]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm64/mm/init.c
arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)
[mirror_ubuntu-hirsute-kernel.git] / arch / arm64 / mm / init.c
1 /*
2 * Based on arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/efi.h>
38 #include <linux/swiotlb.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mm.h>
41 #include <linux/kexec.h>
42 #include <linux/crash_dump.h>
43
44 #include <asm/boot.h>
45 #include <asm/fixmap.h>
46 #include <asm/kasan.h>
47 #include <asm/kernel-pgtable.h>
48 #include <asm/memory.h>
49 #include <asm/numa.h>
50 #include <asm/sections.h>
51 #include <asm/setup.h>
52 #include <asm/sizes.h>
53 #include <asm/tlb.h>
54 #include <asm/alternative.h>
55
56 /*
57 * We need to be able to catch inadvertent references to memstart_addr
58 * that occur (potentially in generic code) before arm64_memblock_init()
59 * executes, which assigns it its actual value. So use a default value
60 * that cannot be mistaken for a real physical address.
61 */
62 s64 memstart_addr __ro_after_init = -1;
63 phys_addr_t arm64_dma_phys_limit __ro_after_init;
64
65 #ifdef CONFIG_BLK_DEV_INITRD
66 static int __init early_initrd(char *p)
67 {
68 unsigned long start, size;
69 char *endp;
70
71 start = memparse(p, &endp);
72 if (*endp == ',') {
73 size = memparse(endp + 1, NULL);
74
75 initrd_start = start;
76 initrd_end = start + size;
77 }
78 return 0;
79 }
80 early_param("initrd", early_initrd);
81 #endif
82
83 #ifdef CONFIG_KEXEC_CORE
84 /*
85 * reserve_crashkernel() - reserves memory for crash kernel
86 *
87 * This function reserves memory area given in "crashkernel=" kernel command
88 * line parameter. The memory reserved is used by dump capture kernel when
89 * primary kernel is crashing.
90 */
91 static void __init reserve_crashkernel(void)
92 {
93 unsigned long long crash_base, crash_size;
94 int ret;
95
96 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
97 &crash_size, &crash_base);
98 /* no crashkernel= or invalid value specified */
99 if (ret || !crash_size)
100 return;
101
102 crash_size = PAGE_ALIGN(crash_size);
103
104 if (crash_base == 0) {
105 /* Current arm64 boot protocol requires 2MB alignment */
106 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107 crash_size, SZ_2M);
108 if (crash_base == 0) {
109 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110 crash_size);
111 return;
112 }
113 } else {
114 /* User specifies base address explicitly. */
115 if (!memblock_is_region_memory(crash_base, crash_size)) {
116 pr_warn("cannot reserve crashkernel: region is not memory\n");
117 return;
118 }
119
120 if (memblock_is_region_reserved(crash_base, crash_size)) {
121 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122 return;
123 }
124
125 if (!IS_ALIGNED(crash_base, SZ_2M)) {
126 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127 return;
128 }
129 }
130 memblock_reserve(crash_base, crash_size);
131
132 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133 crash_base, crash_base + crash_size, crash_size >> 20);
134
135 crashk_res.start = crash_base;
136 crashk_res.end = crash_base + crash_size - 1;
137 }
138
139 static void __init kexec_reserve_crashkres_pages(void)
140 {
141 #ifdef CONFIG_HIBERNATION
142 phys_addr_t addr;
143 struct page *page;
144
145 if (!crashk_res.end)
146 return;
147
148 /*
149 * To reduce the size of hibernation image, all the pages are
150 * marked as Reserved initially.
151 */
152 for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153 addr += PAGE_SIZE) {
154 page = phys_to_page(addr);
155 SetPageReserved(page);
156 }
157 #endif
158 }
159 #else
160 static void __init reserve_crashkernel(void)
161 {
162 }
163
164 static void __init kexec_reserve_crashkres_pages(void)
165 {
166 }
167 #endif /* CONFIG_KEXEC_CORE */
168
169 #ifdef CONFIG_CRASH_DUMP
170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171 const char *uname, int depth, void *data)
172 {
173 const __be32 *reg;
174 int len;
175
176 if (depth != 1 || strcmp(uname, "chosen") != 0)
177 return 0;
178
179 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181 return 1;
182
183 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185
186 return 1;
187 }
188
189 /*
190 * reserve_elfcorehdr() - reserves memory for elf core header
191 *
192 * This function reserves the memory occupied by an elf core header
193 * described in the device tree. This region contains all the
194 * information about primary kernel's core image and is used by a dump
195 * capture kernel to access the system memory on primary kernel.
