]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/blackfin/kernel/process.c
Merge branches 'no-rebases', 'arch-avr32', 'arch-blackfin', 'arch-cris', 'arch-h8300...
[mirror_ubuntu-bionic-kernel.git] / arch / blackfin / kernel / process.c
1 /*
2 * Blackfin architecture-dependent process handling
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later
7 */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 #include <asm/irq.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27 * L1 scratchpad memory.
28 */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area. The SRAM is
32 * allocated/deallocated whenever this changes from/to zero.
33 */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37 * for process stacks.
38 */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 /*
43 * Powermanagement idle function, if any..
44 */
45 void (*pm_idle)(void) = NULL;
46 EXPORT_SYMBOL(pm_idle);
47
48 void (*pm_power_off)(void) = NULL;
49 EXPORT_SYMBOL(pm_power_off);
50
51 /*
52 * The idle loop on BFIN
53 */
54 #ifdef CONFIG_IDLE_L1
55 static void default_idle(void)__attribute__((l1_text));
56 void cpu_idle(void)__attribute__((l1_text));
57 #endif
58
59 /*
60 * This is our default idle handler. We need to disable
61 * interrupts here to ensure we don't miss a wakeup call.
62 */
63 static void default_idle(void)
64 {
65 #ifdef CONFIG_IPIPE
66 ipipe_suspend_domain();
67 #endif
68 hard_local_irq_disable();
69 if (!need_resched())
70 idle_with_irq_disabled();
71
72 hard_local_irq_enable();
73 }
74
75 /*
76 * The idle thread. We try to conserve power, while trying to keep
77 * overall latency low. The architecture specific idle is passed
78 * a value to indicate the level of "idleness" of the system.
79 */
80 void cpu_idle(void)
81 {
82 /* endless idle loop with no priority at all */
83 while (1) {
84 void (*idle)(void) = pm_idle;
85
86 #ifdef CONFIG_HOTPLUG_CPU
87 if (cpu_is_offline(smp_processor_id()))
88 cpu_die();
89 #endif
90 if (!idle)
91 idle = default_idle;
92 tick_nohz_idle_enter();
93 rcu_idle_enter();
94 while (!need_resched())
95 idle();
96 rcu_idle_exit();
97 tick_nohz_idle_exit();
98 preempt_enable_no_resched();
99 schedule();
100 preempt_disable();
101 }
102 }
103
104 /*
105 * Do necessary setup to start up a newly executed thread.
106 *
107 * pass the data segment into user programs if it exists,
108 * it can't hurt anything as far as I can tell
109 */
110 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
111 {
112 regs->pc = new_ip;
113 if (current->mm)
114 regs->p5 = current->mm->start_data;
115 #ifndef CONFIG_SMP
116 task_thread_info(current)->l1_task_info.stack_start =
117 (void *)current->mm->context.stack_start;
118 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
119 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
120 sizeof(*L1_SCRATCH_TASK_INFO));
121 #endif
122 wrusp(new_sp);
123 }
124 EXPORT_SYMBOL_GPL(start_thread);
125
126 void flush_thread(void)
127 {
128 }
129
130 asmlinkage int bfin_vfork(struct pt_regs *regs)
131 {
132 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
133 NULL);
134 }
135
136 asmlinkage int bfin_clone(struct pt_regs *regs)
137 {
138 unsigned long clone_flags;
139 unsigned long newsp;
140
141 #ifdef __ARCH_SYNC_CORE_DCACHE
142 if (current->nr_cpus_allowed == num_possible_cpus())
143 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
144 #endif
145
146 /* syscall2 puts clone_flags in r0 and usp in r1 */
147 clone_flags = regs->r0;
148 newsp = regs->r1;
149 if (!newsp)
150 newsp = rdusp();
151 else
152 newsp -= 12;
153 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
154 }
155
156 int
157 copy_thread(unsigned long clone_flags,
158 unsigned long usp, unsigned long topstk,
159 struct task_struct *p, struct pt_regs *regs)
