]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/mm/mmu.c
arm64: kdump: protect crash dump kernel memory
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / mm / mmu.c
1 /*
2 * Based on arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/cache.h>
21 #include <linux/export.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/ioport.h>
26 #include <linux/kexec.h>
27 #include <linux/libfdt.h>
28 #include <linux/mman.h>
29 #include <linux/nodemask.h>
30 #include <linux/memblock.h>
31 #include <linux/fs.h>
32 #include <linux/io.h>
33
34 #include <asm/barrier.h>
35 #include <asm/cputype.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/sizes.h>
42 #include <asm/tlb.h>
43 #include <asm/memblock.h>
44 #include <asm/mmu_context.h>
45 #include <asm/ptdump.h>
46
47 u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
48
49 u64 kimage_voffset __ro_after_init;
50 EXPORT_SYMBOL(kimage_voffset);
51
52 /*
53 * Empty_zero_page is a special page that is used for zero-initialized data
54 * and COW.
55 */
56 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
57 EXPORT_SYMBOL(empty_zero_page);
58
59 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
60 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
61 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
62
63 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
64 unsigned long size, pgprot_t vma_prot)
65 {
66 if (!pfn_valid(pfn))
67 return pgprot_noncached(vma_prot);
68 else if (file->f_flags & O_SYNC)
69 return pgprot_writecombine(vma_prot);
70 return vma_prot;
71 }
72 EXPORT_SYMBOL(phys_mem_access_prot);
73
74 static phys_addr_t __init early_pgtable_alloc(void)
75 {
76 phys_addr_t phys;
77 void *ptr;
78
79 phys = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
80
81 /*
82 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
83 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
84 * any level of table.
85 */
86 ptr = pte_set_fixmap(phys);
87
88 memset(ptr, 0, PAGE_SIZE);
89
90 /*
91 * Implicit barriers also ensure the zeroed page is visible to the page
92 * table walker
93 */
94 pte_clear_fixmap();
95
96 return phys;
97 }
98
99 static bool pgattr_change_is_safe(u64 old, u64 new)
100 {
101 /*
102 * The following mapping attributes may be updated in live
103 * kernel mappings without the need for break-before-make.
104 */
105 static const pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE;
106
107 return old == 0 || new == 0 || ((old ^ new) & ~mask) == 0;
108 }
109
110 static void alloc_init_pte(pmd_t *pmd, unsigned long addr,
111 unsigned long end, unsigned long pfn,
112 pgprot_t prot,
113 phys_addr_t (*pgtable_alloc)(void))
114 {
115 pte_t *pte;
116
117 BUG_ON(pmd_sect(*pmd));
118 if (pmd_none(*pmd)) {
119 phys_addr_t pte_phys;
120 BUG_ON(!pgtable_alloc);
121 pte_phys = pgtable_alloc();
122 pte = pte_set_fixmap(pte_phys);
123 __pmd_populate(pmd, pte_phys, PMD_TYPE_TABLE);
124 pte_clear_fixmap();
125 }
126 BUG_ON(pmd_bad(*pmd));
127
128 pte = pte_set_fixmap_offset(pmd, addr);
129 do {
130 pte_t old_pte = *pte;
131
132 set_pte(pte, pfn_pte(pfn, prot));
133 pfn++;
134
135 /*
136 * After the PTE entry has been populated once, we
137 * only allow updates to the permission attributes.
138 */
139 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte), pte_val(*pte)));
140
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142
143 pte_clear_fixmap();
144 }
145
146 static void alloc_init_pmd(pud_t *pud, unsigned long addr, unsigned long end,
147 phys_addr_t phys, pgprot_t prot,
148 phys_addr_t (*pgtable_alloc)(void),
149 bool page_mappings_only)
150 {
151 pmd_t *pmd;
152 unsigned long next;
153
154 /*
155 * Check for initial section mappings in the pgd/pud and remove them.
