]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/mm/init.c
e4b422729a8a9e4829a0f4b599c29ffb8a68c63e
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / mm / init.c
1 /*
2 * Based on arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/efi.h>
38 #include <linux/swiotlb.h>
39 #include <linux/vmalloc.h>
40 #include <linux/kexec.h>
41
42 #include <asm/boot.h>
43 #include <asm/fixmap.h>
44 #include <asm/kasan.h>
45 #include <asm/kernel-pgtable.h>
46 #include <asm/memory.h>
47 #include <asm/numa.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/sizes.h>
51 #include <asm/tlb.h>
52 #include <asm/alternative.h>
53
54 /*
55 * We need to be able to catch inadvertent references to memstart_addr
56 * that occur (potentially in generic code) before arm64_memblock_init()
57 * executes, which assigns it its actual value. So use a default value
58 * that cannot be mistaken for a real physical address.
59 */
60 s64 memstart_addr __ro_after_init = -1;
61 phys_addr_t arm64_dma_phys_limit __ro_after_init;
62
63 #ifdef CONFIG_BLK_DEV_INITRD
64 static int __init early_initrd(char *p)
65 {
66 unsigned long start, size;
67 char *endp;
68
69 start = memparse(p, &endp);
70 if (*endp == ',') {
71 size = memparse(endp + 1, NULL);
72
73 initrd_start = start;
74 initrd_end = start + size;
75 }
76 return 0;
77 }
78 early_param("initrd", early_initrd);
79 #endif
80
81 #ifdef CONFIG_KEXEC_CORE
82 /*
83 * reserve_crashkernel() - reserves memory for crash kernel
84 *
85 * This function reserves memory area given in "crashkernel=" kernel command
86 * line parameter. The memory reserved is used by dump capture kernel when
87 * primary kernel is crashing.
88 */
89 static void __init reserve_crashkernel(void)
90 {
91 unsigned long long crash_base, crash_size;
92 int ret;
93
94 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
95 &crash_size, &crash_base);
96 /* no crashkernel= or invalid value specified */
97 if (ret || !crash_size)
98 return;
99
100 crash_size = PAGE_ALIGN(crash_size);
101
102 if (crash_base == 0) {
103 /* Current arm64 boot protocol requires 2MB alignment */
104 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
105 crash_size, SZ_2M);
106 if (crash_base == 0) {
107 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
108 crash_size);
109 return;
110 }
111 } else {
112 /* User specifies base address explicitly. */
113 if (!memblock_is_region_memory(crash_base, crash_size)) {
114 pr_warn("cannot reserve crashkernel: region is not memory\n");
115 return;
116 }
117
118 if (memblock_is_region_reserved(crash_base, crash_size)) {
119 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
120 return;
121 }
122
123 if (!IS_ALIGNED(crash_base, SZ_2M)) {
124 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
125 return;
126 }
127 }
128 memblock_reserve(crash_base, crash_size);
129
130 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
131 crash_base, crash_base + crash_size, crash_size >> 20);
132
133 crashk_res.start = crash_base;
134 crashk_res.end = crash_base + crash_size - 1;
135 }
136
137 static void __init kexec_reserve_crashkres_pages(void)
138 {
139 #ifdef CONFIG_HIBERNATION
140 phys_addr_t addr;
141 struct page *page;
142
143 if (!crashk_res.end)
144 return;
145
146 /*
147 * To reduce the size of hibernation image, all the pages are
148 * marked as Reserved initially.
149 */
150 for (addr = crashk_res.start; addr < (crashk_res.end + 1);
151 addr += PAGE_SIZE) {
152 page = phys_to_page(addr);
153 SetPageReserved(page);
154 }
155 #endif
156 }
157 #else
158 static void __init reserve_crashkernel(void)
159 {
160 }
161
162 static void __init kexec_reserve_crashkres_pages(void)
163 {
164 }
165 #endif /* CONFIG_KEXEC_CORE */
166
167 /*
168 * Return the maximum physical address for ZONE_DMA (DMA_BIT_MASK(32)). It
169 * currently assumes that for memory starting above 4G, 32-bit devices will
170 * use a DMA offset.
