]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm64/mm/mmu.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / arch / arm64 / mm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25
26 #include <asm/barrier.h>
27 #include <asm/cputype.h>
28 #include <asm/fixmap.h>
29 #include <asm/kasan.h>
30 #include <asm/kernel-pgtable.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <linux/sizes.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 #include <asm/ptdump.h>
37 #include <asm/tlbflush.h>
38 #include <asm/pgalloc.h>
39
40 #define NO_BLOCK_MAPPINGS BIT(0)
41 #define NO_CONT_MAPPINGS BIT(1)
42
43 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
44 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
45
46 u64 __section(".mmuoff.data.write") vabits_actual;
47 EXPORT_SYMBOL(vabits_actual);
48
49 u64 kimage_voffset __ro_after_init;
50 EXPORT_SYMBOL(kimage_voffset);
51
52 /*
53 * Empty_zero_page is a special page that is used for zero-initialized data
54 * and COW.
55 */
56 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
57 EXPORT_SYMBOL(empty_zero_page);
58
59 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
60 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
61 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
62
63 static DEFINE_SPINLOCK(swapper_pgdir_lock);
64
65 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
66 {
67 pgd_t *fixmap_pgdp;
68
69 spin_lock(&swapper_pgdir_lock);
70 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
71 WRITE_ONCE(*fixmap_pgdp, pgd);
72 /*
73 * We need dsb(ishst) here to ensure the page-table-walker sees
74 * our new entry before set_p?d() returns. The fixmap's
75 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
76 */
77 pgd_clear_fixmap();
78 spin_unlock(&swapper_pgdir_lock);
79 }
80
81 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
82 unsigned long size, pgprot_t vma_prot)
83 {
84 if (!pfn_valid(pfn))
85 return pgprot_noncached(vma_prot);
86 else if (file->f_flags & O_SYNC)
87 return pgprot_writecombine(vma_prot);
88 return vma_prot;
89 }
90 EXPORT_SYMBOL(phys_mem_access_prot);
91
92 static phys_addr_t __init early_pgtable_alloc(int shift)
93 {
94 phys_addr_t phys;
95 void *ptr;
96
97 phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
98 if (!phys)
99 panic("Failed to allocate page table page\n");
100
101 /*
102 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
103 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
104 * any level of table.
105 */
106 ptr = pte_set_fixmap(phys);
107
108 memset(ptr, 0, PAGE_SIZE);
109
110 /*
111 * Implicit barriers also ensure the zeroed page is visible to the page
112 * table walker
113 */
114 pte_clear_fixmap();
115
116 return phys;
117 }
118
119 static bool pgattr_change_is_safe(u64 old, u64 new)
120 {
121 /*
122 * The following mapping attributes may be updated in live
123 * kernel mappings without the need for break-before-make.
124 */
125 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
126
127 /* creating or taking down mappings is always safe */
128 if (old == 0 || new == 0)
129 return true;
130
131 /* live contiguous mappings may not be manipulated at all */
132 if ((old | new) & PTE_CONT)
133 return false;
134
135 /* Transitioning from Non-Global to Global is unsafe */
136 if (old & ~new & PTE_NG)
137 return false;
138
139 /*
140 * Changing the memory type between Normal and Normal-Tagged is safe
141 * since Tagged is considered a permission attribute from the
142 * mismatched attribute aliases perspective.
143 */
144 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
145 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
146 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
147 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
148 mask |= PTE_ATTRINDX_MASK;
149
150 return ((old ^ new) & ~mask) == 0;
151 }
152
153 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
154 phys_addr_t phys, pgprot_t prot)
155 {
156 pte_t *ptep;
157
158 ptep = pte_set_fixmap_offset(pmdp, addr);
159 do {
160 pte_t old_pte = READ_ONCE(*ptep);
161
162 set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
163
164 /*
165 * After the PTE entry has been populated once, we
166 * only allow updates to the permission attributes.
167 */
168 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
169 READ_ONCE(pte_val(*ptep))));
170
171 phys += PAGE_SIZE;
172 } while (ptep++, addr += PAGE_SIZE, addr != end);
173
174 pte_clear_fixmap();
175 }
176
177 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
178 unsigned long end, phys_addr_t phys,
179 pgprot_t prot,
180 phys_addr_t (*pgtable_alloc)(int),
181 int flags)
182 {
183 unsigned long next;
184 pmd_t pmd = READ_ONCE(*pmdp);
185
186 BUG_ON(pmd_sect(pmd));
187 if (pmd_none(pmd)) {
188 phys_addr_t pte_phys;
189 BUG_ON(!pgtable_alloc);
190 pte_phys = pgtable_alloc(PAGE_SHIFT);
191 __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE);
192 pmd = READ_ONCE(*pmdp);
193 }
194 BUG_ON(pmd_bad(pmd));
195
196 do {
197 pgprot_t __prot = prot;
198
199 next = pte_cont_addr_end(addr, end);
200
201 /* use a contiguous mapping if the range is suitably aligned */
202 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
203 (flags & NO_CONT_MAPPINGS) == 0)
204 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
205
206 init_pte(pmdp, addr, next, phys, __prot);
207
208 phys += next - addr;
209 } while (addr = next, addr != end);
210 }
211
212 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
213 phys_addr_t phys, pgprot_t prot,
214 phys_addr_t (*pgtable_alloc)(int), int flags)
215 {
216 unsigned long next;
217 pmd_t *pmdp;
218
219 pmdp = pmd_set_fixmap_offset(pudp, addr);
220 do {
221 pmd_t old_pmd = READ_ONCE(*pmdp);
222
223 next = pmd_addr_end(addr, end);
224
225 /* try section mapping first */
226 if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
227 (flags & NO_BLOCK_MAPPINGS) == 0) {
228 pmd_set_huge(pmdp, phys, prot);
229
230 /*
231 * After the PMD entry has been populated once, we
232 * only allow updates to the permission attributes.
