]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/blackfin/kernel/process.c
sched/headers: Prepare to remove the <linux/mm_types.h> dependency from <linux/sched.h>
[mirror_ubuntu-artful-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2 * Blackfin architecture-dependent process handling
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later
7 */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/mm_types.h>
19 #include <linux/tick.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22
23 #include <asm/blackfin.h>
24 #include <asm/fixed_code.h>
25 #include <asm/mem_map.h>
26 #include <asm/irq.h>
27
28 asmlinkage void ret_from_fork(void);
29
30 /* Points to the SDRAM backup memory for the stack that is currently in
31 * L1 scratchpad memory.
32 */
33 void *current_l1_stack_save;
34
35 /* The number of tasks currently using a L1 stack area. The SRAM is
36 * allocated/deallocated whenever this changes from/to zero.
37 */
38 int nr_l1stack_tasks;
39
40 /* Start and length of the area in L1 scratchpad memory which we've allocated
41 * for process stacks.
42 */
43 void *l1_stack_base;
44 unsigned long l1_stack_len;
45
46 void (*pm_power_off)(void) = NULL;
47 EXPORT_SYMBOL(pm_power_off);
48
49 /*
50 * The idle loop on BFIN
51 */
52 #ifdef CONFIG_IDLE_L1
53 void arch_cpu_idle(void)__attribute__((l1_text));
54 #endif
55
56 /*
57 * This is our default idle handler. We need to disable
58 * interrupts here to ensure we don't miss a wakeup call.
59 */
60 void arch_cpu_idle(void)
61 {
62 #ifdef CONFIG_IPIPE
63 ipipe_suspend_domain();
64 #endif
65 hard_local_irq_disable();
66 if (!need_resched())
67 idle_with_irq_disabled();
68
69 hard_local_irq_enable();
70 }
71
72 #ifdef CONFIG_HOTPLUG_CPU
73 void arch_cpu_idle_dead(void)
74 {
75 cpu_die();
76 }
77 #endif
78
79 /*
80 * Do necessary setup to start up a newly executed thread.
81 *
82 * pass the data segment into user programs if it exists,
83 * it can't hurt anything as far as I can tell
84 */
85 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
86 {
87 regs->pc = new_ip;
88 if (current->mm)
89 regs->p5 = current->mm->start_data;
90 #ifndef CONFIG_SMP
91 task_thread_info(current)->l1_task_info.stack_start =
92 (void *)current->mm->context.stack_start;
93 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
94 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
95 sizeof(*L1_SCRATCH_TASK_INFO));
96 #endif
97 wrusp(new_sp);
98 }
99 EXPORT_SYMBOL_GPL(start_thread);
100
101 void flush_thread(void)
102 {
103 }
104
105 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
106 {
107 #ifdef __ARCH_SYNC_CORE_DCACHE
108 if (current->nr_cpus_allowed == num_possible_cpus())
109 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
110 #endif
111 if (newsp)
112 newsp -= 12;
113 return do_fork(clone_flags, newsp, 0, NULL, NULL);
114 }
115
116 int
117 copy_thread(unsigned long clone_flags,
118 unsigned long usp, unsigned long topstk,
119 struct task_struct *p)
120 {
121 struct pt_regs *childregs;
122 unsigned long *v;
123
124 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
125 v = ((unsigned long *)childregs) - 2;
126 if (unlikely(p->flags & PF_KTHREAD)) {
127 memset(childregs, 0, sizeof(struct pt_regs));
128 v[0] = usp;
129 v[1] = topstk;
130 childregs->orig_p0 = -1;
131 childregs->ipend = 0x8000;
132 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