171 */
172 static phys_addr_t __init max_zone_dma_phys(void)
173 {
174 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
175 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
176 }
177
178 #ifdef CONFIG_NUMA
179
180 static void __init zone_sizes_init(unsigned long min, unsigned long max)
181 {
182 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
183
184 if (IS_ENABLED(CONFIG_ZONE_DMA))
185 max_zone_pfns[ZONE_DMA] = PFN_DOWN(max_zone_dma_phys());
186 max_zone_pfns[ZONE_NORMAL] = max;
187
188 free_area_init_nodes(max_zone_pfns);
189 }
190
191 #else
192
193 static void __init zone_sizes_init(unsigned long min, unsigned long max)
194 {
195 struct memblock_region *reg;
196 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
197 unsigned long max_dma = min;
198
199 memset(zone_size, 0, sizeof(zone_size));
200
201 /* 4GB maximum for 32-bit only capable devices */
202 #ifdef CONFIG_ZONE_DMA
203 max_dma = PFN_DOWN(arm64_dma_phys_limit);
204 zone_size[ZONE_DMA] = max_dma - min;
205 #endif
206 zone_size[ZONE_NORMAL] = max - max_dma;
207
208 memcpy(zhole_size, zone_size, sizeof(zhole_size));
209
210 for_each_memblock(memory, reg) {
211 unsigned long start = memblock_region_memory_base_pfn(reg);
212 unsigned long end = memblock_region_memory_end_pfn(reg);
213
214 if (start >= max)
215 continue;
216
217 #ifdef CONFIG_ZONE_DMA
218 if (start < max_dma) {
219 unsigned long dma_end = min(end, max_dma);
220 zhole_size[ZONE_DMA] -= dma_end - start;
221 }
222 #endif
223 if (end > max_dma) {
224 unsigned long normal_end = min(end, max);
225 unsigned long normal_start = max(start, max_dma);
226 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
227 }
228 }
229
230 free_area_init_node(0, zone_size, min, zhole_size);
231 }
232
233 #endif /* CONFIG_NUMA */
234
235 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
236 int pfn_valid(unsigned long pfn)
237 {
238 return memblock_is_map_memory(pfn << PAGE_SHIFT);
239 }
240 EXPORT_SYMBOL(pfn_valid);
241 #endif
242
243 #ifndef CONFIG_SPARSEMEM
244 static void __init arm64_memory_present(void)
245 {
246 }
247 #else
248 static void __init arm64_memory_present(void)
249 {
250 struct memblock_region *reg;
251
252 for_each_memblock(memory, reg) {
253 int nid = memblock_get_region_node(reg);
254
255 memory_present(nid, memblock_region_memory_base_pfn(reg),
256 memblock_region_memory_end_pfn(reg));
257 }
258 }
259 #endif
260
261 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
262
263 /*
264 * Limit the memory size that was specified via FDT.
265 */
266 static int __init early_mem(char *p)
267 {
268 if (!p)
269 return 1;
270
271 memory_limit = memparse(p, &p) & PAGE_MASK;
272 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
273
274 return 0;
275 }
276 early_param("mem", early_mem);
277
278 static int __init early_init_dt_scan_usablemem(unsigned long node,
279 const char *uname, int depth, void *data)
280 {
281 struct memblock_region *usablemem = data;
282 const __be32 *reg;
283 int len;
284
285 if (depth != 1 || strcmp(uname, "chosen") != 0)
286 return 0;
287
288 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
289 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
290 return 1;
291
292 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
293 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
294
295 return 1;
296 }
297
298 static void __init fdt_enforce_memory_region(void)
299 {
300 struct memblock_region reg = {
301 .size = 0,
302 };
303
304 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
305
306 if (reg.size)
307 memblock_cap_memory_range(reg.base, reg.size);
308 }
309
310 void __init arm64_memblock_init(void)
311 {
312 const s64 linear_region_size = -(s64)PAGE_OFFSET;
313
314 /* Handle linux,usable-memory-range property */
315 fdt_enforce_memory_region();
316
317 /*
318 * Ensure that the linear region takes up exactly half of the kernel
319 * virtual address space. This way, we can distinguish a linear address
320 * from a kernel/module/vmalloc address by testing a single bit.