233 */
234 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
235 READ_ONCE(pmd_val(*pmdp))));
236 } else {
237 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
238 pgtable_alloc, flags);
239
240 BUG_ON(pmd_val(old_pmd) != 0 &&
241 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
242 }
243 phys += next - addr;
244 } while (pmdp++, addr = next, addr != end);
245
246 pmd_clear_fixmap();
247 }
248
249 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
250 unsigned long end, phys_addr_t phys,
251 pgprot_t prot,
252 phys_addr_t (*pgtable_alloc)(int), int flags)
253 {
254 unsigned long next;
255 pud_t pud = READ_ONCE(*pudp);
256
257 /*
258 * Check for initial section mappings in the pgd/pud.
259 */
260 BUG_ON(pud_sect(pud));
261 if (pud_none(pud)) {
262 phys_addr_t pmd_phys;
263 BUG_ON(!pgtable_alloc);
264 pmd_phys = pgtable_alloc(PMD_SHIFT);
265 __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE);
266 pud = READ_ONCE(*pudp);
267 }
268 BUG_ON(pud_bad(pud));
269
270 do {
271 pgprot_t __prot = prot;
272
273 next = pmd_cont_addr_end(addr, end);
274
275 /* use a contiguous mapping if the range is suitably aligned */
276 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
277 (flags & NO_CONT_MAPPINGS) == 0)
278 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
279
280 init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
281
282 phys += next - addr;
283 } while (addr = next, addr != end);
284 }
285
286 static inline bool use_1G_block(unsigned long addr, unsigned long next,
287 unsigned long phys)
288 {
289 if (PAGE_SHIFT != 12)
290 return false;
291
292 if (((addr | next | phys) & ~PUD_MASK) != 0)
293 return false;
294
295 return true;
296 }
297
298 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
299 phys_addr_t phys, pgprot_t prot,
300 phys_addr_t (*pgtable_alloc)(int),
301 int flags)
302 {
303 unsigned long next;
304 pud_t *pudp;
305 p4d_t *p4dp = p4d_offset(pgdp, addr);
306 p4d_t p4d = READ_ONCE(*p4dp);
307
308 if (p4d_none(p4d)) {
309 phys_addr_t pud_phys;
310 BUG_ON(!pgtable_alloc);
311 pud_phys = pgtable_alloc(PUD_SHIFT);
312 __p4d_populate(p4dp, pud_phys, PUD_TYPE_TABLE);
313 p4d = READ_ONCE(*p4dp);
314 }
315 BUG_ON(p4d_bad(p4d));
316
317 pudp = pud_set_fixmap_offset(p4dp, addr);
318 do {
319 pud_t old_pud = READ_ONCE(*pudp);
320
321 next = pud_addr_end(addr, end);
322
323 /*
324 * For 4K granule only, attempt to put down a 1GB block
325 */
326 if (use_1G_block(addr, next, phys) &&
327 (flags & NO_BLOCK_MAPPINGS) == 0) {
328 pud_set_huge(pudp, phys, prot);
329
330 /*
331 * After the PUD entry has been populated once, we
332 * only allow updates to the permission attributes.
333 */
334 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
335 READ_ONCE(pud_val(*pudp))));
336 } else {
337 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
338 pgtable_alloc, flags);
339
340 BUG_ON(pud_val(old_pud) != 0 &&
341 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
342 }
343 phys += next - addr;
344 } while (pudp++, addr = next, addr != end);
345
346 pud_clear_fixmap();
347 }
348
349 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
350 unsigned long virt, phys_addr_t size,
351 pgprot_t prot,
352 phys_addr_t (*pgtable_alloc)(int),
353 int flags)
354 {
355 unsigned long addr, end, next;
356 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
357
358 /*
359 * If the virtual and physical address don't have the same offset
360 * within a page, we cannot map the region as the caller expects.
361 */
362 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
363 return;
364
365 phys &= PAGE_MASK;
366 addr = virt & PAGE_MASK;
367 end = PAGE_ALIGN(virt + size);
368
369 do {
370 next = pgd_addr_end(addr, end);
371 alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
372 flags);
373 phys += next - addr;
374 } while (pgdp++, addr = next, addr != end);
375 }
376
377 static phys_addr_t __pgd_pgtable_alloc(int shift)
378 {
379 void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
380 BUG_ON(!ptr);
381
382 /* Ensure the zeroed page is visible to the page table walker */
383 dsb(ishst);
384 return __pa(ptr);
385 }
386
387 static phys_addr_t pgd_pgtable_alloc(int shift)
388 {
389 phys_addr_t pa = __pgd_pgtable_alloc(shift);
390
391 /*
392 * Call proper page table ctor in case later we need to
393 * call core mm functions like apply_to_page_range() on
394 * this pre-allocated page table.
395 *
396 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
397 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
398 */
399 if (shift == PAGE_SHIFT)
400 BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
401 else if (shift == PMD_SHIFT)
402 BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
403
404 return pa;
405 }
406
407 /*
408 * This function can only be used to modify existing table entries,
409 * without allocating new levels of table. Note that this permits the
410 * creation of new section or page entries.
