]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/blackfin/kernel/setup.c
[Blackfin] arch: fix building with mtd uclinux by putting the mtd_phys option into...
[mirror_ubuntu-bionic-kernel.git] / arch / blackfin / kernel / setup.c
1 /*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/module.h>
17 #include <linux/tty.h>
18 #include <linux/pfn.h>
19
20 #include <linux/ext2_fs.h>
21 #include <linux/cramfs_fs.h>
22 #include <linux/romfs_fs.h>
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/fixed_code.h>
30 #include <asm/early_printk.h>
31
32 static DEFINE_PER_CPU(struct cpu, cpu_devices);
33
34 u16 _bfin_swrst;
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long reserved_mem_dcache_on;
38 unsigned long reserved_mem_icache_on;
39 EXPORT_SYMBOL(memory_start);
40 EXPORT_SYMBOL(memory_end);
41 EXPORT_SYMBOL(physical_mem_end);
42 EXPORT_SYMBOL(_ramend);
43
44 #ifdef CONFIG_MTD_UCLINUX
45 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
46 unsigned long _ebss;
47 EXPORT_SYMBOL(memory_mtd_end);
48 EXPORT_SYMBOL(memory_mtd_start);
49 EXPORT_SYMBOL(mtd_size);
50 #endif
51
52 char __initdata command_line[COMMAND_LINE_SIZE];
53
54 /* boot memmap, for parsing "memmap=" */
55 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
56 #define BFIN_MEMMAP_RAM 1
57 #define BFIN_MEMMAP_RESERVED 2
58 struct bfin_memmap {
59 int nr_map;
60 struct bfin_memmap_entry {
61 unsigned long long addr; /* start of memory segment */
62 unsigned long long size;
63 unsigned long type;
64 } map[BFIN_MEMMAP_MAX];
65 } bfin_memmap __initdata;
66
67 /* for memmap sanitization */
68 struct change_member {
69 struct bfin_memmap_entry *pentry; /* pointer to original entry */
70 unsigned long long addr; /* address for this change point */
71 };
72 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
73 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
74 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
75 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
76
77 void __init bf53x_cache_init(void)
78 {
79 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
80 generate_cpl_tables();
81 #endif
82
83 #ifdef CONFIG_BFIN_ICACHE
84 bfin_icache_init();
85 printk(KERN_INFO "Instruction Cache Enabled\n");
86 #endif
87
88 #ifdef CONFIG_BFIN_DCACHE
89 bfin_dcache_init();
90 printk(KERN_INFO "Data Cache Enabled"
91 # if defined CONFIG_BFIN_WB
92 " (write-back)"
93 # elif defined CONFIG_BFIN_WT
94 " (write-through)"
95 # endif
96 "\n");
97 #endif
98 }
99
100 void __init bf53x_relocate_l1_mem(void)
101 {
102 unsigned long l1_code_length;
103 unsigned long l1_data_a_length;
104 unsigned long l1_data_b_length;
105
106 l1_code_length = _etext_l1 - _stext_l1;
107 if (l1_code_length > L1_CODE_LENGTH)
108 l1_code_length = L1_CODE_LENGTH;
109 /* cannot complain as printk is not available as yet.
110 * But we can continue booting and complain later!
111 */
112
113 /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
114 dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
115
116 l1_data_a_length = _ebss_l1 - _sdata_l1;
117 if (l1_data_a_length > L1_DATA_A_LENGTH)
118 l1_data_a_length = L1_DATA_A_LENGTH;
119
120 /* Copy _sdata_l1 to _ebss_l1 to L1 data bank A SRAM */
121 dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
122
123 l1_data_b_length = _ebss_b_l1 - _sdata_b_l1;
124 if (l1_data_b_length > L1_DATA_B_LENGTH)
125 l1_data_b_length = L1_DATA_B_LENGTH;
126
127 /* Copy _sdata_b_l1 to _ebss_b_l1 to L1 data bank B SRAM */
128 dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
129 l1_data_a_length, l1_data_b_length);
130
131 }
132
133 /* add_memory_region to memmap */
134 static void __init add_memory_region(unsigned long long start,
135 unsigned long long size, int type)
136 {
137 int i;
138
139 i = bfin_memmap.nr_map;
140
141 if (i == BFIN_MEMMAP_MAX) {
142 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
143 return;
144 }
145
146 bfin_memmap.map[i].addr = start;
147 bfin_memmap.map[i].size = size;
148 bfin_memmap.map[i].type = type;
149 bfin_memmap.nr_map++;
150 }
151
152 /*
153 * Sanitize the boot memmap, removing overlaps.