196 */
197 static void __init reserve_elfcorehdr(void)
198 {
199 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200
201 if (!elfcorehdr_size)
202 return;
203
204 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205 pr_warn("elfcorehdr is overlapped\n");
206 return;
207 }
208
209 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210
211 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212 elfcorehdr_size >> 10, elfcorehdr_addr);
213 }
214 #else
215 static void __init reserve_elfcorehdr(void)
216 {
217 }
218 #endif /* CONFIG_CRASH_DUMP */
219 /*
220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
221 * currently assumes that for memory starting above 4G, 32-bit devices will
222 * use a DMA offset.
223 */
224 static phys_addr_t __init max_zone_dma_phys(void)
225 {
226 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228 }
229
230 #ifdef CONFIG_NUMA
231
232 static void __init zone_sizes_init(unsigned long min, unsigned long max)
233 {
234 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
235
236 if (IS_ENABLED(CONFIG_ZONE_DMA32))
237 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
238 max_zone_pfns[ZONE_NORMAL] = max;
239
240 free_area_init_nodes(max_zone_pfns);
241 }
242
243 #else
244
245 static void __init zone_sizes_init(unsigned long min, unsigned long max)
246 {
247 struct memblock_region *reg;
248 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249 unsigned long max_dma = min;
250
251 memset(zone_size, 0, sizeof(zone_size));
252
253 /* 4GB maximum for 32-bit only capable devices */
254 #ifdef CONFIG_ZONE_DMA32
255 max_dma = PFN_DOWN(arm64_dma_phys_limit);
256 zone_size[ZONE_DMA32] = max_dma - min;
257 #endif
258 zone_size[ZONE_NORMAL] = max - max_dma;
259
260 memcpy(zhole_size, zone_size, sizeof(zhole_size));
261
262 for_each_memblock(memory, reg) {
263 unsigned long start = memblock_region_memory_base_pfn(reg);
264 unsigned long end = memblock_region_memory_end_pfn(reg);
265
266 if (start >= max)
267 continue;
268
269 #ifdef CONFIG_ZONE_DMA32
270 if (start < max_dma) {
271 unsigned long dma_end = min(end, max_dma);
272 zhole_size[ZONE_DMA32] -= dma_end - start;
273 }
274 #endif
275 if (end > max_dma) {
276 unsigned long normal_end = min(end, max);
277 unsigned long normal_start = max(start, max_dma);
278 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279 }
280 }
281
282 free_area_init_node(0, zone_size, min, zhole_size);
283 }
284
285 #endif /* CONFIG_NUMA */
286
287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
288 int pfn_valid(unsigned long pfn)
289 {
290 return memblock_is_map_memory(pfn << PAGE_SHIFT);
291 }
292 EXPORT_SYMBOL(pfn_valid);
293 #endif
294
295 #ifndef CONFIG_SPARSEMEM
296 static void __init arm64_memory_present(void)
297 {
298 }
299 #else
300 static void __init arm64_memory_present(void)
301 {
302 struct memblock_region *reg;
303
304 for_each_memblock(memory, reg) {
305 int nid = memblock_get_region_node(reg);
306
307 memory_present(nid, memblock_region_memory_base_pfn(reg),
308 memblock_region_memory_end_pfn(reg));
309 }
310 }
311 #endif
312
313 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
314
315 /*
316 * Limit the memory size that was specified via FDT.
317 */
318 static int __init early_mem(char *p)
319 {
320 if (!p)
321 return 1;
322
323 memory_limit = memparse(p, &p) & PAGE_MASK;
324 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
325
326 return 0;
327 }
328 early_param("mem", early_mem);
329
330 static int __init early_init_dt_scan_usablemem(unsigned long node,
331 const char *uname, int depth, void *data)
332 {
333 struct memblock_region *usablemem = data;
334 const __be32 *reg;
335 int len;
336
337 if (depth != 1 || strcmp(uname, "chosen") != 0)
338 return 0;
339
340 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
341 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
342 return 1;
343
344 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
345 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
346
347 return 1;
348 }
349
350 static void __init fdt_enforce_memory_region(void)
351 {
352 struct memblock_region reg = {
353 .size = 0,
354 };
355
356 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
357
358 if (reg.size)
359 memblock_cap_memory_range(reg.base, reg.size);
360 }
361
362 void __init arm64_memblock_init(void)
363 {
364 const s64 linear_region_size = -(s64)PAGE_OFFSET;
365
366 /* Handle linux,usable-memory-range property */
367 fdt_enforce_memory_region();
368
369 /* Remove memory above our supported physical address size */
370 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
371
372 /*
373 * Ensure that the linear region takes up exactly half of the kernel
374 * virtual address space. This way, we can distinguish a linear address
375 * from a kernel/module/vmalloc address by testing a single bit.