411 */
412 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
413 phys_addr_t size, pgprot_t prot)
414 {
415 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
416 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
417 &phys, virt);
418 return;
419 }
420 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
421 NO_CONT_MAPPINGS);
422 }
423
424 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
425 unsigned long virt, phys_addr_t size,
426 pgprot_t prot, bool page_mappings_only)
427 {
428 int flags = 0;
429
430 BUG_ON(mm == &init_mm);
431
432 if (page_mappings_only)
433 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
434
435 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
436 pgd_pgtable_alloc, flags);
437 }
438
439 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
440 phys_addr_t size, pgprot_t prot)
441 {
442 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
443 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
444 &phys, virt);
445 return;
446 }
447
448 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
449 NO_CONT_MAPPINGS);
450
451 /* flush the TLBs after updating live kernel mappings */
452 flush_tlb_kernel_range(virt, virt + size);
453 }
454
455 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
456 phys_addr_t end, pgprot_t prot, int flags)
457 {
458 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
459 prot, early_pgtable_alloc, flags);
460 }
461
462 void __init mark_linear_text_alias_ro(void)
463 {
464 /*
465 * Remove the write permissions from the linear alias of .text/.rodata
466 */
467 update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
468 (unsigned long)__init_begin - (unsigned long)_stext,
469 PAGE_KERNEL_RO);
470 }
471
472 static bool crash_mem_map __initdata;
473
474 static int __init enable_crash_mem_map(char *arg)
475 {
476 /*
477 * Proper parameter parsing is done by reserve_crashkernel(). We only
478 * need to know if the linear map has to avoid block mappings so that
479 * the crashkernel reservations can be unmapped later.
480 */
481 crash_mem_map = true;
482
483 return 0;
484 }
485 early_param("crashkernel", enable_crash_mem_map);
486
487 static void __init map_mem(pgd_t *pgdp)
488 {
489 phys_addr_t kernel_start = __pa_symbol(_stext);
490 phys_addr_t kernel_end = __pa_symbol(__init_begin);
491 phys_addr_t start, end;
492 int flags = 0;
493 u64 i;
494
495 if (rodata_full || crash_mem_map || debug_pagealloc_enabled())
496 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
497
498 /*
499 * Take care not to create a writable alias for the
500 * read-only text and rodata sections of the kernel image.
501 * So temporarily mark them as NOMAP to skip mappings in
502 * the following for-loop
503 */
504 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
505
506 /* map all the memory banks */
507 for_each_mem_range(i, &start, &end) {
508 if (start >= end)
509 break;
510 /*
511 * The linear map must allow allocation tags reading/writing
512 * if MTE is present. Otherwise, it has the same attributes as
513 * PAGE_KERNEL.
514 */
515 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
516 flags);
517 }
518
519 /*
520 * Map the linear alias of the [_stext, __init_begin) interval
521 * as non-executable now, and remove the write permission in
522 * mark_linear_text_alias_ro() below (which will be called after
523 * alternative patching has completed). This makes the contents
524 * of the region accessible to subsystems such as hibernate,
525 * but protects it from inadvertent modification or execution.
526 * Note that contiguous mappings cannot be remapped in this way,
527 * so we should avoid them here.
528 */
529 __map_memblock(pgdp, kernel_start, kernel_end,
530 PAGE_KERNEL, NO_CONT_MAPPINGS);
531 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
532 }
533
534 void mark_rodata_ro(void)
535 {
536 unsigned long section_size;
537
538 /*
539 * mark .rodata as read only. Use __init_begin rather than __end_rodata
540 * to cover NOTES and EXCEPTION_TABLE.
541 */
542 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
543 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
544 section_size, PAGE_KERNEL_RO);
545
546 debug_checkwx();
547 }
548
549 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
550 pgprot_t prot, struct vm_struct *vma,
551 int flags, unsigned long vm_flags)
552 {
553 phys_addr_t pa_start = __pa_symbol(va_start);
554 unsigned long size = va_end - va_start;
555
556 BUG_ON(!PAGE_ALIGNED(pa_start));
557 BUG_ON(!PAGE_ALIGNED(size));
558
559 __create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
560 early_pgtable_alloc, flags);
561
562 if (!(vm_flags & VM_NO_GUARD))
563 size += PAGE_SIZE;
564
565 vma->addr = va_start;
566 vma->phys_addr = pa_start;
567 vma->size = size;
568 vma->flags = VM_MAP | vm_flags;
569 vma->caller = __builtin_return_address(0);
570
571 vm_area_add_early(vma);
572 }
573
574 static int __init parse_rodata(char *arg)
575 {
576 int ret = strtobool(arg, &rodata_enabled);
577 if (!ret) {
578 rodata_full = false;
579 return 0;
580 }
581
582 /* permit 'full' in addition to boolean options */
583 if (strcmp(arg, "full"))
584 return -EINVAL;
585
586 rodata_enabled = true;
587 rodata_full = true;
588 return 0;
589 }
590 early_param("rodata", parse_rodata);
591
592 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
593 static int __init map_entry_trampoline(void)
594 {
595 pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
596 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
597
598 /* The trampoline is always mapped and can therefore be global */
599 pgprot_val(prot) &= ~PTE_NG;
600
601 /* Map only the text into the trampoline page table */
602 memset(tramp_pg_dir, 0, PGD_SIZE);
603 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
604 prot, __pgd_pgtable_alloc, 0);
605
606 /* Map both the text and data into the kernel page table */
607 __set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
608 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
609 extern char __entry_tramp_data_start[];
610
611 __set_fixmap(FIX_ENTRY_TRAMP_DATA,
612 __pa_symbol(__entry_tramp_data_start),
613 PAGE_KERNEL_RO);
614 }
615
616 return 0;
617 }
618 core_initcall(map_entry_trampoline);
619 #endif
620
621 /*
622 * Open coded check for BTI, only for use to determine configuration
623 * for early mappings for before the cpufeature code has run.
624 */
625 static bool arm64_early_this_cpu_has_bti(void)
626 {
627 u64 pfr1;
628
629 if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
630 return false;
631
632 pfr1 = read_sysreg_s(SYS_ID_AA64PFR1_EL1);
633 return cpuid_feature_extract_unsigned_field(pfr1,
634 ID_AA64PFR1_BT_SHIFT);
635 }
636
637 /*
638 * Create fine-grained mappings for the kernel.
639 */
640 static void __init map_kernel(pgd_t *pgdp)
641 {
642 static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
643 vmlinux_initdata, vmlinux_data;
644
645 /*
646 * External debuggers may need to write directly to the text
647 * mapping to install SW breakpoints. Allow this (only) when
648 * explicitly requested with rodata=off.