154 */
155 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
156 {
157 struct change_member *change_tmp;
158 unsigned long current_type, last_type;
159 unsigned long long last_addr;
160 int chgidx, still_changing;
161 int overlap_entries;
162 int new_entry;
163 int old_nr, new_nr, chg_nr;
164 int i;
165
166 /*
167 Visually we're performing the following (1,2,3,4 = memory types)
168
169 Sample memory map (w/overlaps):
170 ____22__________________
171 ______________________4_
172 ____1111________________
173 _44_____________________
174 11111111________________
175 ____________________33__
176 ___________44___________
177 __________33333_________
178 ______________22________
179 ___________________2222_
180 _________111111111______
181 _____________________11_
182 _________________4______
183
184 Sanitized equivalent (no overlap):
185 1_______________________
186 _44_____________________
187 ___1____________________
188 ____22__________________
189 ______11________________
190 _________1______________
191 __________3_____________
192 ___________44___________
193 _____________33_________
194 _______________2________
195 ________________1_______
196 _________________4______
197 ___________________2____
198 ____________________33__
199 ______________________4_
200 */
201 /* if there's only one memory region, don't bother */
202 if (*pnr_map < 2)
203 return -1;
204
205 old_nr = *pnr_map;
206
207 /* bail out if we find any unreasonable addresses in memmap */
208 for (i = 0; i < old_nr; i++)
209 if (map[i].addr + map[i].size < map[i].addr)
210 return -1;
211
212 /* create pointers for initial change-point information (for sorting) */
213 for (i = 0; i < 2*old_nr; i++)
214 change_point[i] = &change_point_list[i];
215
216 /* record all known change-points (starting and ending addresses),
217 omitting those that are for empty memory regions */
218 chgidx = 0;
219 for (i = 0; i < old_nr; i++) {
220 if (map[i].size != 0) {
221 change_point[chgidx]->addr = map[i].addr;
222 change_point[chgidx++]->pentry = &map[i];
223 change_point[chgidx]->addr = map[i].addr + map[i].size;
224 change_point[chgidx++]->pentry = &map[i];
225 }
226 }
227 chg_nr = chgidx; /* true number of change-points */
228
229 /* sort change-point list by memory addresses (low -> high) */
230 still_changing = 1;
231 while (still_changing) {
232 still_changing = 0;
233 for (i = 1; i < chg_nr; i++) {
234 /* if <current_addr> > <last_addr>, swap */
235 /* or, if current=<start_addr> & last=<end_addr>, swap */
236 if ((change_point[i]->addr < change_point[i-1]->addr) ||
237 ((change_point[i]->addr == change_point[i-1]->addr) &&
238 (change_point[i]->addr == change_point[i]->pentry->addr) &&
239 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
240 ) {
241 change_tmp = change_point[i];
242 change_point[i] = change_point[i-1];
243 change_point[i-1] = change_tmp;
244 still_changing = 1;
245 }
246 }
247 }
248
249 /* create a new memmap, removing overlaps */
250 overlap_entries = 0; /* number of entries in the overlap table */
251 new_entry = 0; /* index for creating new memmap entries */
252 last_type = 0; /* start with undefined memory type */
253 last_addr = 0; /* start with 0 as last starting address */
254 /* loop through change-points, determining affect on the new memmap */
255 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
256 /* keep track of all overlapping memmap entries */
257 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
258 /* add map entry to overlap list (> 1 entry implies an overlap) */
259 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
260 } else {
261 /* remove entry from list (order independent, so swap with last) */
