]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/mm/init.c
arm64: kdump: provide /proc/vmcore file
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / mm / init.c
1 /*
2 * Based on arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/efi.h>
38 #include <linux/swiotlb.h>
39 #include <linux/vmalloc.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54
55 /*
56 * We need to be able to catch inadvertent references to memstart_addr
57 * that occur (potentially in generic code) before arm64_memblock_init()
58 * executes, which assigns it its actual value. So use a default value
59 * that cannot be mistaken for a real physical address.
60 */
61 s64 memstart_addr __ro_after_init = -1;
62 phys_addr_t arm64_dma_phys_limit __ro_after_init;
63
64 #ifdef CONFIG_BLK_DEV_INITRD
65 static int __init early_initrd(char *p)
66 {
67 unsigned long start, size;
68 char *endp;
69
70 start = memparse(p, &endp);
71 if (*endp == ',') {
72 size = memparse(endp + 1, NULL);
73
74 initrd_start = start;
75 initrd_end = start + size;
76 }
77 return 0;
78 }
79 early_param("initrd", early_initrd);
80 #endif
81
82 #ifdef CONFIG_KEXEC_CORE
83 /*
84 * reserve_crashkernel() - reserves memory for crash kernel
85 *
86 * This function reserves memory area given in "crashkernel=" kernel command
87 * line parameter. The memory reserved is used by dump capture kernel when
88 * primary kernel is crashing.
89 */
90 static void __init reserve_crashkernel(void)
91 {
92 unsigned long long crash_base, crash_size;
93 int ret;
94
95 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
96 &crash_size, &crash_base);
97 /* no crashkernel= or invalid value specified */
98 if (ret || !crash_size)
99 return;
100
101 crash_size = PAGE_ALIGN(crash_size);
102
103 if (crash_base == 0) {
104 /* Current arm64 boot protocol requires 2MB alignment */
105 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
106 crash_size, SZ_2M);
107 if (crash_base == 0) {
108 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
109 crash_size);
110 return;
111 }
112 } else {
113 /* User specifies base address explicitly. */
114 if (!memblock_is_region_memory(crash_base, crash_size)) {
115 pr_warn("cannot reserve crashkernel: region is not memory\n");
116 return;
117 }
118
119 if (memblock_is_region_reserved(crash_base, crash_size)) {
120 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
121 return;
122 }
123
124 if (!IS_ALIGNED(crash_base, SZ_2M)) {
125 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
126 return;
127 }
128 }
129 memblock_reserve(crash_base, crash_size);
130
131 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
132 crash_base, crash_base + crash_size, crash_size >> 20);
133
134 crashk_res.start = crash_base;
135 crashk_res.end = crash_base + crash_size - 1;
136 }
137
138 static void __init kexec_reserve_crashkres_pages(void)
139 {
140 #ifdef CONFIG_HIBERNATION
141 phys_addr_t addr;
142 struct page *page;
143
144 if (!crashk_res.end)
145 return;
146
147 /*
148 * To reduce the size of hibernation image, all the pages are
149 * marked as Reserved initially.
150 */
151 for (addr = crashk_res.start; addr < (crashk_res.end + 1);
152 addr += PAGE_SIZE) {
153 page = phys_to_page(addr);
154 SetPageReserved(page);
155 }
156 #endif
157 }
158 #else
159 static void __init reserve_crashkernel(void)
160 {
161 }
162
163 static void __init kexec_reserve_crashkres_pages(void)
164 {
165 }
166 #endif /* CONFIG_KEXEC_CORE */
167
168 #ifdef CONFIG_CRASH_DUMP
169 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
170 const char *uname, int depth, void *data)
171 {
172 const __be32 *reg;
173 int len;
174
175 if (depth != 1 || strcmp(uname, "chosen") != 0)
176 return 0;
177
178 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
179 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
180 return 1;
181
182 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
183 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
184
185 return 1;
186 }
187
188 /*
189 * reserve_elfcorehdr() - reserves memory for elf core header
190 *
191 * This function reserves the memory occupied by an elf core header
192 * described in the device tree. This region contains all the
193 * information about primary kernel's core image and is used by a dump
194 * capture kernel to access the system memory on primary kernel.
