pud, addr);
130 pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131 if (pmd_none(*pmd) || pmd_bad(*pmd))
132 break;
133
134 pte = pte_offset_map(pmd, addr);
135 pr_cont(", *pte=%016llx", pte_val(*pte));
136 pte_unmap(pte);
137 } while(0);
138
139 pr_cont("\n");
140 }
141
142 #ifdef CONFIG_ARM64_HW_AFDBM
143 /*
144 * This function sets the access flags (dirty, accessed), as well as write
145 * permission, and only to a more permissive setting.
146 *
147 * It needs to cope with hardware update of the accessed/dirty state by other
148 * agents in the system and can safely skip the __sync_icache_dcache() call as,
149 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
150 *
151 * Returns whether or not the PTE actually changed.
152 */
153 int ptep_set_access_flags(struct vm_area_struct *vma,
154 unsigned long address, pte_t *ptep,
155 pte_t entry, int dirty)
156 {
157 pteval_t old_pteval;
158 unsigned int tmp;
159
160 if (pte_same(*ptep, entry))
161 return 0;
162
163 /* only preserve the access flags and write permission */
164 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
165
166 /*
167 * PTE_RDONLY is cleared by default in the asm below, so set it in
168 * back if necessary (read-only or clean PTE).
169 */
170 if (!pte_write(entry) || !pte_sw_dirty(entry))
171 pte_val(entry) |= PTE_RDONLY;
172
173 /*
174 * Setting the flags must be done atomically to avoid racing with the
175 * hardware update of the access/dirty state.
176 */
177 asm volatile("// ptep_set_access_flags\n"
178 " prfm pstl1strm, %2\n"
179 "1: ldxr %0, %2\n"
180 " and %0, %0, %3 // clear PTE_RDONLY\n"
181 " orr %0, %0, %4 // set flags\n"
182 " stxr %w1, %0, %2\n"
183 " cbnz %w1, 1b\n"
184 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
185 : "L" (~PTE_RDONLY), "r" (pte_val(entry)));
186
187 flush_tlb_fix_spurious_fault(vma, address);
188 return 1;
189 }
190 #endif
191
192 static bool is_el1_instruction_abort(unsigned int esr)
193 {
194 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
195 }
196
197 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
198 unsigned long addr)
199 {
200 unsigned int ec = ESR_ELx_EC(esr);
201 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
202
203 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
204 return false;
205
206 if (fsc_type == ESR_ELx_FSC_PERM)
207 return true;
208
209 if (addr < USER_DS && system_uses_ttbr0_pan())
210 return fsc_type == ESR_ELx_FSC_FAULT &&
211 (regs->pstate & PSR_PAN_BIT);
212
213 return false;
214 }
215
216 /*
217 * The kernel tried to access some page that wasn't present.
218 */
219 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
220 struct pt_regs *regs)
221 {
222 const char *msg;
223
224 /*
225 * Are we prepared to handle this kernel fault?
226 * We are almost certainly not prepared to handle instruction faults.
227 */
228 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
229 return;
230
231 /*
232 * No handler, we'll have to terminate things with extreme prejudice.
233 */
234 bust_spinlocks(1);
235
236 if (is_permission_fault(esr, regs, addr)) {
237 if (esr & ESR_ELx_WNR)
238 msg = "write to read-only memory";
239 else
240 msg = "read from unreadable memory";
241 } else if (addr < PAGE_SIZE) {
242 msg = "NULL pointer dereference";
243 } else {
244 msg = "paging request";
245 }
246
247 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
248 addr);
249
250 show_pte(addr);
251 die("Oops", regs, esr);
252 bust_spinlocks(0);
253 do_exit(SIGKILL);
254 }
255
256 /*
257 * Something tried to access memory that isn't in our memory map. User mode
258 * accesses just cause a SIGSEGV
259 */
260 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
261 unsigned int esr, unsigned int sig, int code,
262 struct pt_regs *regs, int fault)
263 {
264 struct siginfo si;
265 const struct fault_info *inf;
266 unsigned int lsb = 0;
267
268 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
269 inf = esr_to_fault_info(esr);
270 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
271 tsk->comm, task_pid_nr(tsk), inf->name, sig,
272 addr, esr);
273 print_vma_addr(KERN_CONT ", in ", regs->pc);
274 pr_cont("\n");
275 __show_regs(regs);
276 }
277
278 tsk->thread.fault_address = addr;
279 tsk->thread.fault_code = esr;
280 si.si_signo = sig;
281 si.si_errno = 0;
282 si.si_code = code;
283 si.si_addr = (void __user *)addr;
284 /*
285 * Either small page or large page may be poisoned.