262 for (i = 0; i < overlap_entries; i++) {
263 if (overlap_list[i] == change_point[chgidx]->pentry)
264 overlap_list[i] = overlap_list[overlap_entries-1];
265 }
266 overlap_entries--;
267 }
268 /* if there are overlapping entries, decide which "type" to use */
269 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
270 current_type = 0;
271 for (i = 0; i < overlap_entries; i++)
272 if (overlap_list[i]->type > current_type)
273 current_type = overlap_list[i]->type;
274 /* continue building up new memmap based on this information */
275 if (current_type != last_type) {
276 if (last_type != 0) {
277 new_map[new_entry].size =
278 change_point[chgidx]->addr - last_addr;
279 /* move forward only if the new size was non-zero */
280 if (new_map[new_entry].size != 0)
281 if (++new_entry >= BFIN_MEMMAP_MAX)
282 break; /* no more space left for new entries */
283 }
284 if (current_type != 0) {
285 new_map[new_entry].addr = change_point[chgidx]->addr;
286 new_map[new_entry].type = current_type;
287 last_addr = change_point[chgidx]->addr;
288 }
289 last_type = current_type;
290 }
291 }
292 new_nr = new_entry; /* retain count for new entries */
293
294 /* copy new mapping into original location */
295 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
296 *pnr_map = new_nr;
297
298 return 0;
299 }
300
301 static void __init print_memory_map(char *who)
302 {
303 int i;
304
305 for (i = 0; i < bfin_memmap.nr_map; i++) {
306 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
307 bfin_memmap.map[i].addr,
308 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
309 switch (bfin_memmap.map[i].type) {
310 case BFIN_MEMMAP_RAM:
311 printk("(usable)\n");
312 break;
313 case BFIN_MEMMAP_RESERVED:
314 printk("(reserved)\n");
315 break;
316 default: printk("type %lu\n", bfin_memmap.map[i].type);
317 break;
318 }
319 }
320 }
321
322 static __init int parse_memmap(char *arg)
323 {
324 unsigned long long start_at, mem_size;
325
326 if (!arg)
327 return -EINVAL;
328
329 mem_size = memparse(arg, &arg);
330 if (*arg == '@') {
331 start_at = memparse(arg+1, &arg);
332 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
333 } else if (*arg == '$') {
334 start_at = memparse(arg+1, &arg);
335 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
336 }
337
338 return 0;
339 }
340
341 /*
342 * Initial parsing of the command line. Currently, we support:
343 * - Controlling the linux memory size: mem=xxx[KMG]
344 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
345 * $ -> reserved memory is dcacheable
346 * # -> reserved memory is icacheable
347 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
348 * @ from <start> to <start>+<mem>, type RAM
349 * $ from <start> to <start>+<mem>, type RESERVED
350 *
351 */
352 static __init void parse_cmdline_early(char *cmdline_p)
353 {
354 char c = ' ', *to = cmdline_p;
355 unsigned int memsize;
356 for (;;) {
357 if (c == ' ') {
358 if (!memcmp(to, "mem=", 4)) {
359 to += 4;
360 memsize = memparse(to, &to);
361 if (memsize)
362 _ramend = memsize;
363
364 } else if (!memcmp(to, "max_mem=", 8)) {
365 to += 8;
366 memsize = memparse(to, &to);
367 if (memsize) {
368 physical_mem_end = memsize;
369 if (*to != ' ') {
370 if (*to == '$'
371 || *(to + 1) == '$')
372 reserved_mem_dcache_on =
373 1;
374 if (*to == '#'
375 || *(to + 1) == '#')
376 reserved_mem_icache_on =
377 1;
378 }
379 }
380 } else if (!memcmp(to, "earlyprintk=", 12)) {
381 to += 12;
382 setup_early_printk(to);
383 } else if (!memcmp(to, "memmap=", 7)) {
384 to += 7;
385 parse_memmap(to);
386 }
387 }
388 c = *(to++);
389 if (!c)
390 break;
391 }
392 }
393
394 /*
395 * Setup memory defaults from user config.