156 */
157 BUG_ON(pud_sect(*pud));
158 if (pud_none(*pud)) {
159 phys_addr_t pmd_phys;
160 BUG_ON(!pgtable_alloc);
161 pmd_phys = pgtable_alloc();
162 pmd = pmd_set_fixmap(pmd_phys);
163 __pud_populate(pud, pmd_phys, PUD_TYPE_TABLE);
164 pmd_clear_fixmap();
165 }
166 BUG_ON(pud_bad(*pud));
167
168 pmd = pmd_set_fixmap_offset(pud, addr);
169 do {
170 pmd_t old_pmd = *pmd;
171
172 next = pmd_addr_end(addr, end);
173
174 /* try section mapping first */
175 if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
176 !page_mappings_only) {
177 pmd_set_huge(pmd, phys, prot);
178
179 /*
180 * After the PMD entry has been populated once, we
181 * only allow updates to the permission attributes.
182 */
183 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
184 pmd_val(*pmd)));
185 } else {
186 alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
187 prot, pgtable_alloc);
188
189 BUG_ON(pmd_val(old_pmd) != 0 &&
190 pmd_val(old_pmd) != pmd_val(*pmd));
191 }
192 phys += next - addr;
193 } while (pmd++, addr = next, addr != end);
194
195 pmd_clear_fixmap();
196 }
197
198 static inline bool use_1G_block(unsigned long addr, unsigned long next,
199 unsigned long phys)
200 {
201 if (PAGE_SHIFT != 12)
202 return false;
203
204 if (((addr | next | phys) & ~PUD_MASK) != 0)
205 return false;
206
207 return true;
208 }
209
210 static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
211 phys_addr_t phys, pgprot_t prot,
212 phys_addr_t (*pgtable_alloc)(void),
213 bool page_mappings_only)
214 {
215 pud_t *pud;
216 unsigned long next;
217
218 if (pgd_none(*pgd)) {
219 phys_addr_t pud_phys;
220 BUG_ON(!pgtable_alloc);
221 pud_phys = pgtable_alloc();
222 __pgd_populate(pgd, pud_phys, PUD_TYPE_TABLE);
223 }
224 BUG_ON(pgd_bad(*pgd));
225
226 pud = pud_set_fixmap_offset(pgd, addr);
227 do {
228 pud_t old_pud = *pud;
229
230 next = pud_addr_end(addr, end);
231
232 /*
233 * For 4K granule only, attempt to put down a 1GB block
234 */
235 if (use_1G_block(addr, next, phys) && !page_mappings_only) {
236 pud_set_huge(pud, phys, prot);
237
238 /*
239 * After the PUD entry has been populated once, we
240 * only allow updates to the permission attributes.
241 */
242 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
243 pud_val(*pud)));
244 } else {
245 alloc_init_pmd(pud, addr, next, phys, prot,
246 pgtable_alloc, page_mappings_only);
247
248 BUG_ON(pud_val(old_pud) != 0 &&
249 pud_val(old_pud) != pud_val(*pud));
250 }
251 phys += next - addr;
252 } while (pud++, addr = next, addr != end);
253
254 pud_clear_fixmap();
255 }
256
257 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
258 unsigned long virt, phys_addr_t size,
259 pgprot_t prot,
260 phys_addr_t (*pgtable_alloc)(void),
261 bool page_mappings_only)
262 {
263 unsigned long addr, length, end, next;
264 pgd_t *pgd = pgd_offset_raw(pgdir, virt);
265
266 /*
267 * If the virtual and physical address don't have the same offset
268 * within a page, we cannot map the region as the caller expects.
269 */
270 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
271 return;
272
273 phys &= PAGE_MASK;
274 addr = virt & PAGE_MASK;
275 length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
276
277 end = addr + length;
278 do {
279 next = pgd_addr_end(addr, end);
280 alloc_init_pud(pgd, addr, next, phys, prot, pgtable_alloc,
281 page_mappings_only);
282 phys += next - addr;
283 } while (pgd++, addr = next, addr != end);
284 }
285
286 static phys_addr_t pgd_pgtable_alloc(void)
287 {
288 void *ptr = (void *)__get_free_page(PGALLOC_GFP);
289 if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
290 BUG();
291
292 /* Ensure the zeroed page is visible to the page table walker */
293 dsb(ishst);
294 return __pa(ptr);
295 }
296
297 /*
298 * This function can only be used to modify existing table entries,
299 * without allocating new levels of table. Note that this permits the
300 * creation of new section or page entries.