286 * In other words, VM_FAULT_HWPOISON_LARGE and
287 * VM_FAULT_HWPOISON are mutually exclusive.
288 */
289 if (fault & VM_FAULT_HWPOISON_LARGE)
290 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
291 else if (fault & VM_FAULT_HWPOISON)
292 lsb = PAGE_SHIFT;
293 si.si_addr_lsb = lsb;
294
295 force_sig_info(sig, &si, tsk);
296 }
297
298 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
299 {
300 struct task_struct *tsk = current;
301 const struct fault_info *inf;
302
303 /*
304 * If we are in kernel mode at this point, we have no context to
305 * handle this fault with.
306 */
307 if (user_mode(regs)) {
308 inf = esr_to_fault_info(esr);
309 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
310 } else
311 __do_kernel_fault(addr, esr, regs);
312 }
313
314 #define VM_FAULT_BADMAP 0x010000
315 #define VM_FAULT_BADACCESS 0x020000
316
317 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
318 unsigned int mm_flags, unsigned long vm_flags,
319 struct task_struct *tsk)
320 {
321 struct vm_area_struct *vma;
322 int fault;
323
324 vma = find_vma(mm, addr);
325 fault = VM_FAULT_BADMAP;
326 if (unlikely(!vma))
327 goto out;
328 if (unlikely(vma->vm_start > addr))
329 goto check_stack;
330
331 /*
332 * Ok, we have a good vm_area for this memory access, so we can handle
333 * it.
334 */
335 good_area:
336 /*
337 * Check that the permissions on the VMA allow for the fault which
338 * occurred.
339 */
340 if (!(vma->vm_flags & vm_flags)) {
341 fault = VM_FAULT_BADACCESS;
342 goto out;
343 }
344
345 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
346
347 check_stack:
348 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
349 goto good_area;
350 out:
351 return fault;
352 }
353
354 static bool is_el0_instruction_abort(unsigned int esr)
355 {
356 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
357 }
358
359 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
360 struct pt_regs *regs)
361 {
362 struct task_struct *tsk;
363 struct mm_struct *mm;
364 int fault, sig, code, major = 0;
365 unsigned long vm_flags = VM_READ | VM_WRITE;
366 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
367
368 if (notify_page_fault(regs, esr))
369 return 0;
370
371 tsk = current;
372 mm = tsk->mm;
373
374 /*
375 * If we're in an interrupt or have no user context, we must not take
376 * the fault.
377 */
378 if (faulthandler_disabled() || !mm)
379 goto no_context;
380
381 if (user_mode(regs))
382 mm_flags |= FAULT_FLAG_USER;
383
384 if (is_el0_instruction_abort(esr)) {
385 vm_flags = VM_EXEC;
386 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
387 vm_flags = VM_WRITE;
388 mm_flags |= FAULT_FLAG_WRITE;
389 }
390
391 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
392 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
393 if (regs->orig_addr_limit == KERNEL_DS)
394 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
395
396 if (is_el1_instruction_abort(esr))
397 die("Attempting to execute userspace memory", regs, esr);
398
399 if (!search_exception_tables(regs->pc))
400 die("Accessing user space memory outside uaccess.h routines", regs, esr);
401 }
402
403 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
404
405 /*
406 * As per x86, we may deadlock here. However, since the kernel only
407 * validly references user space from well defined areas of the code,
408 * we can bug out early if this is from code which shouldn't.