396 * The physical memory layout looks like:
397 *
398 * [_rambase, _ramstart]: kernel image
399 * [memory_start, memory_end]: dynamic memory managed by kernel
400 * [memory_end, _ramend]: reserved memory
401 * [meory_mtd_start(memory_end),
402 * memory_mtd_start + mtd_size]: rootfs (if any)
403 * [_ramend - DMA_UNCACHED_REGION,
404 * _ramend]: uncached DMA region
405 * [_ramend, physical_mem_end]: memory not managed by kernel
406 *
407 */
408 static __init void memory_setup(void)
409 {
410 #ifdef CONFIG_MTD_UCLINUX
411 unsigned long mtd_phys = 0;
412 #endif
413
414 _rambase = (unsigned long)_stext;
415 _ramstart = (unsigned long)_end;
416
417 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
418 console_init();
419 panic("DMA region exceeds memory limit: %lu.\n",
420 _ramend - _ramstart);
421 }
422 memory_end = _ramend - DMA_UNCACHED_REGION;
423
424 #ifdef CONFIG_MPU
425 /* Round up to multiple of 4MB. */
426 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
427 #else
428 memory_start = PAGE_ALIGN(_ramstart);
429 #endif
430
431 #if defined(CONFIG_MTD_UCLINUX)
432 /* generic memory mapped MTD driver */
433 memory_mtd_end = memory_end;
434
435 mtd_phys = _ramstart;
436 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
437
438 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
439 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
440 mtd_size =
441 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
442 # endif
443
444 # if defined(CONFIG_CRAMFS)
445 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
446 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
447 # endif
448
449 # if defined(CONFIG_ROMFS_FS)
450 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
451 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
452 mtd_size =
453 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
454 # if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
455 /* Due to a Hardware Anomaly we need to limit the size of usable
456 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
457 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
458 */
459 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
460 if (memory_end >= 56 * 1024 * 1024)
461 memory_end = 56 * 1024 * 1024;
462 # else
463 if (memory_end >= 60 * 1024 * 1024)
464 memory_end = 60 * 1024 * 1024;
465 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
466 # endif /* ANOMALY_05000263 */
467 # endif /* CONFIG_ROMFS_FS */
468
469 memory_end -= mtd_size;
470
471 if (mtd_size == 0) {
472 console_init();
473 panic("Don't boot kernel without rootfs attached.\n");
474 }
475
476 /* Relocate MTD image to the top of memory after the uncached memory area */
477 dma_memcpy((char *)memory_end, _end, mtd_size);
478
479 memory_mtd_start = memory_end;
480 _ebss = memory_mtd_start; /* define _ebss for compatible */
481 #endif /* CONFIG_MTD_UCLINUX */
482
483 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
484 /* Due to a Hardware Anomaly we need to limit the size of usable
485 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
486 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
487 */
488 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
489 if (memory_end >= 56 * 1024 * 1024)
490 memory_end = 56 * 1024 * 1024;
491 #else