301 */
302 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
303 phys_addr_t size, pgprot_t prot)
304 {
305 if (virt < VMALLOC_START) {
306 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
307 &phys, virt);
308 return;
309 }
310 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL, false);
311 }
312
313 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
314 unsigned long virt, phys_addr_t size,
315 pgprot_t prot, bool page_mappings_only)
316 {
317 BUG_ON(mm == &init_mm);
318
319 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
320 pgd_pgtable_alloc, page_mappings_only);
321 }
322
323 static void create_mapping_late(phys_addr_t phys, unsigned long virt,
324 phys_addr_t size, pgprot_t prot)
325 {
326 if (virt < VMALLOC_START) {
327 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
328 &phys, virt);
329 return;
330 }
331
332 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot,
333 NULL, debug_pagealloc_enabled());
334 }
335
336 static void __init __map_memblock(pgd_t *pgd, phys_addr_t start,
337 phys_addr_t end, pgprot_t prot,
338 bool page_mappings_only)
339 {
340 __create_pgd_mapping(pgd, start, __phys_to_virt(start), end - start,
341 prot, early_pgtable_alloc,
342 page_mappings_only);
343 }
344
345 static void __init map_mem(pgd_t *pgd)
346 {
347 phys_addr_t kernel_start = __pa(_text);
348 phys_addr_t kernel_end = __pa(__init_begin);
349 struct memblock_region *reg;
350
351 /*
352 * Temporarily marked as NOMAP to skip mapping in the next for-loop
353 */
354 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
355
356 #ifdef CONFIG_KEXEC_CORE
357 if (crashk_res.end)
358 memblock_mark_nomap(crashk_res.start,
359 resource_size(&crashk_res));
360 #endif
361
362 /* map all the memory banks */
363 for_each_memblock(memory, reg) {
364 phys_addr_t start = reg->base;
365 phys_addr_t end = start + reg->size;
366
367 if (start >= end)
368 break;
369 if (memblock_is_nomap(reg))
370 continue;
371
372 __map_memblock(pgd, start, end,
373 PAGE_KERNEL, debug_pagealloc_enabled());
374 }
375
376 /*
377 * Map the linear alias of the [_text, __init_begin) interval as
378 * read-only/non-executable. This makes the contents of the
379 * region accessible to subsystems such as hibernate, but
380 * protects it from inadvertent modification or execution.
381 */
382 __map_memblock(pgd, kernel_start, kernel_end,
383 PAGE_KERNEL_RO, debug_pagealloc_enabled());
384 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
385
386 #ifdef CONFIG_KEXEC_CORE
387 /*
388 * User page-level mappings here so that we can shrink the region
389 * in page granularity and put back unused memory to buddy system
390 * through /sys/kernel/kexec_crash_size interface.
391 */
392 if (crashk_res.end) {
393 __map_memblock(pgd, crashk_res.start, crashk_res.end + 1,
394 PAGE_KERNEL, true);
395 memblock_clear_nomap(crashk_res.start,
396 resource_size(&crashk_res));
397 }
398 #endif
399 }
400
401 void mark_rodata_ro(void)
402 {
403 unsigned long section_size;
404
405 section_size = (unsigned long)_etext - (unsigned long)_text;
406 create_mapping_late(__pa(_text), (unsigned long)_text,
407 section_size, PAGE_KERNEL_ROX);
408 /*
409 * mark .rodata as read only. Use __init_begin rather than __end_rodata
410 * to cover NOTES and EXCEPTION_TABLE.