649 */
650 pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
651
652 /*
653 * If we have a CPU that supports BTI and a kernel built for
654 * BTI then mark the kernel executable text as guarded pages
655 * now so we don't have to rewrite the page tables later.
656 */
657 if (arm64_early_this_cpu_has_bti())
658 text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
659
660 /*
661 * Only rodata will be remapped with different permissions later on,
662 * all other segments are allowed to use contiguous mappings.
663 */
664 map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
665 VM_NO_GUARD);
666 map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
667 &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
668 map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
669 &vmlinux_inittext, 0, VM_NO_GUARD);
670 map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
671 &vmlinux_initdata, 0, VM_NO_GUARD);
672 map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
673
674 if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
675 /*
676 * The fixmap falls in a separate pgd to the kernel, and doesn't
677 * live in the carveout for the swapper_pg_dir. We can simply
678 * re-use the existing dir for the fixmap.
679 */
680 set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
681 READ_ONCE(*pgd_offset_k(FIXADDR_START)));
682 } else if (CONFIG_PGTABLE_LEVELS > 3) {
683 pgd_t *bm_pgdp;
684 p4d_t *bm_p4dp;
685 pud_t *bm_pudp;
686 /*
687 * The fixmap shares its top level pgd entry with the kernel
688 * mapping. This can really only occur when we are running
689 * with 16k/4 levels, so we can simply reuse the pud level
690 * entry instead.
691 */
692 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
693 bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
694 bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
695 bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
696 pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
697 pud_clear_fixmap();
698 } else {
699 BUG();
700 }
701
702 kasan_copy_shadow(pgdp);
703 }
704
705 void __init paging_init(void)
706 {
707 pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
708
709 map_kernel(pgdp);
710 map_mem(pgdp);
711
712 pgd_clear_fixmap();
713
714 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
715 init_mm.pgd = swapper_pg_dir;
716
717 memblock_free(__pa_symbol(init_pg_dir),
718 __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
719
720 memblock_allow_resize();
721 }
722
723 /*
724 * Check whether a kernel address is valid (derived from arch/x86/).
725 */
726 int kern_addr_valid(unsigned long addr)
727 {
728 pgd_t *pgdp;
729 p4d_t *p4dp;
730 pud_t *pudp, pud;
731 pmd_t *pmdp, pmd;
732 pte_t *ptep, pte;
733
734 addr = arch_kasan_reset_tag(addr);
735 if ((((long)addr) >> VA_BITS) != -1UL)
736 return 0;
737
738 pgdp = pgd_offset_k(addr);
739 if (pgd_none(READ_ONCE(*pgdp)))
740 return 0;
741
742 p4dp = p4d_offset(pgdp, addr);
743 if (p4d_none(READ_ONCE(*p4dp)))
744 return 0;
745
746 pudp = pud_offset(p4dp, addr);
747 pud = READ_ONCE(*pudp);
748 if (pud_none(pud))
749 return 0;
750
751 if (pud_sect(pud))
752 return pfn_valid(pud_pfn(pud));
753
754 pmdp = pmd_offset(pudp, addr);
755 pmd = READ_ONCE(*pmdp);
756 if (pmd_none(pmd))
757 return 0;
758
759 if (pmd_sect(pmd))
760 return pfn_valid(pmd_pfn(pmd));
761
762 ptep = pte_offset_kernel(pmdp, addr);
763 pte = READ_ONCE(*ptep);
764 if (pte_none(pte))
765 return 0;
766
767 return pfn_valid(pte_pfn(pte));
768 }
769
770 #ifdef CONFIG_MEMORY_HOTPLUG
771 static void free_hotplug_page_range(struct page *page, size_t size,
772 struct vmem_altmap *altmap)
773 {
774 if (altmap) {
775 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
776 } else {
777 WARN_ON(PageReserved(page));
778 free_pages((unsigned long)page_address(page), get_order(size));
779 }
780 }
781
782 static void free_hotplug_pgtable_page(struct page *page)
783 {
784 free_hotplug_page_range(page, PAGE_SIZE, NULL);
785 }
786
787 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
788 unsigned long floor, unsigned long ceiling,
789 unsigned long mask)
790 {
791 start &= mask;
792 if (start < floor)
793 return false;
794
795 if (ceiling) {
796 ceiling &= mask;
797 if (!ceiling)
798 return false;
799 }
800
801 if (end - 1 > ceiling - 1)
802 return false;
803 return true;
804 }
805
806 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
807 unsigned long end, bool free_mapped,
808 struct vmem_altmap *altmap)
809 {
810 pte_t *ptep, pte;
811
812 do {
813 ptep = pte_offset_kernel(pmdp, addr);
814 pte = READ_ONCE(*ptep);
815 if (pte_none(pte))
816 continue;
817
818 WARN_ON(!pte_present(pte));
819 pte_clear(&init_mm, addr, ptep);
820 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
821 if (free_mapped)
822 free_hotplug_page_range(pte_page(pte),
823 PAGE_SIZE, altmap);
824 } while (addr += PAGE_SIZE, addr < end);
825 }
826
827 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
828 unsigned long end, bool free_mapped,
829 struct vmem_altmap *altmap)
830 {
831 unsigned long next;
832 pmd_t *pmdp, pmd;
833
834 do {
835 next = pmd_addr_end(addr, end);
836 pmdp = pmd_offset(pudp, addr);
837 pmd = READ_ONCE(*pmdp);
838 if (pmd_none(pmd))
839 continue;
840
841 WARN_ON(!pmd_present(pmd));
842 if (pmd_sect(pmd)) {
843 pmd_clear(pmdp);
844
845 /*
846 * One TLBI should be sufficient here as the PMD_SIZE
847 * range is mapped with a single block entry.