376 */
377 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
378
379 /*
380 * Select a suitable value for the base of physical memory.
381 */
382 memstart_addr = round_down(memblock_start_of_DRAM(),
383 ARM64_MEMSTART_ALIGN);
384
385 /*
386 * Remove the memory that we will not be able to cover with the
387 * linear mapping. Take care not to clip the kernel which may be
388 * high in memory.
389 */
390 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
391 __pa_symbol(_end)), ULLONG_MAX);
392 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
393 /* ensure that memstart_addr remains sufficiently aligned */
394 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
395 ARM64_MEMSTART_ALIGN);
396 memblock_remove(0, memstart_addr);
397 }
398
399 /*
400 * Apply the memory limit if it was set. Since the kernel may be loaded
401 * high up in memory, add back the kernel region that must be accessible
402 * via the linear mapping.
403 */
404 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
405 memblock_mem_limit_remove_map(memory_limit);
406 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
407 }
408
409 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
410 /*
411 * Add back the memory we just removed if it results in the
412 * initrd to become inaccessible via the linear mapping.
413 * Otherwise, this is a no-op
414 */
415 u64 base = initrd_start & PAGE_MASK;
416 u64 size = PAGE_ALIGN(initrd_end) - base;
417
418 /*
419 * We can only add back the initrd memory if we don't end up
420 * with more memory than we can address via the linear mapping.
421 * It is up to the bootloader to position the kernel and the
422 * initrd reasonably close to each other (i.e., within 32 GB of
423 * each other) so that all granule/#levels combinations can
424 * always access both.
425 */
426 if (WARN(base < memblock_start_of_DRAM() ||
427 base + size > memblock_start_of_DRAM() +
428 linear_region_size,
429 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
430 initrd_start = 0;
431 } else {
432 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
433 memblock_add(base, size);
434 memblock_reserve(base, size);
435 }
436 }
437
438 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
439 extern u16 memstart_offset_seed;
440 u64 range = linear_region_size -
441 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
442
443 /*
444 * If the size of the linear region exceeds, by a sufficient
445 * margin, the size of the region that the available physical
446 * memory spans, randomize the linear region as well.
447 */
448 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
449 range = range / ARM64_MEMSTART_ALIGN + 1;
450 memstart_addr -= ARM64_MEMSTART_ALIGN *
451 ((range * memstart_offset_seed) >> 16);
452 }
453 }
454
455 /*
456 * Register the kernel text, kernel data, initrd, and initial
457 * pagetables with memblock.
458 */
459 memblock_reserve(__pa_symbol(_text), _end - _text);
460 #ifdef CONFIG_BLK_DEV_INITRD
461 if (initrd_start) {
462 memblock_reserve(initrd_start, initrd_end - initrd_start);
463
464 /* the generic initrd code expects virtual addresses */
465 initrd_start = __phys_to_virt(initrd_start);
466 initrd_end = __phys_to_virt(initrd_end);
467 }
468 #endif
469
470 early_init_fdt_scan_reserved_mem();
471
472 /* 4GB maximum for 32-bit only capable devices */
473 if (IS_ENABLED(CONFIG_ZONE_DMA32))
474 arm64_dma_phys_limit = max_zone_dma_phys();
475 else
476 arm64_dma_phys_limit = PHYS_MASK + 1;
477
478 reserve_crashkernel();
479
480 reserve_elfcorehdr();
481
482 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
483
484 dma_contiguous_reserve(arm64_dma_phys_limit);
485
486 memblock_allow_resize();
487 }
488
489 void __init bootmem_init(void)
490 {
491 unsigned long min, max;
492
493 min = PFN_UP(memblock_start_of_DRAM());
494 max = PFN_DOWN(memblock_end_of_DRAM());
495
496 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
497
498 max_pfn = max_low_pfn = max;
499
500 arm64_numa_init();
501 /*
502 * Sparsemem tries to allocate bootmem in memory_present(), so must be
503 * done after the fixed reservations.
504 */
505 arm64_memory_present();
506
507 sparse_init();
508 zone_sizes_init(min, max);
509
510 memblock_dump_all();
511 }
512
513 #ifndef CONFIG_SPARSEMEM_VMEMMAP
514 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
515 {
516 struct page *start_pg, *end_pg;
517 unsigned long pg, pgend;
518
519 /*
520 * Convert start_pfn/end_pfn to a struct page pointer.