133 p->thread.usp = 0;
134 } else {
135 *childregs = *current_pt_regs();
136 childregs->r0 = 0;
137 p->thread.usp = usp ? : rdusp();
138 v[0] = v[1] = 0;
139 }
140
141 p->thread.ksp = (unsigned long)v;
142 p->thread.pc = (unsigned long)ret_from_fork;
143
144 return 0;
145 }
146
147 unsigned long get_wchan(struct task_struct *p)
148 {
149 unsigned long fp, pc;
150 unsigned long stack_page;
151 int count = 0;
152 if (!p || p == current || p->state == TASK_RUNNING)
153 return 0;
154
155 stack_page = (unsigned long)p;
156 fp = p->thread.usp;
157 do {
158 if (fp < stack_page + sizeof(struct thread_info) ||
159 fp >= 8184 + stack_page)
160 return 0;
161 pc = ((unsigned long *)fp)[1];
162 if (!in_sched_functions(pc))
163 return pc;
164 fp = *(unsigned long *)fp;
165 }
166 while (count++ < 16);
167 return 0;
168 }
169
170 void finish_atomic_sections (struct pt_regs *regs)
171 {
172 int __user *up0 = (int __user *)regs->p0;
173
174 switch (regs->pc) {
175 default:
176 /* not in middle of an atomic step, so resume like normal */
177 return;
178
179 case ATOMIC_XCHG32 + 2:
180 put_user(regs->r1, up0);
181 break;
182
183 case ATOMIC_CAS32 + 2:
184 case ATOMIC_CAS32 + 4:
185 if (regs->r0 == regs->r1)
186 case ATOMIC_CAS32 + 6:
187 put_user(regs->r2, up0);
188 break;
189
190 case ATOMIC_ADD32 + 2:
191 regs->r0 = regs->r1 + regs->r0;
192 /* fall through */
193 case ATOMIC_ADD32 + 4:
194 put_user(regs->r0, up0);
195 break;
196
197 case ATOMIC_SUB32 + 2:
198 regs->r0 = regs->r1 - regs->r0;
199 /* fall through */
200 case ATOMIC_SUB32 + 4:
201 put_user(regs->r0, up0);
202 break;
203
204 case ATOMIC_IOR32 + 2:
205 regs->r0 = regs->r1 | regs->r0;
206 /* fall through */
207 case ATOMIC_IOR32 + 4:
208 put_user(regs->r0, up0);
209 break;
210
211 case ATOMIC_AND32 + 2:
212 regs->r0 = regs->r1 & regs->r0;
213 /* fall through */
214 case ATOMIC_AND32 + 4:
215 put_user(regs->r0, up0);
216 break;
217
218 case ATOMIC_XOR32 + 2:
219 regs->r0 = regs->r1 ^ regs->r0;
220 /* fall through */
221 case ATOMIC_XOR32 + 4:
222 put_user(regs->r0, up0);
223 break;
224 }
225
226 /*
227 * We've finished the atomic section, and the only thing left for
228 * userspace is to do a RTS, so we might as well handle that too
229 * since we need to update the PC anyways.
230 */
231 regs->pc = regs->rets;
232 }
233
234 static inline
235 int in_mem(unsigned long addr, unsigned long size,
236 unsigned long start, unsigned long end)
237 {
238 return addr >= start && addr + size <= end;
239 }
240 static inline
241 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
242 unsigned long const_addr, unsigned long const_size)
243 {
244 return const_size &&
245 in_mem(addr, size, const_addr + off, const_addr + const_size);
246 }
247 static inline
248 int in_mem_const(unsigned long addr, unsigned long size,
249 unsigned long const_addr, unsigned long const_size)
250 {
251 return in_mem_const_off(addr, size, 0, const_addr, const_size);
252 }
253 #ifdef CONFIG_BF60x
254 #define ASYNC_ENABLED(bnum, bctlnum) 1
255 #else
256 #define ASYNC_ENABLED(bnum, bctlnum) \
257 ({ \
258 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
259 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
260 1; \
261 })
262 #endif
263 /*
264 * We can't read EBIU banks that aren't enabled or we end up hanging
265 * on the access to the async space. Make sure we validate accesses
266 * that cross async banks too.