492 if (memory_end >= 60 * 1024 * 1024)
493 memory_end = 60 * 1024 * 1024;
494 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
495 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
496 #endif /* ANOMALY_05000263 */
497
498 #ifdef CONFIG_MPU
499 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
500 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
501 #endif
502
503 #if !defined(CONFIG_MTD_UCLINUX)
504 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
505 memory_end -= SIZE_4K;
506 #endif
507
508 init_mm.start_code = (unsigned long)_stext;
509 init_mm.end_code = (unsigned long)_etext;
510 init_mm.end_data = (unsigned long)_edata;
511 init_mm.brk = (unsigned long)0;
512
513 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
514 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
515
516 printk(KERN_INFO "Memory map:\n"
517 KERN_INFO " text = 0x%p-0x%p\n"
518 KERN_INFO " rodata = 0x%p-0x%p\n"
519 KERN_INFO " bss = 0x%p-0x%p\n"
520 KERN_INFO " data = 0x%p-0x%p\n"
521 KERN_INFO " stack = 0x%p-0x%p\n"
522 KERN_INFO " init = 0x%p-0x%p\n"
523 KERN_INFO " available = 0x%p-0x%p\n"
524 #ifdef CONFIG_MTD_UCLINUX
525 KERN_INFO " rootfs = 0x%p-0x%p\n"
526 #endif
527 #if DMA_UNCACHED_REGION > 0
528 KERN_INFO " DMA Zone = 0x%p-0x%p\n"
529 #endif
530 , _stext, _etext,
531 __start_rodata, __end_rodata,
532 __bss_start, __bss_stop,
533 _sdata, _edata,
534 (void *)&init_thread_union,
535 (void *)((int)(&init_thread_union) + 0x2000),
536 __init_begin, __init_end,
537 (void *)_ramstart, (void *)memory_end
538 #ifdef CONFIG_MTD_UCLINUX
539 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
540 #endif
541 #if DMA_UNCACHED_REGION > 0
542 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
543 #endif
544 );
545 }
546
547 static __init void setup_bootmem_allocator(void)
548 {
549 int bootmap_size;
550 int i;
551 unsigned long min_pfn, max_pfn;
552 unsigned long curr_pfn, last_pfn, size;
553
554 /* mark memory between memory_start and memory_end usable */
555 add_memory_region(memory_start,
556 memory_end - memory_start, BFIN_MEMMAP_RAM);
557 /* sanity check for overlap */
558 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
559 print_memory_map("boot memmap");
560
561 min_pfn = PAGE_OFFSET >> PAGE_SHIFT;
562 max_pfn = memory_end >> PAGE_SHIFT;
563
564 /*
565 * give all the memory to the bootmap allocator, tell it to put the
566 * boot mem_map at the start of memory.
567 */
568 bootmap_size = init_bootmem_node(NODE_DATA(0),
569 memory_start >> PAGE_SHIFT, /* map goes here */
570 min_pfn, max_pfn);
571
572 /* register the memmap regions with the bootmem allocator */
573 for (i = 0; i < bfin_memmap.nr_map; i++) {
574 /*
575 * Reserve usable memory
576 */
577 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
578 continue;
579 /*
580 * We are rounding up the start address of usable memory:
581 */
582 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
583 if (curr_pfn >= max_pfn)
584 continue;
585 /*
586 * ... and at the end of the usable range downwards:
587 */
588 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
589 bfin_memmap.map[i].size);
590
591 if (last_pfn > max_pfn)
592 last_pfn = max_pfn;
593
594 /*
595 * .. finally, did all the rounding and playing
596 * around just make the area go away?
