]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/blackfin/kernel/process.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2 * Blackfin architecture-dependent process handling
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later
7 */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/tick.h>
18 #include <linux/fs.h>
19 #include <linux/err.h>
20
21 #include <asm/blackfin.h>
22 #include <asm/fixed_code.h>
23 #include <asm/mem_map.h>
24 #include <asm/irq.h>
25
26 asmlinkage void ret_from_fork(void);
27
28 /* Points to the SDRAM backup memory for the stack that is currently in
29 * L1 scratchpad memory.
30 */
31 void *current_l1_stack_save;
32
33 /* The number of tasks currently using a L1 stack area. The SRAM is
34 * allocated/deallocated whenever this changes from/to zero.
35 */
36 int nr_l1stack_tasks;
37
38 /* Start and length of the area in L1 scratchpad memory which we've allocated
39 * for process stacks.
40 */
41 void *l1_stack_base;
42 unsigned long l1_stack_len;
43
44 void (*pm_power_off)(void) = NULL;
45 EXPORT_SYMBOL(pm_power_off);
46
47 /*
48 * The idle loop on BFIN
49 */
50 #ifdef CONFIG_IDLE_L1
51 void arch_cpu_idle(void)__attribute__((l1_text));
52 #endif
53
54 /*
55 * This is our default idle handler. We need to disable
56 * interrupts here to ensure we don't miss a wakeup call.
57 */
58 void arch_cpu_idle(void)
59 {
60 #ifdef CONFIG_IPIPE
61 ipipe_suspend_domain();
62 #endif
63 hard_local_irq_disable();
64 if (!need_resched())
65 idle_with_irq_disabled();
66
67 hard_local_irq_enable();
68 }
69
70 #ifdef CONFIG_HOTPLUG_CPU
71 void arch_cpu_idle_dead(void)
72 {
73 cpu_die();
74 }
75 #endif
76
77 /*
78 * Do necessary setup to start up a newly executed thread.
79 *
80 * pass the data segment into user programs if it exists,
81 * it can't hurt anything as far as I can tell
82 */
83 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
84 {
85 regs->pc = new_ip;
86 if (current->mm)
87 regs->p5 = current->mm->start_data;
88 #ifndef CONFIG_SMP
89 task_thread_info(current)->l1_task_info.stack_start =
90 (void *)current->mm->context.stack_start;
91 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
92 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
93 sizeof(*L1_SCRATCH_TASK_INFO));
94 #endif
95 wrusp(new_sp);
96 }
97 EXPORT_SYMBOL_GPL(start_thread);
98
99 void flush_thread(void)
100 {
101 }
102
103 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
104 {
105 #ifdef __ARCH_SYNC_CORE_DCACHE
106 if (current->nr_cpus_allowed == num_possible_cpus())
107 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
108 #endif
109 if (newsp)
110 newsp -= 12;
111 return do_fork(clone_flags, newsp, 0, NULL, NULL);
112 }
113
114 int
115 copy_thread(unsigned long clone_flags,
116 unsigned long usp, unsigned long topstk,
117 struct task_struct *p)
118 {
119 struct pt_regs *childregs;
120 unsigned long *v;
121
122 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
123 v = ((unsigned long *)childregs) - 2;
124 if (unlikely(p->flags & PF_KTHREAD)) {
125 memset(childregs, 0, sizeof(struct pt_regs));
126 v[0] = usp;
127 v[1] = topstk;
128 childregs->orig_p0 = -1;
129 childregs->ipend = 0x8000;
130 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
131 p->thread.usp = 0;
132 } else {
133 *childregs = *current_pt_regs();
134 childregs->r0 = 0;
135 p->thread.usp = usp ? : rdusp();
136 v[0] = v[1] = 0;
137 }
138
139 p->thread.ksp = (unsigned long)v;
140 p->thread.pc = (unsigned long)ret_from_fork;
141
142 return 0;
143 }
144
145 unsigned long get_wchan(struct task_struct *p)
146 {
147 unsigned long fp, pc;
148 unsigned long stack_page;
149 int count = 0;
150 if (!p || p == current || p->state == TASK_RUNNING)
151 return 0;
152
153 stack_page = (unsigned long)p;
154 fp = p->thread.usp;
155 do {
156 if (fp < stack_page + sizeof(struct thread_info) ||
157 fp >= 8184 + stack_page)
158 return 0;
159 pc = ((unsigned long *)fp)[1];
160 if (!in_sched_functions(pc))
161 return pc;
162 fp = *(unsigned long *)fp;
163 }
164 while (count++ < 16);
165 return 0;
166 }
167
168 void finish_atomic_sections (struct pt_regs *regs)
169 {
170 int __user *up0 = (int __user *)regs->p0;
171
172 switch (regs->pc) {
173 default:
174 /* not in middle of an atomic step, so resume like normal */
175 return;
176
177 case ATOMIC_XCHG32 + 2:
178 put_user(regs->r1, up0);
179 break;
180
181 case ATOMIC_CAS32 + 2:
182 case ATOMIC_CAS32 + 4:
183 if (regs->r0 == regs->r1)
184 case ATOMIC_CAS32 + 6:
185 put_user(regs->r2, up0);
186 break;
187
188 case ATOMIC_ADD32 + 2:
189 regs->r0 = regs->r1 + regs->r0;
190 /* fall through */
191 case ATOMIC_ADD32 + 4:
192 put_user(regs->r0, up0);
193 break;
194
195 case ATOMIC_SUB32 + 2:
196 regs->r0 = regs->r1 - regs->r0;
197 /* fall through */
198 case ATOMIC_SUB32 + 4:
199 put_user(regs->r0, up0);
200 break;
201
202 case ATOMIC_IOR32 + 2:
203 regs->r0 = regs->r1 | regs->r0;
204 /* fall through */
205 case ATOMIC_IOR32 + 4:
206 put_user(regs->r0, up0);
207 break;
208
209 case ATOMIC_AND32 + 2:
210 regs->r0 = regs->r1 & regs->r0;
211 /* fall through */
212 case ATOMIC_AND32 + 4:
213 put_user(regs->r0, up0);
214 break;
215
216 case ATOMIC_XOR32 + 2:
217 regs->r0 = regs->r1 ^ regs->r0;
218 /* fall through */
219 case ATOMIC_XOR32 + 4:
220 put_user(regs->r0, up0);
221 break;
222 }
223
224 /*
225 * We've finished the atomic section, and the only thing left for
226 * userspace is to do a RTS, so we might as well handle that too
227 * since we need to update the PC anyways.