160 {
161 struct pt_regs *childregs;
162 unsigned long *v;
163
164 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
165 v = ((unsigned long *)childregs) - 2;
166 if (unlikely(!regs)) {
167 memset(childregs, 0, sizeof(struct pt_regs));
168 v[0] = usp;
169 v[1] = topstk;
170 childregs->orig_p0 = -1;
171 childregs->ipend = 0x8000;
172 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
173 p->thread.usp = 0;
174 } else {
175 *childregs = *regs;
176 childregs->r0 = 0;
177 p->thread.usp = usp;
178 v[0] = v[1] = 0;
179 }
180
181 p->thread.ksp = (unsigned long)v;
182 p->thread.pc = (unsigned long)ret_from_fork;
183
184 return 0;
185 }
186
187 unsigned long get_wchan(struct task_struct *p)
188 {
189 unsigned long fp, pc;
190 unsigned long stack_page;
191 int count = 0;
192 if (!p || p == current || p->state == TASK_RUNNING)
193 return 0;
194
195 stack_page = (unsigned long)p;
196 fp = p->thread.usp;
197 do {
198 if (fp < stack_page + sizeof(struct thread_info) ||
199 fp >= 8184 + stack_page)
200 return 0;
201 pc = ((unsigned long *)fp)[1];
202 if (!in_sched_functions(pc))
203 return pc;
204 fp = *(unsigned long *)fp;
205 }
206 while (count++ < 16);
207 return 0;
208 }
209
210 void finish_atomic_sections (struct pt_regs *regs)
211 {
212 int __user *up0 = (int __user *)regs->p0;
213
214 switch (regs->pc) {
215 default:
216 /* not in middle of an atomic step, so resume like normal */
217 return;
218
219 case ATOMIC_XCHG32 + 2:
220 put_user(regs->r1, up0);
221 break;
222
223 case ATOMIC_CAS32 + 2:
224 case ATOMIC_CAS32 + 4:
225 if (regs->r0 == regs->r1)
226 case ATOMIC_CAS32 + 6:
227 put_user(regs->r2, up0);
228 break;
229
230 case ATOMIC_ADD32 + 2:
231 regs->r0 = regs->r1 + regs->r0;
232 /* fall through */
233 case ATOMIC_ADD32 + 4:
234 put_user(regs->r0, up0);
235 break;
236
237 case ATOMIC_SUB32 + 2:
238 regs->r0 = regs->r1 - regs->r0;
239 /* fall through */
240 case ATOMIC_SUB32 + 4:
241 put_user(regs->r0, up0);
242 break;
243
244 case ATOMIC_IOR32 + 2:
245 regs->r0 = regs->r1 | regs->r0;
246 /* fall through */
247 case ATOMIC_IOR32 + 4:
248 put_user(regs->r0, up0);
249 break;
250
251 case ATOMIC_AND32 + 2:
252 regs->r0 = regs->r1 & regs->r0;
253 /* fall through */
254 case ATOMIC_AND32 + 4:
255 put_user(regs->r0, up0);
256 break;
257
258 case ATOMIC_XOR32 + 2:
259 regs->r0 = regs->r1 ^ regs->r0;
260 /* fall through */
261 case ATOMIC_XOR32 + 4:
262 put_user(regs->r0, up0);
263 break;
264 }
265
266 /*
267 * We've finished the atomic section, and the only thing left for
268 * userspace is to do a RTS, so we might as well handle that too
269 * since we need to update the PC anyways.
270 */
271 regs->pc = regs->rets;
272 }
273
274 static inline
275 int in_mem(unsigned long addr, unsigned long size,
276 unsigned long start, unsigned long end)
277 {
278 return addr >= start && addr + size <= end;
279 }
280 static inline
281 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
282 unsigned long const_addr, unsigned long const_size)
283 {
284 return const_size &&
285 in_mem(addr, size, const_addr + off, const_addr + const_size);
286 }
287 static inline
288 int in_mem_const(unsigned long addr, unsigned long size,
289 unsigned long const_addr, unsigned long const_size)
290 {
291 return in_mem_const_off(addr, size, 0, const_addr, const_size);
292 }
293 #ifdef CONFIG_BF60x
294 #define ASYNC_ENABLED(bnum, bctlnum) 1
295 #else
296 #define ASYNC_ENABLED(bnum, bctlnum) \
297 ({ \
298 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
299 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
300 1; \
301 })
302 #endif
303 /*
304 * We can't read EBIU banks that aren't enabled or we end up hanging
305 * on the access to the async space. Make sure we validate accesses
306 * that cross async banks too.