409 */
410 if (!down_read_trylock(&mm->mmap_sem)) {
411 if (!user_mode(regs) && !search_exception_tables(regs->pc))
412 goto no_context;
413 retry:
414 down_read(&mm->mmap_sem);
415 } else {
416 /*
417 * The above down_read_trylock() might have succeeded in which
418 * case, we'll have missed the might_sleep() from down_read().
419 */
420 might_sleep();
421 #ifdef CONFIG_DEBUG_VM
422 if (!user_mode(regs) && !search_exception_tables(regs->pc))
423 goto no_context;
424 #endif
425 }
426
427 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
428 major |= fault & VM_FAULT_MAJOR;
429
430 if (fault & VM_FAULT_RETRY) {
431 /*
432 * If we need to retry but a fatal signal is pending,
433 * handle the signal first. We do not need to release
434 * the mmap_sem because it would already be released
435 * in __lock_page_or_retry in mm/filemap.c.
436 */
437 if (fatal_signal_pending(current))
438 return 0;
439
440 /*
441 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
442 * starvation.
443 */
444 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
445 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
446 mm_flags |= FAULT_FLAG_TRIED;
447 goto retry;
448 }
449 }
450 up_read(&mm->mmap_sem);
451
452 /*
453 * Handle the "normal" (no error) case first.
454 */
455 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
456 VM_FAULT_BADACCESS)))) {
457 /*
458 * Major/minor page fault accounting is only done
459 * once. If we go through a retry, it is extremely
460 * likely that the page will be found in page cache at
461 * that point.
462 */
463 if (major) {
464 tsk->maj_flt++;
465 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
466 addr);
467 } else {
468 tsk->min_flt++;
469 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
470 addr);
471 }
472
473 return 0;
474 }
475
476 /*
477 * If we are in kernel mode at this point, we have no context to
478 * handle this fault with.
479 */
480 if (!user_mode(regs))
481 goto no_context;
482
483 if (fault & VM_FAULT_OOM) {
484 /*
485 * We ran out of memory, call the OOM killer, and return to
486 * userspace (which will retry the fault, or kill us if we got
487 * oom-killed).
488 */
489 pagefault_out_of_memory();
490 return 0;
491 }
492
493 if (fault & VM_FAULT_SIGBUS) {
494 /*
495 * We had some memory, but were unable to successfully fix up
496 * this page fault.
497 */
498 sig = SIGBUS;
499 code = BUS_ADRERR;
500 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
501 sig = SIGBUS;
502 code = BUS_MCEERR_AR;
503 } else {
504 /*
505 * Something tried to access memory that isn't in our memory
506 * map.
507 */
508 sig = SIGSEGV;
509 code = fault == VM_FAULT_BADACCESS ?
510 SEGV_ACCERR : SEGV_MAPERR;
511 }
512
513 __do_user_fault(tsk, addr, esr, sig, code, regs, fault);
514 return 0;
515
516 no_context:
517 __do_kernel_fault(addr, esr, regs);
518 return 0;
519 }
520
521 /*
522 * First Level Translation Fault Handler
523 *
524 * We enter here because the first level page table doesn't contain a valid
525 * entry for the address.
526 *
527 * If the address is in kernel space (>= TASK_SIZE), then we are probably
528 * faulting in the vmalloc() area.
529 *
530 * If the init_task's first level page tables contains the relevant entry, we
531 * copy the it to this task. If not, we send the process a signal, fixup the
532 * exception, or oops the kernel.
533 *
534 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
535 * or a critical region, and should only copy the information from the master
536 * page table, nothing more.
537 */
538 static int __kprobes do_translation_fault(unsigned long addr,
539 unsigned int esr,
540 struct pt_regs *regs)
541 {
542 if (addr < TASK_SIZE)
543 return do_page_fault(addr, esr, regs);
544
545 do_bad_area(addr, esr, regs);
546 return 0;
547 }
548
549 static int do_alignment_fault(unsigned long addr, unsigned int esr,
550 struct pt_regs *regs)
551 {
552 do_bad_area(addr, esr, regs);
553 return 0;
554 }
555
556 /*
557 * This abort handler always returns "fault".
558 */
559 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
560 {
561 return 1;
562 }
563
564 /*
565 * This abort handler deals with Synchronous External Abort.