195 */
196 static void __init reserve_elfcorehdr(void)
197 {
198 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
199
200 if (!elfcorehdr_size)
201 return;
202
203 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
204 pr_warn("elfcorehdr is overlapped\n");
205 return;
206 }
207
208 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
209
210 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
211 elfcorehdr_size >> 10, elfcorehdr_addr);
212 }
213 #else
214 static void __init reserve_elfcorehdr(void)
215 {
216 }
217 #endif /* CONFIG_CRASH_DUMP */
218 /*
219 * Return the maximum physical address for ZONE_DMA (DMA_BIT_MASK(32)). It
220 * currently assumes that for memory starting above 4G, 32-bit devices will
221 * use a DMA offset.
222 */
223 static phys_addr_t __init max_zone_dma_phys(void)
224 {
225 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
226 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
227 }
228
229 #ifdef CONFIG_NUMA
230
231 static void __init zone_sizes_init(unsigned long min, unsigned long max)
232 {
233 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
234
235 if (IS_ENABLED(CONFIG_ZONE_DMA))
236 max_zone_pfns[ZONE_DMA] = PFN_DOWN(max_zone_dma_phys());
237 max_zone_pfns[ZONE_NORMAL] = max;
238
239 free_area_init_nodes(max_zone_pfns);
240 }
241
242 #else
243
244 static void __init zone_sizes_init(unsigned long min, unsigned long max)
245 {
246 struct memblock_region *reg;
247 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
248 unsigned long max_dma = min;
249
250 memset(zone_size, 0, sizeof(zone_size));
251
252 /* 4GB maximum for 32-bit only capable devices */
253 #ifdef CONFIG_ZONE_DMA
254 max_dma = PFN_DOWN(arm64_dma_phys_limit);
255 zone_size[ZONE_DMA] = max_dma - min;
256 #endif
257 zone_size[ZONE_NORMAL] = max - max_dma;
258
259 memcpy(zhole_size, zone_size, sizeof(zhole_size));
260
261 for_each_memblock(memory, reg) {
262 unsigned long start = memblock_region_memory_base_pfn(reg);
263 unsigned long end = memblock_region_memory_end_pfn(reg);
264
265 if (start >= max)
266 continue;
267
268 #ifdef CONFIG_ZONE_DMA
269 if (start < max_dma) {
270 unsigned long dma_end = min(end, max_dma);
271 zhole_size[ZONE_DMA] -= dma_end - start;
272 }
273 #endif
274 if (end > max_dma) {
275 unsigned long normal_end = min(end, max);
276 unsigned long normal_start = max(start, max_dma);
277 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
278 }
279 }
280
281 free_area_init_node(0, zone_size, min, zhole_size);
282 }
283
284 #endif /* CONFIG_NUMA */
285
286 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
287 int pfn_valid(unsigned long pfn)
288 {
289 return memblock_is_map_memory(pfn << PAGE_SHIFT);
290 }
291 EXPORT_SYMBOL(pfn_valid);
292 #endif
293
294 #ifndef CONFIG_SPARSEMEM
295 static void __init arm64_memory_present(void)
296 {
297 }
298 #else
299 static void __init arm64_memory_present(void)
300 {
301 struct memblock_region *reg;
302
303 for_each_memblock(memory, reg) {
304 int nid = memblock_get_region_node(reg);
305
306 memory_present(nid, memblock_region_memory_base_pfn(reg),
307 memblock_region_memory_end_pfn(reg));
308 }
309 }
310 #endif
311
312 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
313
314 /*
315 * Limit the memory size that was specified via FDT.