521 */
522 start_pg = pfn_to_page(start_pfn - 1) + 1;
523 end_pg = pfn_to_page(end_pfn - 1) + 1;
524
525 /*
526 * Convert to physical addresses, and round start upwards and end
527 * downwards.
528 */
529 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
530 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
531
532 /*
533 * If there are free pages between these, free the section of the
534 * memmap array.
535 */
536 if (pg < pgend)
537 free_bootmem(pg, pgend - pg);
538 }
539
540 /*
541 * The mem_map array can get very big. Free the unused area of the memory map.
542 */
543 static void __init free_unused_memmap(void)
544 {
545 unsigned long start, prev_end = 0;
546 struct memblock_region *reg;
547
548 for_each_memblock(memory, reg) {
549 start = __phys_to_pfn(reg->base);
550
551 #ifdef CONFIG_SPARSEMEM
552 /*
553 * Take care not to free memmap entries that don't exist due
554 * to SPARSEMEM sections which aren't present.
555 */
556 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
557 #endif
558 /*
559 * If we had a previous bank, and there is a space between the
560 * current bank and the previous, free it.
561 */
562 if (prev_end && prev_end < start)
563 free_memmap(prev_end, start);
564
565 /*
566 * Align up here since the VM subsystem insists that the
567 * memmap entries are valid from the bank end aligned to
568 * MAX_ORDER_NR_PAGES.
569 */
570 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
571 MAX_ORDER_NR_PAGES);
572 }
573
574 #ifdef CONFIG_SPARSEMEM
575 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
576 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
577 #endif
578 }
579 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
580
581 /*
582 * mem_init() marks the free areas in the mem_map and tells us how much memory
583 * is free. This is done after various parts of the system have claimed their
584 * memory after the kernel image.
585 */
586 void __init mem_init(void)
587 {
588 if (swiotlb_force == SWIOTLB_FORCE ||
589 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT) ||
590 ARCH_DMA_MINALIGN < cache_line_size())
591 swiotlb_init(1);
592 else
593 swiotlb_force = SWIOTLB_NO_FORCE;
594
595 set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
596
597 #ifndef CONFIG_SPARSEMEM_VMEMMAP
598 free_unused_memmap();
599 #endif
600 /* this will put all unused low memory onto the freelists */
601 free_all_bootmem();
602
603 kexec_reserve_crashkres_pages();
604
605 mem_init_print_info(NULL);
606
607 /*
608 * Check boundaries twice: Some fundamental inconsistencies can be
609 * detected at build time already.
610 */
611 #ifdef CONFIG_COMPAT
612 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64);
613 #endif
614
615 /*
616 * Make sure we chose the upper bound of sizeof(struct page)
617 * correctly.
618 */
619 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
620
621 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
622 extern int sysctl_overcommit_memory;
623 /*
624 * On a machine this small we won't get anywhere without
625 * overcommit, so turn it on by default.
626 */
627 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
628 }
629 }
630
631 void free_initmem(void)
632 {
633 free_reserved_area(lm_alias(__init_begin),
634 lm_alias(__init_end),
635 0, "unused kernel");
636 /*
637 * Unmap the __init region but leave the VM area in place. This
638 * prevents the region from being reused for kernel modules, which
639 * is not supported by kallsyms.
640 */
641 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
642 }
643
644 #ifdef CONFIG_BLK_DEV_INITRD
645
646 static int keep_initrd __initdata;
647
648 void __init free_initrd_mem(unsigned long start, unsigned long end)
649 {
650 if (!keep_initrd)
651 free_reserved_area((void *)start, (void *)end, 0, "initrd");
652 }
653
654 static int __init keepinitrd_setup(char *__unused)
655 {
656 keep_initrd = 1;
657 return 1;
658 }
659
660 __setup("keepinitrd", keepinitrd_setup);
661 #endif
662
663 /*
664 * Dump out memory limit information on panic.
665 */
666 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
667 {
668 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
669 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
670 } else {
671 pr_emerg("Memory Limit: none\n");
672 }
673 return 0;
674 }
675
676 static struct notifier_block mem_limit_notifier = {
677 .notifier_call = dump_mem_limit,
678 };
679
680 static int __init register_mem_limit_dumper(void)
681 {
682 atomic_notifier_chain_register(&panic_notifier_list,
683 &mem_limit_notifier);
684 return 0;
685 }
686 __initcall(register_mem_limit_dumper);