566 * It calls notifiers, and then returns "fault".
567 */
568 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
569 {
570 struct siginfo info;
571 const struct fault_info *inf;
572 int ret = 0;
573
574 inf = esr_to_fault_info(esr);
575 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
576 inf->name, esr, addr);
577
578 /*
579 * Synchronous aborts may interrupt code which had interrupts masked.
580 * Before calling out into the wider kernel tell the interested
581 * subsystems.
582 */
583 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
584 if (interrupts_enabled(regs))
585 nmi_enter();
586
587 ret = ghes_notify_sea();
588
589 if (interrupts_enabled(regs))
590 nmi_exit();
591 }
592
593 info.si_signo = SIGBUS;
594 info.si_errno = 0;
595 info.si_code = 0;
596 if (esr & ESR_ELx_FnV)
597 info.si_addr = NULL;
598 else
599 info.si_addr = (void __user *)addr;
600 arm64_notify_die("", regs, &info, esr);
601
602 return ret;
603 }
604
605 static const struct fault_info fault_info[] = {
606 { do_bad, SIGBUS, 0, "ttbr address size fault" },
607 { do_bad, SIGBUS, 0, "level 1 address size fault" },
608 { do_bad, SIGBUS, 0, "level 2 address size fault" },
609 { do_bad, SIGBUS, 0, "level 3 address size fault" },
610 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
611 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
612 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
613 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
614 { do_bad, SIGBUS, 0, "unknown 8" },
615 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
616 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
617 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
618 { do_bad, SIGBUS, 0, "unknown 12" },
619 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
620 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
621 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
622 { do_sea, SIGBUS, 0, "synchronous external abort" },
623 { do_bad, SIGBUS, 0, "unknown 17" },
624 { do_bad, SIGBUS, 0, "unknown 18" },
625 { do_bad, SIGBUS, 0, "unknown 19" },
626 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" },
627 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" },
628 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" },
629 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" },
630 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" },
631 { do_bad, SIGBUS, 0, "unknown 25" },
632 { do_bad, SIGBUS, 0, "unknown 26" },
633 { do_bad, SIGBUS, 0, "unknown 27" },
634 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" },
635 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" },
636 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" },
637 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" },
638 { do_bad, SIGBUS, 0, "unknown 32" },
639 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
640 { do_bad, SIGBUS, 0, "unknown 34" },
641 { do_bad, SIGBUS, 0, "unknown 35" },
642 { do_bad, SIGBUS, 0, "unknown 36" },
643 { do_bad, SIGBUS, 0, "unknown 37" },
644 { do_bad, SIGBUS, 0, "unknown 38" },
645 { do_bad, SIGBUS, 0, "unknown 39" },
646 { do_bad, SIGBUS, 0, "unknown 40" },
647 { do_bad, SIGBUS, 0, "unknown 41" },
648 { do_bad, SIGBUS, 0, "unknown 42" },
649 { do_bad, SIGBUS, 0, "unknown 43" },
650 { do_bad, SIGBUS, 0, "unknown 44" },
651 { do_bad, SIGBUS, 0, "unknown 45" },
652 { do_bad, SIGBUS, 0, "unknown 46" },
653 { do_bad, SIGBUS, 0, "unknown 47" },
654 { do_bad, SIGBUS, 0, "TLB conflict abort" },
655 { do_bad, SIGBUS, 0, "unknown 49" },
656 { do_bad, SIGBUS, 0, "unknown 50" },
657 { do_bad, SIGBUS, 0, "unknown 51" },
658 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
659 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
660 { do_bad, SIGBUS, 0, "unknown 54" },
661 { do_bad, SIGBUS, 0, "unknown 55" },
662 { do_bad, SIGBUS, 0, "unknown 56" },
663 { do_bad, SIGBUS, 0, "unknown 57" },
664 { do_bad, SIGBUS, 0, "unknown 58" },
665 { do_bad, SIGBUS, 0, "unknown 59" },
666 { do_bad, SIGBUS, 0, "unknown 60" },
667 { do_bad, SIGBUS, 0, "section domain fault" },
668 { do_bad, SIGBUS, 0, "page domain fault" },
669 { do_bad, SIGBUS, 0, "unknown 63" },
670 };
671
672 /*
673 * Handle Synchronous External Aborts that occur in a guest kernel.