848 */
849 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
850 if (free_mapped)
851 free_hotplug_page_range(pmd_page(pmd),
852 PMD_SIZE, altmap);
853 continue;
854 }
855 WARN_ON(!pmd_table(pmd));
856 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
857 } while (addr = next, addr < end);
858 }
859
860 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
861 unsigned long end, bool free_mapped,
862 struct vmem_altmap *altmap)
863 {
864 unsigned long next;
865 pud_t *pudp, pud;
866
867 do {
868 next = pud_addr_end(addr, end);
869 pudp = pud_offset(p4dp, addr);
870 pud = READ_ONCE(*pudp);
871 if (pud_none(pud))
872 continue;
873
874 WARN_ON(!pud_present(pud));
875 if (pud_sect(pud)) {
876 pud_clear(pudp);
877
878 /*
879 * One TLBI should be sufficient here as the PUD_SIZE
880 * range is mapped with a single block entry.
881 */
882 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
883 if (free_mapped)
884 free_hotplug_page_range(pud_page(pud),
885 PUD_SIZE, altmap);
886 continue;
887 }
888 WARN_ON(!pud_table(pud));
889 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
890 } while (addr = next, addr < end);
891 }
892
893 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
894 unsigned long end, bool free_mapped,
895 struct vmem_altmap *altmap)
896 {
897 unsigned long next;
898 p4d_t *p4dp, p4d;
899
900 do {
901 next = p4d_addr_end(addr, end);
902 p4dp = p4d_offset(pgdp, addr);
903 p4d = READ_ONCE(*p4dp);
904 if (p4d_none(p4d))
905 continue;
906
907 WARN_ON(!p4d_present(p4d));
908 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
909 } while (addr = next, addr < end);
910 }
911
912 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
913 bool free_mapped, struct vmem_altmap *altmap)
914 {
915 unsigned long next;
916 pgd_t *pgdp, pgd;
917
918 /*
919 * altmap can only be used as vmemmap mapping backing memory.
920 * In case the backing memory itself is not being freed, then
921 * altmap is irrelevant. Warn about this inconsistency when
922 * encountered.
923 */
924 WARN_ON(!free_mapped && altmap);
925
926 do {
927 next = pgd_addr_end(addr, end);
928 pgdp = pgd_offset_k(addr);
929 pgd = READ_ONCE(*pgdp);
930 if (pgd_none(pgd))
931 continue;
932
933 WARN_ON(!pgd_present(pgd));
934 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
935 } while (addr = next, addr < end);
936 }
937
938 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
939 unsigned long end, unsigned long floor,
940 unsigned long ceiling)
941 {
942 pte_t *ptep, pte;
943 unsigned long i, start = addr;
944
945 do {
946 ptep = pte_offset_kernel(pmdp, addr);
947 pte = READ_ONCE(*ptep);
948
949 /*
950 * This is just a sanity check here which verifies that
951 * pte clearing has been done by earlier unmap loops.
952 */
953 WARN_ON(!pte_none(pte));
954 } while (addr += PAGE_SIZE, addr < end);
955
956 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
957 return;
958
959 /*
960 * Check whether we can free the pte page if the rest of the
961 * entries are empty. Overlap with other regions have been
962 * handled by the floor/ceiling check.
963 */
964 ptep = pte_offset_kernel(pmdp, 0UL);
965 for (i = 0; i < PTRS_PER_PTE; i++) {
966 if (!pte_none(READ_ONCE(ptep[i])))
967 return;
968 }
969
970 pmd_clear(pmdp);
971 __flush_tlb_kernel_pgtable(start);
972 free_hotplug_pgtable_page(virt_to_page(ptep));
973 }
974
975 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
976 unsigned long end, unsigned long floor,
977 unsigned long ceiling)
978 {
979 pmd_t *pmdp, pmd;
980 unsigned long i, next, start = addr;
981
982 do {
983 next = pmd_addr_end(addr, end);
984 pmdp = pmd_offset(pudp, addr);
985 pmd = READ_ONCE(*pmdp);
986 if (pmd_none(pmd))
987 continue;
988
989 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
990 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
991 } while (addr = next, addr < end);
992
993 if (CONFIG_PGTABLE_LEVELS <= 2)
994 return;
995
996 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
997 return;
998
999 /*
1000 * Check whether we can free the pmd page if the rest of the
1001 * entries are empty. Overlap with other regions have been
1002 * handled by the floor/ceiling check.
1003 */
1004 pmdp = pmd_offset(pudp, 0UL);
1005 for (i = 0; i < PTRS_PER_PMD; i++) {
1006 if (!pmd_none(READ_ONCE(pmdp[i])))
1007 return;
1008 }
1009
1010 pud_clear(pudp);
1011 __flush_tlb_kernel_pgtable(start);
1012 free_hotplug_pgtable_page(virt_to_page(pmdp));
1013 }
1014
1015 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1016 unsigned long end, unsigned long floor,
1017 unsigned long ceiling)
1018 {
1019 pud_t *pudp, pud;
1020 unsigned long i, next, start = addr;
1021
1022 do {
1023 next = pud_addr_end(addr, end);
1024 pudp = pud_offset(p4dp, addr);
1025 pud = READ_ONCE(*pudp);
1026 if (pud_none(pud))
1027 continue;
1028
1029 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1030 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1031 } while (addr = next, addr < end);
1032
1033 if (CONFIG_PGTABLE_LEVELS <= 3)
1034 return;
1035
1036 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1037 return;
1038
1039 /*
1040 * Check whether we can free the pud page if the rest of the
1041 * entries are empty. Overlap with other regions have been
1042 * handled by the floor/ceiling check.