307 * 0 - found, but unusable
308 * 1 - found & usable
309 * 2 - not found
310 */
311 static
312 int in_async(unsigned long addr, unsigned long size)
313 {
314 if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
315 if (!ASYNC_ENABLED(0, 0))
316 return 0;
317 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
318 return 1;
319 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
320 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
321 }
322 if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
323 if (!ASYNC_ENABLED(1, 0))
324 return 0;
325 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
326 return 1;
327 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
328 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
329 }
330 if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
331 if (!ASYNC_ENABLED(2, 1))
332 return 0;
333 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
334 return 1;
335 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
336 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
337 }
338 if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
339 if (ASYNC_ENABLED(3, 1))
340 return 0;
341 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
342 return 1;
343 return 0;
344 }
345
346 /* not within async bounds */
347 return 2;
348 }
349
350 int bfin_mem_access_type(unsigned long addr, unsigned long size)
351 {
352 int cpu = raw_smp_processor_id();
353
354 /* Check that things do not wrap around */
355 if (addr > ULONG_MAX - size)
356 return -EFAULT;
357
358 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
359 return BFIN_MEM_ACCESS_CORE;
360
361 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
362 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
363 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
364 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
365 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
366 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
367 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
368 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
369 #ifdef COREB_L1_CODE_START
370 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
371 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
372 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
373 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
374 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
375 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
376 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
377 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
378 #endif
379 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
380 return BFIN_MEM_ACCESS_CORE;
381
382 if (addr >= SYSMMR_BASE)
383 return BFIN_MEM_ACCESS_CORE_ONLY;
384
385 switch (in_async(addr, size)) {
386 case 0: return -EFAULT;
387 case 1: return BFIN_MEM_ACCESS_CORE;
388 case 2: /* fall through */;
389 }
390
391 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
392 return BFIN_MEM_ACCESS_CORE;
393 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
394 return BFIN_MEM_ACCESS_DMA;
395
396 return -EFAULT;
397 }
398
399 #if defined(CONFIG_ACCESS_CHECK)
400 #ifdef CONFIG_ACCESS_OK_L1
401 __attribute__((l1_text))
402 #endif
403 /* Return 1 if access to memory range is OK, 0 otherwise */
404 int _access_ok(unsigned long addr, unsigned long size)
405 {
406 int aret;
407
408 if (size == 0)
409 return 1;
410 /* Check that things do not wrap around */
411 if (addr > ULONG_MAX - size)
412 return 0;
413 if (segment_eq(get_fs(), KERNEL_DS))
414 return 1;
415 #ifdef CONFIG_MTD_UCLINUX
416 if (1)
417 #else
418 if (0)
419 #endif
420 {
421 if (in_mem(addr, size, memory_start, memory_end))
422 return 1;
423 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
424 return 1;
425 # ifndef CONFIG_ROMFS_ON_MTD
426 if (0)
427 # endif
428 /* For XIP, allow user space to use pointers within the ROMFS. */
429 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
430 return 1;
431 } else {
432 if (in_mem(addr, size, memory_start, physical_mem_end))
433 return 1;
434 }
435
436 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
437 return 1;
438
439 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
440 return 1;
441 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
442 return 1;
443 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
444 return 1;
445 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
446 return 1;
447 #ifdef COREB_L1_CODE_START
448 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
449 return 1;
450 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
451 return 1;
452 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
453 return 1;
454 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
455 return 1;
456 #endif
457
458 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
459 if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
460 return 1;
461 #endif
462
463 aret = in_async(addr, size);
464 if (aret < 2)
465 return aret;
466
467 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
468 return 1;
469
470 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
471 return 1;
472 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
473 return 1;
474
475 return 0;
476 }
477 EXPORT_SYMBOL(_access_ok);
478 #endif /* CONFIG_ACCESS_CHECK */