597 */
598 if (last_pfn <= curr_pfn)
599 continue;
600
601 size = last_pfn - curr_pfn;
602 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
603 }
604
605 /* reserve memory before memory_start, including bootmap */
606 reserve_bootmem(PAGE_OFFSET,
607 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
608 BOOTMEM_DEFAULT);
609 }
610
611 void __init setup_arch(char **cmdline_p)
612 {
613 unsigned long l1_length, sclk, cclk;
614
615 #ifdef CONFIG_DUMMY_CONSOLE
616 conswitchp = &dummy_con;
617 #endif
618
619 #if defined(CONFIG_CMDLINE_BOOL)
620 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
621 command_line[sizeof(command_line) - 1] = 0;
622 #endif
623
624 /* Keep a copy of command line */
625 *cmdline_p = &command_line[0];
626 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
627 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
628
629 /* setup memory defaults from the user config */
630 physical_mem_end = 0;
631 _ramend = CONFIG_MEM_SIZE * 1024 * 1024;
632
633 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
634
635 parse_cmdline_early(&command_line[0]);
636
637 if (physical_mem_end == 0)
638 physical_mem_end = _ramend;
639
640 memory_setup();
641
642 cclk = get_cclk();
643 sclk = get_sclk();
644
645 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
646 if (ANOMALY_05000273 && cclk == sclk)
647 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
648 #endif
649
650 #ifdef BF561_FAMILY
651 if (ANOMALY_05000266) {
652 bfin_read_IMDMA_D0_IRQ_STATUS();
653 bfin_read_IMDMA_D1_IRQ_STATUS();
654 }
655 #endif
656 printk(KERN_INFO "Hardware Trace ");
657 if (bfin_read_TBUFCTL() & 0x1)
658 printk("Active ");
659 else
660 printk("Off ");
661 if (bfin_read_TBUFCTL() & 0x2)
662 printk("and Enabled\n");
663 else
664 printk("and Disabled\n");
665
666 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
667 /* we need to initialize the Flashrom device here since we might
668 * do things with flash early on in the boot
669 */
670 flash_probe();
671 #endif
672
673 _bfin_swrst = bfin_read_SWRST();
674
675 if (_bfin_swrst & RESET_DOUBLE)
676 printk(KERN_INFO "Recovering from Double Fault event\n");
677 else if (_bfin_swrst & RESET_WDOG)
678 printk(KERN_INFO "Recovering from Watchdog event\n");
679 else if (_bfin_swrst & RESET_SOFTWARE)
680 printk(KERN_NOTICE "Reset caused by Software reset\n");
681
682 printk(KERN_INFO "Blackfin support (C) 2004-2008 Analog Devices, Inc.\n");
683 if (bfin_compiled_revid() == 0xffff)
684 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
685 else if (bfin_compiled_revid() == -1)
686 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
687 else
688 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
689 if (bfin_revid() != bfin_compiled_revid()) {
690 if (bfin_compiled_revid() == -1)
691 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
692 bfin_revid());
693 else if (bfin_compiled_revid() != 0xffff)
694 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
695 bfin_compiled_revid(), bfin_revid());
696 }
697 if (bfin_revid() < SUPPORTED_REVID)
698 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
699 CPU, bfin_revid());
700 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
701
702 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
703 cclk / 1000000, sclk / 1000000);
704
705 if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
706 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
707
708 setup_bootmem_allocator();
709
710 paging_init();
711
712 /* check the size of the l1 area */
713 l1_length = _etext_l1 - _stext_l1;
714 if (l1_length > L1_CODE_LENGTH)
715 panic("L1 code memory overflow\n");
716
717 l1_length = _ebss_l1 - _sdata_l1;
718 if (l1_length > L1_DATA_A_LENGTH)
719 panic("L1 data memory overflow\n");
720