1043 */
1044 pudp = pud_offset(p4dp, 0UL);
1045 for (i = 0; i < PTRS_PER_PUD; i++) {
1046 if (!pud_none(READ_ONCE(pudp[i])))
1047 return;
1048 }
1049
1050 p4d_clear(p4dp);
1051 __flush_tlb_kernel_pgtable(start);
1052 free_hotplug_pgtable_page(virt_to_page(pudp));
1053 }
1054
1055 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1056 unsigned long end, unsigned long floor,
1057 unsigned long ceiling)
1058 {
1059 unsigned long next;
1060 p4d_t *p4dp, p4d;
1061
1062 do {
1063 next = p4d_addr_end(addr, end);
1064 p4dp = p4d_offset(pgdp, addr);
1065 p4d = READ_ONCE(*p4dp);
1066 if (p4d_none(p4d))
1067 continue;
1068
1069 WARN_ON(!p4d_present(p4d));
1070 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1071 } while (addr = next, addr < end);
1072 }
1073
1074 static void free_empty_tables(unsigned long addr, unsigned long end,
1075 unsigned long floor, unsigned long ceiling)
1076 {
1077 unsigned long next;
1078 pgd_t *pgdp, pgd;
1079
1080 do {
1081 next = pgd_addr_end(addr, end);
1082 pgdp = pgd_offset_k(addr);
1083 pgd = READ_ONCE(*pgdp);
1084 if (pgd_none(pgd))
1085 continue;
1086
1087 WARN_ON(!pgd_present(pgd));
1088 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1089 } while (addr = next, addr < end);
1090 }
1091 #endif
1092
1093 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1094 #if !ARM64_SWAPPER_USES_SECTION_MAPS
1095 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1096 struct vmem_altmap *altmap)
1097 {
1098 return vmemmap_populate_basepages(start, end, node, altmap);
1099 }
1100 #else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
1101 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1102 struct vmem_altmap *altmap)
1103 {
1104 unsigned long addr = start;
1105 unsigned long next;
1106 pgd_t *pgdp;
1107 p4d_t *p4dp;
1108 pud_t *pudp;
1109 pmd_t *pmdp;
1110
1111 do {
1112 next = pmd_addr_end(addr, end);
1113
1114 pgdp = vmemmap_pgd_populate(addr, node);
1115 if (!pgdp)
1116 return -ENOMEM;
1117
1118 p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1119 if (!p4dp)
1120 return -ENOMEM;
1121
1122 pudp = vmemmap_pud_populate(p4dp, addr, node);
1123 if (!pudp)
1124 return -ENOMEM;
1125
1126 pmdp = pmd_offset(pudp, addr);
1127 if (pmd_none(READ_ONCE(*pmdp))) {
1128 void *p = NULL;
1129
1130 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1131 if (!p) {
1132 if (vmemmap_populate_basepages(addr, next, node, altmap))
1133 return -ENOMEM;
1134 continue;
1135 }
1136
1137 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1138 } else
1139 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1140 } while (addr = next, addr != end);
1141
1142 return 0;
1143 }
1144 #endif /* !ARM64_SWAPPER_USES_SECTION_MAPS */
1145 void vmemmap_free(unsigned long start, unsigned long end,
1146 struct vmem_altmap *altmap)
1147 {
1148 #ifdef CONFIG_MEMORY_HOTPLUG
1149 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1150
1151 unmap_hotplug_range(start, end, true, altmap);
1152 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1153 #endif
1154 }
1155 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1156
1157 static inline pud_t * fixmap_pud(unsigned long addr)
1158 {
1159 pgd_t *pgdp = pgd_offset_k(addr);
1160 p4d_t *p4dp = p4d_offset(pgdp, addr);
1161 p4d_t p4d = READ_ONCE(*p4dp);
1162
1163 BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1164
1165 return pud_offset_kimg(p4dp, addr);
1166 }
1167
1168 static inline pmd_t * fixmap_pmd(unsigned long addr)
1169 {
1170 pud_t *pudp = fixmap_pud(addr);
1171 pud_t pud = READ_ONCE(*pudp);
1172
1173 BUG_ON(pud_none(pud) || pud_bad(pud));
1174
1175 return pmd_offset_kimg(pudp, addr);
1176 }
1177
1178 static inline pte_t * fixmap_pte(unsigned long addr)
1179 {
1180 return &bm_pte[pte_index(addr)];
1181 }
1182
1183 /*
1184 * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1185 * directly on kernel symbols (bm_p*d). This function is called too early to use
1186 * lm_alias so __p*d_populate functions must be used to populate with the
1187 * physical address from __pa_symbol.
1188 */
1189 void __init early_fixmap_init(void)
1190 {
1191 pgd_t *pgdp;
1192 p4d_t *p4dp, p4d;
1193 pud_t *pudp;
1194 pmd_t *pmdp;
1195 unsigned long addr = FIXADDR_START;
1196
1197 pgdp = pgd_offset_k(addr);
1198 p4dp = p4d_offset(pgdp, addr);
1199 p4d = READ_ONCE(*p4dp);
1200 if (CONFIG_PGTABLE_LEVELS > 3 &&
1201 !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1202 /*
1203 * We only end up here if the kernel mapping and the fixmap
1204 * share the top level pgd entry, which should only happen on
1205 * 16k/4 levels configurations.