267 * 0 - found, but unusable
268 * 1 - found & usable
269 * 2 - not found
270 */
271 static
272 int in_async(unsigned long addr, unsigned long size)
273 {
274 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
275 if (!ASYNC_ENABLED(0, 0))
276 return 0;
277 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
278 return 1;
279 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
280 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
281 }
282 if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
283 if (!ASYNC_ENABLED(1, 0))
284 return 0;
285 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
286 return 1;
287 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
288 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
289 }
290 if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
291 if (!ASYNC_ENABLED(2, 1))
292 return 0;
293 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
294 return 1;
295 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
296 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
297 }
298 if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
299 if (ASYNC_ENABLED(3, 1))
300 return 0;
301 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
302 return 1;
303 return 0;
304 }
305
306 /* not within async bounds */
307 return 2;
308 }
309
310 int bfin_mem_access_type(unsigned long addr, unsigned long size)
311 {
312 int cpu = raw_smp_processor_id();
313
314 /* Check that things do not wrap around */
315 if (addr > ULONG_MAX - size)
316 return -EFAULT;
317
318 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
319 return BFIN_MEM_ACCESS_CORE;
320
321 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
322 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
323 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
324 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
325 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
326 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
327 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
328 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
329 #ifdef COREB_L1_CODE_START
330 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
331 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
332 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
333 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
334 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
335 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
336 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
337 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
338 #endif
339 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
340 return BFIN_MEM_ACCESS_CORE;
341
342 if (addr >= SYSMMR_BASE)
343 return BFIN_MEM_ACCESS_CORE_ONLY;
344
345 switch (in_async(addr, size)) {
346 case 0: return -EFAULT;
347 case 1: return BFIN_MEM_ACCESS_CORE;
348 case 2: /* fall through */;
349 }
350
351 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
352 return BFIN_MEM_ACCESS_CORE;
353 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
354 return BFIN_MEM_ACCESS_DMA;
355
356 return -EFAULT;
357 }
358
359 #if defined(CONFIG_ACCESS_CHECK)
360 #ifdef CONFIG_ACCESS_OK_L1
361 __attribute__((l1_text))
362 #endif
363 /* Return 1 if access to memory range is OK, 0 otherwise */
364 int _access_ok(unsigned long addr, unsigned long size)
365 {
366 int aret;
367
368 if (size == 0)
369 return 1;
370 /* Check that things do not wrap around */
371 if (addr > ULONG_MAX - size)
372 return 0;
373 if (segment_eq(get_fs(), KERNEL_DS))
374 return 1;
375 #ifdef CONFIG_MTD_UCLINUX
376 if (1)
377 #else
378 if (0)
379 #endif
380 {
381 if (in_mem(addr, size, memory_start, memory_end))
382 return 1;
383 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
384 return 1;
385 # ifndef CONFIG_ROMFS_ON_MTD
386 if (0)
387 # endif
388 /* For XIP, allow user space to use pointers within the ROMFS. */
389 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
390 return 1;
391 } else {
392 if (in_mem(addr, size, memory_start, physical_mem_end))
393 return 1;
394 }
395
396 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
397 return 1;
398
399 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
400 return 1;
401 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
402 return 1;
403 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
404 return 1;
405 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
406 return 1;
407 #ifdef COREB_L1_CODE_START
408 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
409 return 1;
410 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
411 return 1;
412 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
413 return 1;
414 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
415 return 1;
416 #endif
417
418 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
419 if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
420 return 1;
421 #endif
422
423 aret = in_async(addr, size);
424 if (aret < 2)
425 return aret;
426
427 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
428 return 1;
429
430 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
431 return 1;
432 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
433 return 1;
434
435 return 0;
436 }
437 EXPORT_SYMBOL(_access_ok);
438 #endif /* CONFIG_ACCESS_CHECK */