316 */
317 static int __init early_mem(char *p)
318 {
319 if (!p)
320 return 1;
321
322 memory_limit = memparse(p, &p) & PAGE_MASK;
323 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
324
325 return 0;
326 }
327 early_param("mem", early_mem);
328
329 static int __init early_init_dt_scan_usablemem(unsigned long node,
330 const char *uname, int depth, void *data)
331 {
332 struct memblock_region *usablemem = data;
333 const __be32 *reg;
334 int len;
335
336 if (depth != 1 || strcmp(uname, "chosen") != 0)
337 return 0;
338
339 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
340 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
341 return 1;
342
343 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
344 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
345
346 return 1;
347 }
348
349 static void __init fdt_enforce_memory_region(void)
350 {
351 struct memblock_region reg = {
352 .size = 0,
353 };
354
355 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
356
357 if (reg.size)
358 memblock_cap_memory_range(reg.base, reg.size);
359 }
360
361 void __init arm64_memblock_init(void)
362 {
363 const s64 linear_region_size = -(s64)PAGE_OFFSET;
364
365 /* Handle linux,usable-memory-range property */
366 fdt_enforce_memory_region();
367
368 /*
369 * Ensure that the linear region takes up exactly half of the kernel
370 * virtual address space. This way, we can distinguish a linear address
371 * from a kernel/module/vmalloc address by testing a single bit.
372 */
373 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
374
375 /*
376 * Select a suitable value for the base of physical memory.
377 */
378 memstart_addr = round_down(memblock_start_of_DRAM(),
379 ARM64_MEMSTART_ALIGN);
380
381 /*
382 * Remove the memory that we will not be able to cover with the
383 * linear mapping. Take care not to clip the kernel which may be
384 * high in memory.
385 */
386 memblock_remove(max_t(u64, memstart_addr + linear_region_size, __pa(_end)),
387 ULLONG_MAX);
388 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
389 /* ensure that memstart_addr remains sufficiently aligned */
390 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
391 ARM64_MEMSTART_ALIGN);
392 memblock_remove(0, memstart_addr);
393 }
394
395 /*
396 * Apply the memory limit if it was set. Since the kernel may be loaded
397 * high up in memory, add back the kernel region that must be accessible
398 * via the linear mapping.
399 */
400 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
401 memblock_mem_limit_remove_map(memory_limit);
402 memblock_add(__pa(_text), (u64)(_end - _text));
403 }
404
405 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
406 /*
407 * Add back the memory we just removed if it results in the
408 * initrd to become inaccessible via the linear mapping.
409 * Otherwise, this is a no-op
410 */
411 u64 base = initrd_start & PAGE_MASK;
412 u64 size = PAGE_ALIGN(initrd_end) - base;
413
414 /*
415 * We can only add back the initrd memory if we don't end up
416 * with more memory than we can address via the linear mapping.
417 * It is up to the bootloader to position the kernel and the
418 * initrd reasonably close to each other (i.e., within 32 GB of
419 * each other) so that all granule/#levels combinations can
420 * always access both.
421 */
422 if (WARN(base < memblock_start_of_DRAM() ||
423 base + size > memblock_start_of_DRAM() +
424 linear_region_size,
425 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
426 initrd_start = 0;
427 } else {
428 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
429 memblock_add(base, size);
430 memblock_reserve(base, size);
431 }
432 }
433
434 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
435 extern u16 memstart_offset_seed;
436 u64 range = linear_region_size -
437 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
438
439 /*
440 * If the size of the linear region exceeds, by a sufficient
441 * margin, the size of the region that the available physical
442 * memory spans, randomize the linear region as well.
443 */
444 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
445 range = range / ARM64_MEMSTART_ALIGN + 1;
446 memstart_addr -= ARM64_MEMSTART_ALIGN *
447 ((range * memstart_offset_seed) >> 16);
448 }
449 }
450
451 /*
452 * Register the kernel text, kernel data, initrd, and initial
453 * pagetables with memblock.
454 */
455 memblock_reserve(__pa(_text), _end - _text);
456 #ifdef CONFIG_BLK_DEV_INITRD
457 if (initrd_start) {
458 memblock_reserve(initrd_start, initrd_end - initrd_start);
459
460 /* the generic initrd code expects virtual addresses */
461 initrd_start = __phys_to_virt(initrd_start);
462 initrd_end = __phys_to_virt(initrd_end);
463 }
464 #endif
465
466 early_init_fdt_scan_reserved_mem();
467
468 /* 4GB maximum for 32-bit only capable devices */
469 if (IS_ENABLED(CONFIG_ZONE_DMA))
470 arm64_dma_phys_limit = max_zone_dma_phys();
471 else
472 arm64_dma_phys_limit = PHYS_MASK + 1;
473
474 reserve_crashkernel();
475
476 reserve_elfcorehdr();
477
478 dma_contiguous_reserve(arm64_dma_phys_limit);
479
480 memblock_allow_resize();
481 }
482
483 void __init bootmem_init(void)
484 {
485 unsigned long min, max;
486
487 min = PFN_UP(memblock_start_of_DRAM());
488 max = PFN_DOWN(memblock_end_of_DRAM());
489
490 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
491
492 max_pfn = max_low_pfn = max;
493
494 arm64_numa_init();
495 /*
496 * Sparsemem tries to allocate bootmem in memory_present(), so must be
497 * done after the fixed reservations.