228 */
229 regs->pc = regs->rets;
230 }
231
232 static inline
233 int in_mem(unsigned long addr, unsigned long size,
234 unsigned long start, unsigned long end)
235 {
236 return addr >= start && addr + size <= end;
237 }
238 static inline
239 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
240 unsigned long const_addr, unsigned long const_size)
241 {
242 return const_size &&
243 in_mem(addr, size, const_addr + off, const_addr + const_size);
244 }
245 static inline
246 int in_mem_const(unsigned long addr, unsigned long size,
247 unsigned long const_addr, unsigned long const_size)
248 {
249 return in_mem_const_off(addr, size, 0, const_addr, const_size);
250 }
251 #ifdef CONFIG_BF60x
252 #define ASYNC_ENABLED(bnum, bctlnum) 1
253 #else
254 #define ASYNC_ENABLED(bnum, bctlnum) \
255 ({ \
256 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
257 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
258 1; \
259 })
260 #endif
261 /*
262 * We can't read EBIU banks that aren't enabled or we end up hanging
263 * on the access to the async space. Make sure we validate accesses
264 * that cross async banks too.
265 * 0 - found, but unusable
266 * 1 - found & usable
267 * 2 - not found
268 */
269 static
270 int in_async(unsigned long addr, unsigned long size)
271 {
272 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
273 if (!ASYNC_ENABLED(0, 0))
274 return 0;
275 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
276 return 1;
277 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
278 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
279 }
280 if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
281 if (!ASYNC_ENABLED(1, 0))
282 return 0;
283 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
284 return 1;
285 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
286 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
287 }
288 if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
289 if (!ASYNC_ENABLED(2, 1))
290 return 0;
291 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
292 return 1;
293 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
294 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
295 }
296 if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
297 if (ASYNC_ENABLED(3, 1))
298 return 0;
299 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
300 return 1;
301 return 0;
302 }
303
304 /* not within async bounds */
305 return 2;
306 }
307
308 int bfin_mem_access_type(unsigned long addr, unsigned long size)
309 {
310 int cpu = raw_smp_processor_id();
311
312 /* Check that things do not wrap around */
313 if (addr > ULONG_MAX - size)
314 return -EFAULT;
315
316 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
317 return BFIN_MEM_ACCESS_CORE;
318
319 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
320 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
321 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
322 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
323 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
324 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
325 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
326 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
327 #ifdef COREB_L1_CODE_START
328 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
329 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
330 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
331 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
332 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
333 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
334 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
335 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
336 #endif
337 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
338 return BFIN_MEM_ACCESS_CORE;
339
340 if (addr >= SYSMMR_BASE)
341 return BFIN_MEM_ACCESS_CORE_ONLY;
342
343 switch (in_async(addr, size)) {
344 case 0: return -EFAULT;
345 case 1: return BFIN_MEM_ACCESS_CORE;
346 case 2: /* fall through */;
347 }
348
349 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
350 return BFIN_MEM_ACCESS_CORE;
351 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
352 return BFIN_MEM_ACCESS_DMA;
353
354 return -EFAULT;
355 }
356
357 #if defined(CONFIG_ACCESS_CHECK)
358 #ifdef CONFIG_ACCESS_OK_L1
359 __attribute__((l1_text))
360 #endif
361 /* Return 1 if access to memory range is OK, 0 otherwise */
362 int _access_ok(unsigned long addr, unsigned long size)
363 {
364 int aret;
365
366 if (size == 0)
367 return 1;
368 /* Check that things do not wrap around */
369 if (addr > ULONG_MAX - size)
370 return 0;
371 if (segment_eq(get_fs(), KERNEL_DS))
372 return 1;
373 #ifdef CONFIG_MTD_UCLINUX
374 if (1)
375 #else
376 if (0)
377 #endif
378 {
379 if (in_mem(addr, size, memory_start, memory_end))
380 return 1;
381 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
382 return 1;
383 # ifndef CONFIG_ROMFS_ON_MTD
384 if (0)
385 # endif
386 /* For XIP, allow user space to use pointers within the ROMFS. */
387 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
388 return 1;
389 } else {
390 if (in_mem(addr, size, memory_start, physical_mem_end))
391 return 1;
392 }
393
394 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
395 return 1;
396
397 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
398 return 1;
399 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
400 return 1;
401 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
402 return 1;
403 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
404 return 1;
405 #ifdef COREB_L1_CODE_START
406 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
407 return 1;
408 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
409 return 1;
410 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
411 return 1;
412 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
413 return 1;
414 #endif
415
416 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
417 if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
418 return 1;
419 #endif
420
421 aret = in_async(addr, size);
422 if (aret < 2)
423 return aret;
424
425 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
426 return 1;
427
428 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
429 return 1;
430 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
431 return 1;
432
433 return 0;
434 }
435 EXPORT_SYMBOL(_access_ok);
436 #endif /* CONFIG_ACCESS_CHECK */