721 /* Copy atomic sequences to their fixed location, and sanity check that
722 these locations are the ones that we advertise to userspace. */
723 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
724 FIXED_CODE_END - FIXED_CODE_START);
725 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
726 != SIGRETURN_STUB - FIXED_CODE_START);
727 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
728 != ATOMIC_XCHG32 - FIXED_CODE_START);
729 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
730 != ATOMIC_CAS32 - FIXED_CODE_START);
731 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
732 != ATOMIC_ADD32 - FIXED_CODE_START);
733 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
734 != ATOMIC_SUB32 - FIXED_CODE_START);
735 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
736 != ATOMIC_IOR32 - FIXED_CODE_START);
737 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
738 != ATOMIC_AND32 - FIXED_CODE_START);
739 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
740 != ATOMIC_XOR32 - FIXED_CODE_START);
741 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
742 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
743
744 init_exception_vectors();
745 bf53x_cache_init();
746 }
747
748 static int __init topology_init(void)
749 {
750 int cpu;
751
752 for_each_possible_cpu(cpu) {
753 struct cpu *c = &per_cpu(cpu_devices, cpu);
754
755 register_cpu(c, cpu);
756 }
757
758 return 0;
759 }
760
761 subsys_initcall(topology_init);
762
763 static u_long get_vco(void)
764 {
765 u_long msel;
766 u_long vco;
767
768 msel = (bfin_read_PLL_CTL() >> 9) & 0x3F;
769 if (0 == msel)
770 msel = 64;
771
772 vco = CONFIG_CLKIN_HZ;
773 vco >>= (1 & bfin_read_PLL_CTL()); /* DF bit */
774 vco = msel * vco;
775 return vco;
776 }
777
778 /* Get the Core clock */
779 u_long get_cclk(void)
780 {
781 u_long csel, ssel;
782 if (bfin_read_PLL_STAT() & 0x1)
783 return CONFIG_CLKIN_HZ;
784
785 ssel = bfin_read_PLL_DIV();
786 csel = ((ssel >> 4) & 0x03);
787 ssel &= 0xf;
788 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
789 return get_vco() / ssel;
790 return get_vco() >> csel;
791 }
792 EXPORT_SYMBOL(get_cclk);
793
794 /* Get the System clock */
795 u_long get_sclk(void)
796 {
797 u_long ssel;
798
799 if (bfin_read_PLL_STAT() & 0x1)
800 return CONFIG_CLKIN_HZ;
801
802 ssel = (bfin_read_PLL_DIV() & 0xf);
803 if (0 == ssel) {
804 printk(KERN_WARNING "Invalid System Clock\n");
805 ssel = 1;
806 }
807
808 return get_vco() / ssel;
809 }
810 EXPORT_SYMBOL(get_sclk);
811
812 unsigned long sclk_to_usecs(unsigned long sclk)
813 {
814 u64 tmp = USEC_PER_SEC * (u64)sclk;
815 do_div(tmp, get_sclk());
816 return tmp;
817 }
818 EXPORT_SYMBOL(sclk_to_usecs);
819
820 unsigned long usecs_to_sclk(unsigned long usecs)
821 {
822 u64 tmp = get_sclk() * (u64)usecs;
823 do_div(tmp, USEC_PER_SEC);
824 return tmp;
825 }
826 EXPORT_SYMBOL(usecs_to_sclk);
827
828 /*
829 * Get CPU information for use by the procfs.
830 */
831 static int show_cpuinfo(struct seq_file *m, void *v)
832 {
833 char *cpu, *mmu, *fpu, *vendor, *cache;
834 uint32_t revid;
835
836 u_long cclk = 0, sclk = 0;
837 u_int dcache_size = 0, dsup_banks = 0;
838
839 cpu = CPU;
840 mmu = "none";
841 fpu = "none";
842 revid = bfin_revid();
843
844 cclk = get_cclk();
845 sclk = get_sclk();
846
847 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
848 case 0xca:
849 vendor = "Analog Devices";
850 break;
851 default:
852 vendor = "unknown";
853 break;
854 }
855
856 seq_printf(m, "processor\t: %d\n"
857 "vendor_id\t: %s\n"
858 "cpu family\t: 0x%x\n"
859 "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK)\n"
860 "stepping\t: %d\n",
861 0,
862 vendor,
863 (bfin_read_CHIPID() & CHIPID_FAMILY),
864 cpu, cclk/1000000, sclk/1000000,
865 revid);
866