321 */
322 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
323
324 /*
325 * Select a suitable value for the base of physical memory.
326 */
327 memstart_addr = round_down(memblock_start_of_DRAM(),
328 ARM64_MEMSTART_ALIGN);
329
330 /*
331 * Remove the memory that we will not be able to cover with the
332 * linear mapping. Take care not to clip the kernel which may be
333 * high in memory.
334 */
335 memblock_remove(max_t(u64, memstart_addr + linear_region_size, __pa(_end)),
336 ULLONG_MAX);
337 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
338 /* ensure that memstart_addr remains sufficiently aligned */
339 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
340 ARM64_MEMSTART_ALIGN);
341 memblock_remove(0, memstart_addr);
342 }
343
344 /*
345 * Apply the memory limit if it was set. Since the kernel may be loaded
346 * high up in memory, add back the kernel region that must be accessible
347 * via the linear mapping.
348 */
349 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
350 memblock_mem_limit_remove_map(memory_limit);
351 memblock_add(__pa(_text), (u64)(_end - _text));
352 }
353
354 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
355 /*
356 * Add back the memory we just removed if it results in the
357 * initrd to become inaccessible via the linear mapping.
358 * Otherwise, this is a no-op
359 */
360 u64 base = initrd_start & PAGE_MASK;
361 u64 size = PAGE_ALIGN(initrd_end) - base;
362
363 /*
364 * We can only add back the initrd memory if we don't end up
365 * with more memory than we can address via the linear mapping.
366 * It is up to the bootloader to position the kernel and the
367 * initrd reasonably close to each other (i.e., within 32 GB of
368 * each other) so that all granule/#levels combinations can
369 * always access both.
370 */
371 if (WARN(base < memblock_start_of_DRAM() ||
372 base + size > memblock_start_of_DRAM() +
373 linear_region_size,
374 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
375 initrd_start = 0;
376 } else {
377 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
378 memblock_add(base, size);
379 memblock_reserve(base, size);
380 }
381 }
382
383 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
384 extern u16 memstart_offset_seed;
385 u64 range = linear_region_size -
386 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
387
388 /*
389 * If the size of the linear region exceeds, by a sufficient
390 * margin, the size of the region that the available physical
391 * memory spans, randomize the linear region as well.
392 */
393 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
394 range = range / ARM64_MEMSTART_ALIGN + 1;
395 memstart_addr -= ARM64_MEMSTART_ALIGN *
396 ((range * memstart_offset_seed) >> 16);
397 }
398 }
399
400 /*
401 * Register the kernel text, kernel data, initrd, and initial
402 * pagetables with memblock.
403 */
404 memblock_reserve(__pa(_text), _end - _text);
405 #ifdef CONFIG_BLK_DEV_INITRD
406 if (initrd_start) {
407 memblock_reserve(initrd_start, initrd_end - initrd_start);
408
409 /* the generic initrd code expects virtual addresses */
410 initrd_start = __phys_to_virt(initrd_start);
411 initrd_end = __phys_to_virt(initrd_end);
412 }
413 #endif
414
415 early_init_fdt_scan_reserved_mem();
416
417 /* 4GB maximum for 32-bit only capable devices */
418 if (IS_ENABLED(CONFIG_ZONE_DMA))
419 arm64_dma_phys_limit = max_zone_dma_phys();
420 else
421 arm64_dma_phys_limit = PHYS_MASK + 1;
422
423 reserve_crashkernel();
424
425 dma_contiguous_reserve(arm64_dma_phys_limit);
426
427 memblock_allow_resize();
428 }
429
430 void __init bootmem_init(void)
431 {
432 unsigned long min, max;
433
434 min = PFN_UP(memblock_start_of_DRAM());
435 max = PFN_DOWN(memblock_end_of_DRAM());
436
437 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
438
439 max_pfn = max_low_pfn = max;
440
441 arm64_numa_init();
442 /*
443 * Sparsemem tries to allocate bootmem in memory_present(), so must be
444 * done after the fixed reservations.