498 */
499 arm64_memory_present();
500
501 sparse_init();
502 zone_sizes_init(min, max);
503
504 high_memory = __va((max << PAGE_SHIFT) - 1) + 1;
505 memblock_dump_all();
506 }
507
508 #ifndef CONFIG_SPARSEMEM_VMEMMAP
509 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
510 {
511 struct page *start_pg, *end_pg;
512 unsigned long pg, pgend;
513
514 /*
515 * Convert start_pfn/end_pfn to a struct page pointer.
516 */
517 start_pg = pfn_to_page(start_pfn - 1) + 1;
518 end_pg = pfn_to_page(end_pfn - 1) + 1;
519
520 /*
521 * Convert to physical addresses, and round start upwards and end
522 * downwards.
523 */
524 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
525 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
526
527 /*
528 * If there are free pages between these, free the section of the
529 * memmap array.
530 */
531 if (pg < pgend)
532 free_bootmem(pg, pgend - pg);
533 }
534
535 /*
536 * The mem_map array can get very big. Free the unused area of the memory map.
537 */
538 static void __init free_unused_memmap(void)
539 {
540 unsigned long start, prev_end = 0;
541 struct memblock_region *reg;
542
543 for_each_memblock(memory, reg) {
544 start = __phys_to_pfn(reg->base);
545
546 #ifdef CONFIG_SPARSEMEM
547 /*
548 * Take care not to free memmap entries that don't exist due
549 * to SPARSEMEM sections which aren't present.
550 */
551 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
552 #endif
553 /*
554 * If we had a previous bank, and there is a space between the
555 * current bank and the previous, free it.
556 */
557 if (prev_end && prev_end < start)
558 free_memmap(prev_end, start);
559
560 /*
561 * Align up here since the VM subsystem insists that the
562 * memmap entries are valid from the bank end aligned to
563 * MAX_ORDER_NR_PAGES.
564 */
565 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
566 MAX_ORDER_NR_PAGES);
567 }
568
569 #ifdef CONFIG_SPARSEMEM
570 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
571 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
572 #endif
573 }
574 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
575
576 /*
577 * mem_init() marks the free areas in the mem_map and tells us how much memory
578 * is free. This is done after various parts of the system have claimed their
579 * memory after the kernel image.
580 */
581 void __init mem_init(void)
582 {
583 if (swiotlb_force == SWIOTLB_FORCE ||
584 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
585 swiotlb_init(1);
586 else
587 swiotlb_force = SWIOTLB_NO_FORCE;
588
589 set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
590
591 #ifndef CONFIG_SPARSEMEM_VMEMMAP
592 free_unused_memmap();
593 #endif
594 /* this will put all unused low memory onto the freelists */
595 free_all_bootmem();
596
597 kexec_reserve_crashkres_pages();
598
599 mem_init_print_info(NULL);
600
601 #define MLK(b, t) b, t, ((t) - (b)) >> 10
602 #define MLM(b, t) b, t, ((t) - (b)) >> 20
603 #define MLG(b, t) b, t, ((t) - (b)) >> 30
604 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
605
606 pr_notice("Virtual kernel memory layout:\n");
607 #ifdef CONFIG_KASAN
608 pr_notice(" kasan : 0x%16lx - 0x%16lx (%6ld GB)\n",
609 MLG(KASAN_SHADOW_START, KASAN_SHADOW_END));
610 #endif
611 pr_notice(" modules : 0x%16lx - 0x%16lx (%6ld MB)\n",
612 MLM(MODULES_VADDR, MODULES_END));
613 pr_notice(" vmalloc : 0x%16lx - 0x%16lx (%6ld GB)\n",