411 */
412 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
413 create_mapping_late(__pa(__start_rodata), (unsigned long)__start_rodata,
414 section_size, PAGE_KERNEL_RO);
415
416 /* flush the TLBs after updating live kernel mappings */
417 flush_tlb_all();
418
419 debug_checkwx();
420 }
421
422 static void __init map_kernel_segment(pgd_t *pgd, void *va_start, void *va_end,
423 pgprot_t prot, struct vm_struct *vma)
424 {
425 phys_addr_t pa_start = __pa(va_start);
426 unsigned long size = va_end - va_start;
427
428 BUG_ON(!PAGE_ALIGNED(pa_start));
429 BUG_ON(!PAGE_ALIGNED(size));
430
431 __create_pgd_mapping(pgd, pa_start, (unsigned long)va_start, size, prot,
432 early_pgtable_alloc, debug_pagealloc_enabled());
433
434 vma->addr = va_start;
435 vma->phys_addr = pa_start;
436 vma->size = size;
437 vma->flags = VM_MAP;
438 vma->caller = __builtin_return_address(0);
439
440 vm_area_add_early(vma);
441 }
442
443 /*
444 * Create fine-grained mappings for the kernel.
445 */
446 static void __init map_kernel(pgd_t *pgd)
447 {
448 static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_init, vmlinux_data;
449
450 map_kernel_segment(pgd, _text, _etext, PAGE_KERNEL_EXEC, &vmlinux_text);
451 map_kernel_segment(pgd, __start_rodata, __init_begin, PAGE_KERNEL, &vmlinux_rodata);
452 map_kernel_segment(pgd, __init_begin, __init_end, PAGE_KERNEL_EXEC,
453 &vmlinux_init);
454 map_kernel_segment(pgd, _data, _end, PAGE_KERNEL, &vmlinux_data);
455
456 if (!pgd_val(*pgd_offset_raw(pgd, FIXADDR_START))) {
457 /*
458 * The fixmap falls in a separate pgd to the kernel, and doesn't
459 * live in the carveout for the swapper_pg_dir. We can simply
460 * re-use the existing dir for the fixmap.
461 */
462 set_pgd(pgd_offset_raw(pgd, FIXADDR_START),
463 *pgd_offset_k(FIXADDR_START));
464 } else if (CONFIG_PGTABLE_LEVELS > 3) {
465 /*
466 * The fixmap shares its top level pgd entry with the kernel
467 * mapping. This can really only occur when we are running
468 * with 16k/4 levels, so we can simply reuse the pud level
469 * entry instead.
470 */
471 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
472 set_pud(pud_set_fixmap_offset(pgd, FIXADDR_START),
473 __pud(__pa(bm_pmd) | PUD_TYPE_TABLE));
474 pud_clear_fixmap();
475 } else {
476 BUG();
477 }
478
479 kasan_copy_shadow(pgd);
480 }
481
482 /*
483 * paging_init() sets up the page tables, initialises the zone memory
484 * maps and sets up the zero page.
485 */
486 void __init paging_init(void)
487 {
488 phys_addr_t pgd_phys = early_pgtable_alloc();
489 pgd_t *pgd = pgd_set_fixmap(pgd_phys);
490
491 map_kernel(pgd);
492 map_mem(pgd);
493
494 /*
495 * We want to reuse the original swapper_pg_dir so we don't have to
496 * communicate the new address to non-coherent secondaries in
497 * secondary_entry, and so cpu_switch_mm can generate the address with
498 * adrp+add rather than a load from some global variable.
499 *
500 * To do this we need to go via a temporary pgd.
501 */
502 cpu_replace_ttbr1(__va(pgd_phys));
503 memcpy(swapper_pg_dir, pgd, PAGE_SIZE);
504 cpu_replace_ttbr1(swapper_pg_dir);
505
506 pgd_clear_fixmap();
507 memblock_free(pgd_phys, PAGE_SIZE);
508
509 /*
510 * We only reuse the PGD from the swapper_pg_dir, not the pud + pmd
511 * allocated with it.
512 */
513 memblock_free(__pa(swapper_pg_dir) + PAGE_SIZE,
514 SWAPPER_DIR_SIZE - PAGE_SIZE);
515 }
516
517 /*
518 * Check whether a kernel address is valid (derived from arch/x86/).