445 */
446 arm64_memory_present();
447
448 sparse_init();
449 zone_sizes_init(min, max);
450
451 high_memory = __va((max << PAGE_SHIFT) - 1) + 1;
452 memblock_dump_all();
453 }
454
455 #ifndef CONFIG_SPARSEMEM_VMEMMAP
456 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
457 {
458 struct page *start_pg, *end_pg;
459 unsigned long pg, pgend;
460
461 /*
462 * Convert start_pfn/end_pfn to a struct page pointer.
463 */
464 start_pg = pfn_to_page(start_pfn - 1) + 1;
465 end_pg = pfn_to_page(end_pfn - 1) + 1;
466
467 /*
468 * Convert to physical addresses, and round start upwards and end
469 * downwards.
470 */
471 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
472 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
473
474 /*
475 * If there are free pages between these, free the section of the
476 * memmap array.
477 */
478 if (pg < pgend)
479 free_bootmem(pg, pgend - pg);
480 }
481
482 /*
483 * The mem_map array can get very big. Free the unused area of the memory map.
484 */
485 static void __init free_unused_memmap(void)
486 {
487 unsigned long start, prev_end = 0;
488 struct memblock_region *reg;
489
490 for_each_memblock(memory, reg) {
491 start = __phys_to_pfn(reg->base);
492
493 #ifdef CONFIG_SPARSEMEM
494 /*
495 * Take care not to free memmap entries that don't exist due
496 * to SPARSEMEM sections which aren't present.
497 */
498 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
499 #endif
500 /*
501 * If we had a previous bank, and there is a space between the
502 * current bank and the previous, free it.
503 */
504 if (prev_end && prev_end < start)
505 free_memmap(prev_end, start);
506
507 /*
508 * Align up here since the VM subsystem insists that the
509 * memmap entries are valid from the bank end aligned to
510 * MAX_ORDER_NR_PAGES.
511 */
512 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
513 MAX_ORDER_NR_PAGES);
514 }
515
516 #ifdef CONFIG_SPARSEMEM
517 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
518 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
519 #endif
520 }
521 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
522
523 /*
524 * mem_init() marks the free areas in the mem_map and tells us how much memory
525 * is free. This is done after various parts of the system have claimed their
526 * memory after the kernel image.
527 */
528 void __init mem_init(void)
529 {
530 if (swiotlb_force == SWIOTLB_FORCE ||
531 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
532 swiotlb_init(1);
533 else
534 swiotlb_force = SWIOTLB_NO_FORCE;
535
536 set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
537
538 #ifndef CONFIG_SPARSEMEM_VMEMMAP
539 free_unused_memmap();
540 #endif
541 /* this will put all unused low memory onto the freelists */
542 free_all_bootmem();
543
544 kexec_reserve_crashkres_pages();
545
546 mem_init_print_info(NULL);
547
548 #define MLK(b, t) b, t, ((t) - (b)) >> 10
549 #define MLM(b, t) b, t, ((t) - (b)) >> 20
550 #define MLG(b, t) b, t, ((t) - (b)) >> 30
551 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
552
553 pr_notice("Virtual kernel memory layout:\n");
554 #ifdef CONFIG_KASAN
555 pr_notice(" kasan : 0x%16lx - 0x%16lx (%6ld GB)\n",
556 MLG(KASAN_SHADOW_START, KASAN_SHADOW_END));
557 #endif
558 pr_notice(" modules : 0x%16lx - 0x%16lx (%6ld MB)\n",
559 MLM(MODULES_VADDR, MODULES_END));
560 pr_notice(" vmalloc : 0x%16lx - 0x%16lx (%6ld GB)\n",