614 MLG(VMALLOC_START, VMALLOC_END));
615 pr_notice(" .text : 0x%p" " - 0x%p" " (%6ld KB)\n",
616 MLK_ROUNDUP(_text, _etext));
617 pr_notice(" .rodata : 0x%p" " - 0x%p" " (%6ld KB)\n",
618 MLK_ROUNDUP(__start_rodata, __init_begin));
619 pr_notice(" .init : 0x%p" " - 0x%p" " (%6ld KB)\n",
620 MLK_ROUNDUP(__init_begin, __init_end));
621 pr_notice(" .data : 0x%p" " - 0x%p" " (%6ld KB)\n",
622 MLK_ROUNDUP(_sdata, _edata));
623 pr_notice(" .bss : 0x%p" " - 0x%p" " (%6ld KB)\n",
624 MLK_ROUNDUP(__bss_start, __bss_stop));
625 pr_notice(" fixed : 0x%16lx - 0x%16lx (%6ld KB)\n",
626 MLK(FIXADDR_START, FIXADDR_TOP));
627 pr_notice(" PCI I/O : 0x%16lx - 0x%16lx (%6ld MB)\n",
628 MLM(PCI_IO_START, PCI_IO_END));
629 #ifdef CONFIG_SPARSEMEM_VMEMMAP
630 pr_notice(" vmemmap : 0x%16lx - 0x%16lx (%6ld GB maximum)\n",
631 MLG(VMEMMAP_START, VMEMMAP_START + VMEMMAP_SIZE));
632 pr_notice(" 0x%16lx - 0x%16lx (%6ld MB actual)\n",
633 MLM((unsigned long)phys_to_page(memblock_start_of_DRAM()),
634 (unsigned long)virt_to_page(high_memory)));
635 #endif
636 pr_notice(" memory : 0x%16lx - 0x%16lx (%6ld MB)\n",
637 MLM(__phys_to_virt(memblock_start_of_DRAM()),
638 (unsigned long)high_memory));
639
640 #undef MLK
641 #undef MLM
642 #undef MLK_ROUNDUP
643
644 /*
645 * Check boundaries twice: Some fundamental inconsistencies can be
646 * detected at build time already.
647 */
648 #ifdef CONFIG_COMPAT
649 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64);
650 #endif
651
652 /*
653 * Make sure we chose the upper bound of sizeof(struct page)
654 * correctly.
655 */
656 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
657
658 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
659 extern int sysctl_overcommit_memory;
660 /*
661 * On a machine this small we won't get anywhere without
662 * overcommit, so turn it on by default.
663 */
664 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
665 }
666 }
667
668 void free_initmem(void)
669 {
670 free_reserved_area(__va(__pa(__init_begin)), __va(__pa(__init_end)),
671 0, "unused kernel");
672 /*
673 * Unmap the __init region but leave the VM area in place. This
674 * prevents the region from being reused for kernel modules, which
675 * is not supported by kallsyms.
676 */
677 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
678 }
679
680 #ifdef CONFIG_BLK_DEV_INITRD
681
682 static int keep_initrd __initdata;
683
684 void __init free_initrd_mem(unsigned long start, unsigned long end)
685 {
686 if (!keep_initrd)
687 free_reserved_area((void *)start, (void *)end, 0, "initrd");
688 }
689
690 static int __init keepinitrd_setup(char *__unused)
691 {
692 keep_initrd = 1;
693 return 1;
694 }
695
696 __setup("keepinitrd", keepinitrd_setup);
697 #endif
698
699 /*
700 * Dump out memory limit information on panic.
701 */
702 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
703 {
704 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
705 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
706 } else {
707 pr_emerg("Memory Limit: none\n");
708 }
709 return 0;
710 }
711
712 static struct notifier_block mem_limit_notifier = {
713 .notifier_call = dump_mem_limit,
714 };
715
716 static int __init register_mem_limit_dumper(void)
717 {
718 atomic_notifier_chain_register(&panic_notifier_list,
719 &mem_limit_notifier);
720 return 0;
721 }
722 __initcall(register_mem_limit_dumper);