1206 */
1207 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1208 pudp = pud_offset_kimg(p4dp, addr);
1209 } else {
1210 if (p4d_none(p4d))
1211 __p4d_populate(p4dp, __pa_symbol(bm_pud), PUD_TYPE_TABLE);
1212 pudp = fixmap_pud(addr);
1213 }
1214 if (pud_none(READ_ONCE(*pudp)))
1215 __pud_populate(pudp, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);
1216 pmdp = fixmap_pmd(addr);
1217 __pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1218
1219 /*
1220 * The boot-ioremap range spans multiple pmds, for which
1221 * we are not prepared:
1222 */
1223 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1224 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1225
1226 if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1227 || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1228 WARN_ON(1);
1229 pr_warn("pmdp %p != %p, %p\n",
1230 pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1231 fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1232 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1233 fix_to_virt(FIX_BTMAP_BEGIN));
1234 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1235 fix_to_virt(FIX_BTMAP_END));
1236
1237 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1238 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1239 }
1240 }
1241
1242 /*
1243 * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1244 * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1245 */
1246 void __set_fixmap(enum fixed_addresses idx,
1247 phys_addr_t phys, pgprot_t flags)
1248 {
1249 unsigned long addr = __fix_to_virt(idx);
1250 pte_t *ptep;
1251
1252 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1253
1254 ptep = fixmap_pte(addr);
1255
1256 if (pgprot_val(flags)) {
1257 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1258 } else {
1259 pte_clear(&init_mm, addr, ptep);
1260 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1261 }
1262 }
1263
1264 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1265 {
1266 const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1267 int offset;
1268 void *dt_virt;
1269
1270 /*
1271 * Check whether the physical FDT address is set and meets the minimum
1272 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1273 * at least 8 bytes so that we can always access the magic and size
1274 * fields of the FDT header after mapping the first chunk, double check
1275 * here if that is indeed the case.
1276 */
1277 BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1278 if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1279 return NULL;
1280
1281 /*
1282 * Make sure that the FDT region can be mapped without the need to
1283 * allocate additional translation table pages, so that it is safe
1284 * to call create_mapping_noalloc() this early.
1285 *
1286 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1287 * be in the same PMD as the rest of the fixmap.
1288 * On 4k pages, we'll use section mappings for the FDT so we only
1289 * have to be in the same PUD.
1290 */
1291 BUILD_BUG_ON(dt_virt_base % SZ_2M);
1292
1293 BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1294 __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1295
1296 offset = dt_phys % SWAPPER_BLOCK_SIZE;
1297 dt_virt = (void *)dt_virt_base + offset;
1298
1299 /* map the first chunk so we can read the size from the header */
1300 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1301 dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1302
1303 if (fdt_magic(dt_virt) != FDT_MAGIC)
1304 return NULL;
1305
1306 *size = fdt_totalsize(dt_virt);
1307 if (*size > MAX_FDT_SIZE)
1308 return NULL;
1309
1310 if (offset + *size > SWAPPER_BLOCK_SIZE)
1311 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1312 round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1313
1314 return dt_virt;
1315 }
1316
1317 int __init arch_ioremap_p4d_supported(void)
1318 {
1319 return 0;
1320 }
1321
1322 int __init arch_ioremap_pud_supported(void)
1323 {
1324 /*
1325 * Only 4k granule supports level 1 block mappings.
1326 * SW table walks can't handle removal of intermediate entries.
1327 */
1328 return IS_ENABLED(CONFIG_ARM64_4K_PAGES) &&
1329 !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1330 }
1331
1332 int __init arch_ioremap_pmd_supported(void)
1333 {
1334 /* See arch_ioremap_pud_supported() */
1335 return !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1336 }
1337
1338 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1339 {
1340 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1341
1342 /* Only allow permission changes for now */
1343 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1344 pud_val(new_pud)))
1345 return 0;
1346
1347 VM_BUG_ON(phys & ~PUD_MASK);
1348 set_pud(pudp, new_pud);
1349 return 1;
1350 }
1351
1352 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1353 {
1354 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1355
1356 /* Only allow permission changes for now */
1357 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1358 pmd_val(new_pmd)))
1359 return 0;
1360
1361 VM_BUG_ON(phys & ~PMD_MASK);
1362 set_pmd(pmdp, new_pmd);
1363 return 1;
1364 }
1365
1366 int pud_clear_huge(pud_t *pudp)
1367 {
1368 if (!pud_sect(READ_ONCE(*pudp)))
1369 return 0;
1370 pud_clear(pudp);
1371 return 1;
1372 }
1373
1374 int pmd_clear_huge(pmd_t *pmdp)
1375 {
1376 if (!pmd_sect(READ_ONCE(*pmdp)))
1377 return 0;
1378 pmd_clear(pmdp);
1379 return 1;
1380 }
1381
1382 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1383 {
1384 pte_t *table;
1385 pmd_t pmd;
1386
1387 pmd = READ_ONCE(*pmdp);
1388
1389 if (!pmd_table(pmd)) {
1390 VM_WARN_ON(1);
1391 return 1;
1392 }
1393
1394 table = pte_offset_kernel(pmdp, addr);
1395 pmd_clear(pmdp);
1396 __flush_tlb_kernel_pgtable(addr);
1397 pte_free_kernel(NULL, table);
1398 return 1;
1399 }
1400
1401 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1402 {
1403 pmd_t *table;
1404 pmd_t *pmdp;
1405 pud_t pud;
1406 unsigned long next, end;
1407
1408 pud = READ_ONCE(*pudp);
1409
1410 if (!pud_table(pud)) {
1411 VM_WARN_ON(1);
1412 return 1;
1413 }
1414
1415 table = pmd_offset(pudp, addr);
1416 pmdp = table;
1417 next = addr;
1418 end = addr + PUD_SIZE;
1419 do {
1420 pmd_free_pte_page(pmdp, next);
1421 } while (pmdp++, next += PMD_SIZE, next != end);
1422
1423 pud_clear(pudp);
1424 __flush_tlb_kernel_pgtable(addr);
1425 pmd_free(NULL, table);
1426 return 1;
1427 }
1428
1429 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1430 {
1431 return 0; /* Don't attempt a block mapping */
1432 }
1433
1434 #ifdef CONFIG_MEMORY_HOTPLUG
1435 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1436 {
1437 unsigned long end = start + size;
1438
1439 WARN_ON(pgdir != init_mm.pgd);
1440 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1441
1442 unmap_hotplug_range(start, end, false, NULL);
1443 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1444 }
1445
1446 static bool inside_linear_region(u64 start, u64 size)
1447 {
1448 u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1449 u64 end_linear_pa = __pa(PAGE_END - 1);
1450
1451 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1452 /*
1453 * Check for a wrap, it is possible because of randomized linear
1454 * mapping the start physical address is actually bigger than
1455 * the end physical address. In this case set start to zero
1456 * because [0, end_linear_pa] range must still be able to cover
1457 * all addressable physical addresses.