519 */
520 int kern_addr_valid(unsigned long addr)
521 {
522 pgd_t *pgd;
523 pud_t *pud;
524 pmd_t *pmd;
525 pte_t *pte;
526
527 if ((((long)addr) >> VA_BITS) != -1UL)
528 return 0;
529
530 pgd = pgd_offset_k(addr);
531 if (pgd_none(*pgd))
532 return 0;
533
534 pud = pud_offset(pgd, addr);
535 if (pud_none(*pud))
536 return 0;
537
538 if (pud_sect(*pud))
539 return pfn_valid(pud_pfn(*pud));
540
541 pmd = pmd_offset(pud, addr);
542 if (pmd_none(*pmd))
543 return 0;
544
545 if (pmd_sect(*pmd))
546 return pfn_valid(pmd_pfn(*pmd));
547
548 pte = pte_offset_kernel(pmd, addr);
549 if (pte_none(*pte))
550 return 0;
551
552 return pfn_valid(pte_pfn(*pte));
553 }
554 #ifdef CONFIG_SPARSEMEM_VMEMMAP
555 #if !ARM64_SWAPPER_USES_SECTION_MAPS
556 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
557 {
558 return vmemmap_populate_basepages(start, end, node);
559 }
560 #else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
561 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
562 {
563 unsigned long addr = start;
564 unsigned long next;
565 pgd_t *pgd;
566 pud_t *pud;
567 pmd_t *pmd;
568
569 do {
570 next = pmd_addr_end(addr, end);
571
572 pgd = vmemmap_pgd_populate(addr, node);
573 if (!pgd)
574 return -ENOMEM;
575
576 pud = vmemmap_pud_populate(pgd, addr, node);
577 if (!pud)
578 return -ENOMEM;
579
580 pmd = pmd_offset(pud, addr);
581 if (pmd_none(*pmd)) {
582 void *p = NULL;
583
584 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
585 if (!p)
586 return -ENOMEM;
587
588 set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
589 } else
590 vmemmap_verify((pte_t *)pmd, node, addr, next);
591 } while (addr = next, addr != end);
592
593 return 0;
594 }
595 #endif /* CONFIG_ARM64_64K_PAGES */
596 void vmemmap_free(unsigned long start, unsigned long end)
597 {
598 }
599 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
600
601 static inline pud_t * fixmap_pud(unsigned long addr)
602 {
603 pgd_t *pgd = pgd_offset_k(addr);
604
605 BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
606
607 return pud_offset_kimg(pgd, addr);
608 }
609
610 static inline pmd_t * fixmap_pmd(unsigned long addr)
611 {
612 pud_t *pud = fixmap_pud(addr);
613
614 BUG_ON(pud_none(*pud) || pud_bad(*pud));
615
616 return pmd_offset_kimg(pud, addr);
617 }
618
619 static inline pte_t * fixmap_pte(unsigned long addr)
620 {
621 return &bm_pte[pte_index(addr)];
622 }
623
624 void __init early_fixmap_init(void)
625 {
626 pgd_t *pgd;
627 pud_t *pud;
628 pmd_t *pmd;
629 unsigned long addr = FIXADDR_START;
630
631 pgd = pgd_offset_k(addr);
632 if (CONFIG_PGTABLE_LEVELS > 3 &&
633 !(pgd_none(*pgd) || pgd_page_paddr(*pgd) == __pa(bm_pud))) {
634 /*
635 * We only end up here if the kernel mapping and the fixmap
636 * share the top level pgd entry, which should only happen on
637 * 16k/4 levels configurations.