867 seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
868 cclk/1000000, cclk%1000000,
869 sclk/1000000, sclk%1000000);
870 seq_printf(m, "bogomips\t: %lu.%02lu\n"
871 "Calibration\t: %lu loops\n",
872 (loops_per_jiffy * HZ) / 500000,
873 ((loops_per_jiffy * HZ) / 5000) % 100,
874 (loops_per_jiffy * HZ));
875
876 /* Check Cache configutation */
877 switch (bfin_read_DMEM_CONTROL() & (1 << DMC0_P | 1 << DMC1_P)) {
878 case ACACHE_BSRAM:
879 cache = "dbank-A/B\t: cache/sram";
880 dcache_size = 16;
881 dsup_banks = 1;
882 break;
883 case ACACHE_BCACHE:
884 cache = "dbank-A/B\t: cache/cache";
885 dcache_size = 32;
886 dsup_banks = 2;
887 break;
888 case ASRAM_BSRAM:
889 cache = "dbank-A/B\t: sram/sram";
890 dcache_size = 0;
891 dsup_banks = 0;
892 break;
893 default:
894 cache = "unknown";
895 dcache_size = 0;
896 dsup_banks = 0;
897 break;
898 }
899
900 /* Is it turned on? */
901 if (!((bfin_read_DMEM_CONTROL()) & (ENDCPLB | DMC_ENABLE)))
902 dcache_size = 0;
903
904 seq_printf(m, "cache size\t: %d KB(L1 icache) "
905 "%d KB(L1 dcache-%s) %d KB(L2 cache)\n",
906 BFIN_ICACHESIZE / 1024, dcache_size,
907 #if defined CONFIG_BFIN_WB
908 "wb"
909 #elif defined CONFIG_BFIN_WT
910 "wt"
911 #endif
912 "", 0);
913
914 seq_printf(m, "%s\n", cache);
915
916 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
917 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
918 seq_printf(m,
919 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
920 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
921 BFIN_DLINES);
922 #ifdef CONFIG_BFIN_ICACHE_LOCK
923 switch (read_iloc()) {
924 case WAY0_L:
925 seq_printf(m, "Way0 Locked-Down\n");
926 break;
927 case WAY1_L:
928 seq_printf(m, "Way1 Locked-Down\n");
929 break;
930 case WAY01_L:
931 seq_printf(m, "Way0,Way1 Locked-Down\n");
932 break;
933 case WAY2_L:
934 seq_printf(m, "Way2 Locked-Down\n");
935 break;
936 case WAY02_L:
937 seq_printf(m, "Way0,Way2 Locked-Down\n");
938 break;
939 case WAY12_L:
940 seq_printf(m, "Way1,Way2 Locked-Down\n");
941 break;
942 case WAY012_L:
943 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
944 break;
945 case WAY3_L:
946 seq_printf(m, "Way3 Locked-Down\n");
947 break;
948 case WAY03_L:
949 seq_printf(m, "Way0,Way3 Locked-Down\n");
950 break;
951 case WAY13_L:
952 seq_printf(m, "Way1,Way3 Locked-Down\n");
953 break;
954 case WAY013_L:
955 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
956 break;
957 case WAY32_L:
958 seq_printf(m, "Way3,Way2 Locked-Down\n");
959 break;
960 case WAY320_L:
961 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
962 break;
963 case WAY321_L:
964 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
965 break;
966 case WAYALL_L:
967 seq_printf(m, "All Ways are locked\n");
968 break;
969 default:
970 seq_printf(m, "No Ways are locked\n");
971 }
972 #endif
973
974 seq_printf(m, "board name\t: %s\n", bfin_board_name);
975 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
976 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
977 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
978 ((int)memory_end - (int)_stext) >> 10,
979 _stext,
980 (void *)memory_end);
981
982 return 0;
983 }
984
985 static void *c_start(struct seq_file *m, loff_t *pos)
986 {
987 return *pos < NR_CPUS ? ((void *)0x12345678) : NULL;
988 }
989
990 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
991 {
992 ++*pos;
993 return c_start(m, pos);
994 }
995
996 static void c_stop(struct seq_file *m, void *v)
997 {
998 }
999
1000 const struct seq_operations cpuinfo_op = {
1001 .start = c_start,
1002 .next = c_next,
1003 .stop = c_stop,
1004 .show = show_cpuinfo,
1005 };
1006
1007 void __init cmdline_init(const char *r0)
1008 {
1009 if (r0)
1010 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1011 }