674 *
675 * The return value will be zero if the SEA was successfully handled
676 * and non-zero if there was an error processing the error or there was
677 * no error to process.
678 */
679 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
680 {
681 int ret = -ENOENT;
682
683 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
684 ret = ghes_notify_sea();
685
686 return ret;
687 }
688
689 /*
690 * Dispatch a data abort to the relevant handler.
691 */
692 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
693 struct pt_regs *regs)
694 {
695 const struct fault_info *inf = esr_to_fault_info(esr);
696 struct siginfo info;
697
698 if (!inf->fn(addr, esr, regs))
699 return;
700
701 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
702 inf->name, esr, addr);
703
704 info.si_signo = inf->sig;
705 info.si_errno = 0;
706 info.si_code = inf->code;
707 info.si_addr = (void __user *)addr;
708 arm64_notify_die("", regs, &info, esr);
709 }
710
711 /*
712 * Handle stack alignment exceptions.
713 */
714 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
715 unsigned int esr,
716 struct pt_regs *regs)
717 {
718 struct siginfo info;
719 struct task_struct *tsk = current;
720
721 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
722 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
723 tsk->comm, task_pid_nr(tsk),
724 esr_get_class_string(esr), (void *)regs->pc,
725 (void *)regs->sp);
726
727 info.si_signo = SIGBUS;
728 info.si_errno = 0;
729 info.si_code = BUS_ADRALN;
730 info.si_addr = (void __user *)addr;
731 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
732 }
733
734 int __init early_brk64(unsigned long addr, unsigned int esr,
735 struct pt_regs *regs);
736
737 /*
738 * __refdata because early_brk64 is __init, but the reference to it is
739 * clobbered at arch_initcall time.
740 * See traps.c and debug-monitors.c:debug_traps_init().
741 */
742 static struct fault_info __refdata debug_fault_info[] = {
743 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
744 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
745 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
746 { do_bad, SIGBUS, 0, "unknown 3" },
747 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
748 { do_bad, SIGTRAP, 0, "aarch32 vector catch" },
749 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
750 { do_bad, SIGBUS, 0, "unknown 7" },
751 };
752
753 void __init hook_debug_fault_code(int nr,
754 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
755 int sig, int code, const char *name)
756 {
757 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
758
759 debug_fault_info[nr].fn = fn;
760 debug_fault_info[nr].sig = sig;
761 debug_fault_info[nr].code = code;
762 debug_fault_info[nr].name = name;
763 }
764
765 asmlinkage int __exception do_debug_exception(unsigned long addr,
766 unsigned int esr,
767 struct pt_regs *regs)
768 {
769 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
770 struct siginfo info;
771 int rv;
772
773 /*
774 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
775 * already disabled to preserve the last enabled/disabled addresses.
776 */
777 if (interrupts_enabled(regs))
778 trace_hardirqs_off();
779
780 if (!inf->fn(addr, esr, regs)) {
781 rv = 1;
782 } else {
783 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
784 inf->name, esr, addr);
785
786 info.si_signo = inf->sig;
787 info.si_errno = 0;
788 info.si_code = inf->code;
789 info.si_addr = (void __user *)addr;
790 arm64_notify_die("", regs, &info, 0);
791 rv = 0;
792 }
793
794 if (interrupts_enabled(regs))
795 trace_hardirqs_on();
796
797 return rv;
798 }
799 NOKPROBE_SYMBOL(do_debug_exception);
800
801 #ifdef CONFIG_ARM64_PAN
802 int cpu_enable_pan(void *__unused)
803 {
804 /*
805 * We modify PSTATE. This won't work from irq context as the PSTATE
806 * is discarded once we return from the exception.
807 */
808 WARN_ON_ONCE(in_interrupt());
809
810 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
811 asm(SET_PSTATE_PAN(1));
812 return 0;
813 }
814 #endif /* CONFIG_ARM64_PAN */