638 */
639 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
640 pud = pud_offset_kimg(pgd, addr);
641 } else {
642 pgd_populate(&init_mm, pgd, bm_pud);
643 pud = fixmap_pud(addr);
644 }
645 pud_populate(&init_mm, pud, bm_pmd);
646 pmd = fixmap_pmd(addr);
647 pmd_populate_kernel(&init_mm, pmd, bm_pte);
648
649 /*
650 * The boot-ioremap range spans multiple pmds, for which
651 * we are not prepared:
652 */
653 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
654 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
655
656 if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
657 || pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
658 WARN_ON(1);
659 pr_warn("pmd %p != %p, %p\n",
660 pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
661 fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
662 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
663 fix_to_virt(FIX_BTMAP_BEGIN));
664 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
665 fix_to_virt(FIX_BTMAP_END));
666
667 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
668 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
669 }
670 }
671
672 void __set_fixmap(enum fixed_addresses idx,
673 phys_addr_t phys, pgprot_t flags)
674 {
675 unsigned long addr = __fix_to_virt(idx);
676 pte_t *pte;
677
678 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
679
680 pte = fixmap_pte(addr);
681
682 if (pgprot_val(flags)) {
683 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
684 } else {
685 pte_clear(&init_mm, addr, pte);
686 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
687 }
688 }
689
690 void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
691 {
692 const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
693 int offset;
694 void *dt_virt;
695
696 /*
697 * Check whether the physical FDT address is set and meets the minimum
698 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
699 * at least 8 bytes so that we can always access the magic and size
700 * fields of the FDT header after mapping the first chunk, double check
701 * here if that is indeed the case.
702 */
703 BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
704 if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
705 return NULL;
706
707 /*
708 * Make sure that the FDT region can be mapped without the need to
709 * allocate additional translation table pages, so that it is safe
710 * to call create_mapping_noalloc() this early.
711 *
712 * On 64k pages, the FDT will be mapped using PTEs, so we need to
713 * be in the same PMD as the rest of the fixmap.
714 * On 4k pages, we'll use section mappings for the FDT so we only
715 * have to be in the same PUD.
716 */
717 BUILD_BUG_ON(dt_virt_base % SZ_2M);
718
719 BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
720 __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
721
722 offset = dt_phys % SWAPPER_BLOCK_SIZE;
723 dt_virt = (void *)dt_virt_base + offset;
724
725 /* map the first chunk so we can read the size from the header */
726 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
727 dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
728
729 if (fdt_magic(dt_virt) != FDT_MAGIC)
730 return NULL;
731
732 *size = fdt_totalsize(dt_virt);
733 if (*size > MAX_FDT_SIZE)
734 return NULL;
735
736 if (offset + *size > SWAPPER_BLOCK_SIZE)
737 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
738 round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
739
740 return dt_virt;
741 }
742
743 void *__init fixmap_remap_fdt(phys_addr_t dt_phys)
744 {
745 void *dt_virt;
746 int size;
747
748 dt_virt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
749 if (!dt_virt)
750 return NULL;
751
752 memblock_reserve(dt_phys, size);
753 return dt_virt;
754 }
755
756 int __init arch_ioremap_pud_supported(void)
757 {
758 /* only 4k granule supports level 1 block mappings */
759 return IS_ENABLED(CONFIG_ARM64_4K_PAGES);
760 }
761
762 int __init arch_ioremap_pmd_supported(void)
763 {
764 return 1;
765 }
766
767 int pud_set_huge(pud_t *pud, phys_addr_t phys, pgprot_t prot)
768 {
769 BUG_ON(phys & ~PUD_MASK);
770 set_pud(pud, __pud(phys | PUD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
771 return 1;
772 }
773
774 int pmd_set_huge(pmd_t *pmd, phys_addr_t phys, pgprot_t prot)
775 {
776 BUG_ON(phys & ~PMD_MASK);
777 set_pmd(pmd, __pmd(phys | PMD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
778 return 1;
779 }
780
781 int pud_clear_huge(pud_t *pud)
782 {
783 if (!pud_sect(*pud))
784 return 0;
785 pud_clear(pud);
786 return 1;
787 }
788
789 int pmd_clear_huge(pmd_t *pmd)
790 {
791 if (!pmd_sect(*pmd))
792 return 0;
793 pmd_clear(pmd);
794 return 1;
795 }