561 MLG(VMALLOC_START, VMALLOC_END));
562 pr_notice(" .text : 0x%p" " - 0x%p" " (%6ld KB)\n",
563 MLK_ROUNDUP(_text, _etext));
564 pr_notice(" .rodata : 0x%p" " - 0x%p" " (%6ld KB)\n",
565 MLK_ROUNDUP(__start_rodata, __init_begin));
566 pr_notice(" .init : 0x%p" " - 0x%p" " (%6ld KB)\n",
567 MLK_ROUNDUP(__init_begin, __init_end));
568 pr_notice(" .data : 0x%p" " - 0x%p" " (%6ld KB)\n",
569 MLK_ROUNDUP(_sdata, _edata));
570 pr_notice(" .bss : 0x%p" " - 0x%p" " (%6ld KB)\n",
571 MLK_ROUNDUP(__bss_start, __bss_stop));
572 pr_notice(" fixed : 0x%16lx - 0x%16lx (%6ld KB)\n",
573 MLK(FIXADDR_START, FIXADDR_TOP));
574 pr_notice(" PCI I/O : 0x%16lx - 0x%16lx (%6ld MB)\n",
575 MLM(PCI_IO_START, PCI_IO_END));
576 #ifdef CONFIG_SPARSEMEM_VMEMMAP
577 pr_notice(" vmemmap : 0x%16lx - 0x%16lx (%6ld GB maximum)\n",
578 MLG(VMEMMAP_START, VMEMMAP_START + VMEMMAP_SIZE));
579 pr_notice(" 0x%16lx - 0x%16lx (%6ld MB actual)\n",
580 MLM((unsigned long)phys_to_page(memblock_start_of_DRAM()),
581 (unsigned long)virt_to_page(high_memory)));
582 #endif
583 pr_notice(" memory : 0x%16lx - 0x%16lx (%6ld MB)\n",
584 MLM(__phys_to_virt(memblock_start_of_DRAM()),
585 (unsigned long)high_memory));
586
587 #undef MLK
588 #undef MLM
589 #undef MLK_ROUNDUP
590
591 /*
592 * Check boundaries twice: Some fundamental inconsistencies can be
593 * detected at build time already.
594 */
595 #ifdef CONFIG_COMPAT
596 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64);
597 #endif
598
599 /*
600 * Make sure we chose the upper bound of sizeof(struct page)
601 * correctly.
602 */
603 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
604
605 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
606 extern int sysctl_overcommit_memory;
607 /*
608 * On a machine this small we won't get anywhere without
609 * overcommit, so turn it on by default.
610 */
611 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
612 }
613 }
614
615 void free_initmem(void)
616 {
617 free_reserved_area(__va(__pa(__init_begin)), __va(__pa(__init_end)),
618 0, "unused kernel");
619 /*
620 * Unmap the __init region but leave the VM area in place. This
621 * prevents the region from being reused for kernel modules, which
622 * is not supported by kallsyms.
623 */
624 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
625 }
626
627 #ifdef CONFIG_BLK_DEV_INITRD
628
629 static int keep_initrd __initdata;
630
631 void __init free_initrd_mem(unsigned long start, unsigned long end)
632 {
633 if (!keep_initrd)
634 free_reserved_area((void *)start, (void *)end, 0, "initrd");
635 }
636
637 static int __init keepinitrd_setup(char *__unused)
638 {
639 keep_initrd = 1;
640 return 1;
641 }
642
643 __setup("keepinitrd", keepinitrd_setup);
644 #endif
645
646 /*
647 * Dump out memory limit information on panic.
648 */
649 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
650 {
651 if (memory_limit != (phys_addr_t)ULLONG_MAX) {
652 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
653 } else {
654 pr_emerg("Memory Limit: none\n");
655 }
656 return 0;
657 }
658
659 static struct notifier_block mem_limit_notifier = {
660 .notifier_call = dump_mem_limit,
661 };
662
663 static int __init register_mem_limit_dumper(void)
664 {
665 atomic_notifier_chain_register(&panic_notifier_list,
666 &mem_limit_notifier);
667 return 0;
668 }
669 __initcall(register_mem_limit_dumper);