1458 */
1459 if (start_linear_pa > end_linear_pa)
1460 start_linear_pa = 0;
1461 }
1462
1463 WARN_ON(start_linear_pa > end_linear_pa);
1464
1465 /*
1466 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1467 * accommodating both its ends but excluding PAGE_END. Max physical
1468 * range which can be mapped inside this linear mapping range, must
1469 * also be derived from its end points.
1470 */
1471 return start >= start_linear_pa && (start + size - 1) <= end_linear_pa;
1472 }
1473
1474 int arch_add_memory(int nid, u64 start, u64 size,
1475 struct mhp_params *params)
1476 {
1477 int ret, flags = 0;
1478
1479 if (!inside_linear_region(start, size)) {
1480 pr_err("[%llx %llx] is outside linear mapping region\n", start, start + size);
1481 return -EINVAL;
1482 }
1483
1484 if (rodata_full || debug_pagealloc_enabled())
1485 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1486
1487 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1488 size, params->pgprot, __pgd_pgtable_alloc,
1489 flags);
1490
1491 memblock_clear_nomap(start, size);
1492
1493 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1494 params);
1495 if (ret)
1496 __remove_pgd_mapping(swapper_pg_dir,
1497 __phys_to_virt(start), size);
1498 return ret;
1499 }
1500
1501 void arch_remove_memory(int nid, u64 start, u64 size,
1502 struct vmem_altmap *altmap)
1503 {
1504 unsigned long start_pfn = start >> PAGE_SHIFT;
1505 unsigned long nr_pages = size >> PAGE_SHIFT;
1506
1507 __remove_pages(start_pfn, nr_pages, altmap);
1508 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1509 }
1510
1511 /*
1512 * This memory hotplug notifier helps prevent boot memory from being
1513 * inadvertently removed as it blocks pfn range offlining process in
1514 * __offline_pages(). Hence this prevents both offlining as well as
1515 * removal process for boot memory which is initially always online.
1516 * In future if and when boot memory could be removed, this notifier
1517 * should be dropped and free_hotplug_page_range() should handle any
1518 * reserved pages allocated during boot.
1519 */
1520 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1521 unsigned long action, void *data)
1522 {
1523 struct mem_section *ms;
1524 struct memory_notify *arg = data;
1525 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1526 unsigned long pfn = arg->start_pfn;
1527
1528 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1529 return NOTIFY_OK;
1530
1531 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1532 unsigned long start = PFN_PHYS(pfn);
1533 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1534
1535 ms = __pfn_to_section(pfn);
1536 if (!early_section(ms))
1537 continue;
1538
1539 if (action == MEM_GOING_OFFLINE) {
1540 /*
1541 * Boot memory removal is not supported. Prevent
1542 * it via blocking any attempted offline request
1543 * for the boot memory and just report it.
1544 */
1545 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1546 return NOTIFY_BAD;
1547 } else if (action == MEM_OFFLINE) {
1548 /*
1549 * This should have never happened. Boot memory
1550 * offlining should have been prevented by this
1551 * very notifier. Probably some memory removal
1552 * procedure might have changed which would then
1553 * require further debug.
1554 */
1555 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1556
1557 /*
1558 * Core memory hotplug does not process a return
1559 * code from the notifier for MEM_OFFLINE events.
1560 * The error condition has been reported. Return
1561 * from here as if ignored.
1562 */
1563 return NOTIFY_DONE;
1564 }
1565 }
1566 return NOTIFY_OK;
1567 }
1568
1569 static struct notifier_block prevent_bootmem_remove_nb = {
1570 .notifier_call = prevent_bootmem_remove_notifier,
1571 };
1572
1573 /*
1574 * This ensures that boot memory sections on the platform are online
1575 * from early boot. Memory sections could not be prevented from being
1576 * offlined, unless for some reason they are not online to begin with.
1577 * This helps validate the basic assumption on which the above memory
1578 * event notifier works to prevent boot memory section offlining and
1579 * its possible removal.
1580 */
1581 static void validate_bootmem_online(void)
1582 {
1583 phys_addr_t start, end, addr;
1584 struct mem_section *ms;
1585 u64 i;
1586
1587 /*
1588 * Scanning across all memblock might be expensive
1589 * on some big memory systems. Hence enable this
1590 * validation only with DEBUG_VM.
1591 */
1592 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1593 return;
1594
1595 for_each_mem_range(i, &start, &end) {
1596 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1597 ms = __pfn_to_section(PHYS_PFN(addr));
1598
1599 /*
1600 * All memory ranges in the system at this point
1601 * should have been marked as early sections.
1602 */
1603 WARN_ON(!early_section(ms));
1604
1605 /*
1606 * Memory notifier mechanism here to prevent boot
1607 * memory offlining depends on the fact that each
1608 * early section memory on the system is initially
1609 * online. Otherwise a given memory section which
1610 * is already offline will be overlooked and can
1611 * be removed completely. Call out such sections.
1612 */
1613 if (!online_section(ms))
1614 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1615 addr, addr + (1UL << PA_SECTION_SHIFT));
1616 }
1617 }
1618 }
1619
1620 static int __init prevent_bootmem_remove_init(void)
1621 {
1622 int ret = 0;
1623
1624 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1625 return ret;
1626
1627 validate_bootmem_online();
1628 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1629 if (ret)
1630 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1631
1632 return ret;
1633 }
1634 early_initcall(prevent_bootmem_remove_init);
1635 #endif