]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/blackfin/kernel/setup.c
Merge branch 'topic/fix/hda' into for-linus
[mirror_ubuntu-artful-kernel.git] / arch / blackfin / kernel / setup.c
1 /*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/module.h>
17 #include <linux/tty.h>
18 #include <linux/pfn.h>
19
20 #include <linux/ext2_fs.h>
21 #include <linux/cramfs_fs.h>
22 #include <linux/romfs_fs.h>
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/fixed_code.h>
30 #include <asm/early_printk.h>
31
32 static DEFINE_PER_CPU(struct cpu, cpu_devices);
33
34 u16 _bfin_swrst;
35 EXPORT_SYMBOL(_bfin_swrst);
36
37 unsigned long memory_start, memory_end, physical_mem_end;
38 unsigned long _rambase, _ramstart, _ramend;
39 unsigned long reserved_mem_dcache_on;
40 unsigned long reserved_mem_icache_on;
41 EXPORT_SYMBOL(memory_start);
42 EXPORT_SYMBOL(memory_end);
43 EXPORT_SYMBOL(physical_mem_end);
44 EXPORT_SYMBOL(_ramend);
45 EXPORT_SYMBOL(reserved_mem_dcache_on);
46
47 #ifdef CONFIG_MTD_UCLINUX
48 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
49 unsigned long _ebss;
50 EXPORT_SYMBOL(memory_mtd_end);
51 EXPORT_SYMBOL(memory_mtd_start);
52 EXPORT_SYMBOL(mtd_size);
53 #endif
54
55 char __initdata command_line[COMMAND_LINE_SIZE];
56 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
57 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
58
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 struct bfin_memmap {
64 int nr_map;
65 struct bfin_memmap_entry {
66 unsigned long long addr; /* start of memory segment */
67 unsigned long long size;
68 unsigned long type;
69 } map[BFIN_MEMMAP_MAX];
70 } bfin_memmap __initdata;
71
72 /* for memmap sanitization */
73 struct change_member {
74 struct bfin_memmap_entry *pentry; /* pointer to original entry */
75 unsigned long long addr; /* address for this change point */
76 };
77 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
80 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
81
82 void __init bfin_cache_init(void)
83 {
84 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
85 generate_cplb_tables();
86 #endif
87
88 #ifdef CONFIG_BFIN_ICACHE
89 bfin_icache_init();
90 printk(KERN_INFO "Instruction Cache Enabled\n");
91 #endif
92
93 #ifdef CONFIG_BFIN_DCACHE
94 bfin_dcache_init();
95 printk(KERN_INFO "Data Cache Enabled"
96 # if defined CONFIG_BFIN_WB
97 " (write-back)"
98 # elif defined CONFIG_BFIN_WT
99 " (write-through)"
100 # endif
101 "\n");
102 #endif
103 }
104
105 void __init bfin_relocate_l1_mem(void)
106 {
107 unsigned long l1_code_length;
108 unsigned long l1_data_a_length;
109 unsigned long l1_data_b_length;
110 unsigned long l2_length;
111
112 l1_code_length = _etext_l1 - _stext_l1;
113 if (l1_code_length > L1_CODE_LENGTH)
114 panic("L1 Instruction SRAM Overflow\n");
115 /* cannot complain as printk is not available as yet.
116 * But we can continue booting and complain later!
117 */
118
119 /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
120 dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
121
122 l1_data_a_length = _ebss_l1 - _sdata_l1;
123 if (l1_data_a_length > L1_DATA_A_LENGTH)
124 panic("L1 Data SRAM Bank A Overflow\n");
125
126 /* Copy _sdata_l1 to _ebss_l1 to L1 data bank A SRAM */
127 dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
128
129 l1_data_b_length = _ebss_b_l1 - _sdata_b_l1;
130 if (l1_data_b_length > L1_DATA_B_LENGTH)
131 panic("L1 Data SRAM Bank B Overflow\n");
132
133 /* Copy _sdata_b_l1 to _ebss_b_l1 to L1 data bank B SRAM */
134 dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
135 l1_data_a_length, l1_data_b_length);
136
137 if (L2_LENGTH != 0) {
138 l2_length = _ebss_l2 - _stext_l2;
139 if (l2_length > L2_LENGTH)
140 panic("L2 SRAM Overflow\n");
141
142 /* Copy _stext_l2 to _edata_l2 to L2 SRAM */
143 dma_memcpy(_stext_l2, _l2_lma_start, l2_length);
144 }
145 }
146
147 /* add_memory_region to memmap */
148 static void __init add_memory_region(unsigned long long start,
149 unsigned long long size, int type)
150 {
151 int i;
152
153 i = bfin_memmap.nr_map;
154
155 if (i == BFIN_MEMMAP_MAX) {
156 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
157 return;
158 }
159
160 bfin_memmap.map[i].addr = start;
161 bfin_memmap.map[i].size = size;
162 bfin_memmap.map[i].type = type;
163 bfin_memmap.nr_map++;
164 }
165
166 /*
167 * Sanitize the boot memmap, removing overlaps.
168 */
169 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
170 {
171 struct change_member *change_tmp;
172 unsigned long current_type, last_type;
173 unsigned long long last_addr;
174 int chgidx, still_changing;
175 int overlap_entries;
176 int new_entry;
177 int old_nr, new_nr, chg_nr;
178 int i;
179
180 /*
181 Visually we're performing the following (1,2,3,4 = memory types)
182
183 Sample memory map (w/overlaps):
184 ____22__________________
185 ______________________4_
186 ____1111________________
187 _44_____________________
188 11111111________________
189 ____________________33__
190 ___________44___________
191 __________33333_________
192 ______________22________
193 ___________________2222_
194 _________111111111______
195 _____________________11_
196 _________________4______
197
198 Sanitized equivalent (no overlap):
199 1_______________________
200 _44_____________________
201 ___1____________________
202 ____22__________________
203 ______11________________
204 _________1______________
205 __________3_____________
206 ___________44___________
207 _____________33_________
208 _______________2________
209 ________________1_______
210 _________________4______
211 ___________________2____
212 ____________________33__
213 ______________________4_
214 */
215 /* if there's only one memory region, don't bother */
216 if (*pnr_map < 2)
217 return -1;
218
219 old_nr = *pnr_map;
220
221 /* bail out if we find any unreasonable addresses in memmap */
222 for (i = 0; i < old_nr; i++)
223 if (map[i].addr + map[i].size < map[i].addr)
224 return -1;
225
226 /* create pointers for initial change-point information (for sorting) */
227 for (i = 0; i < 2*old_nr; i++)
228 change_point[i] = &change_point_list[i];
229
230 /* record all known change-points (starting and ending addresses),
231 omitting those that are for empty memory regions */
232 chgidx = 0;
233 for (i = 0; i < old_nr; i++) {
234 if (map[i].size != 0) {
235 change_point[chgidx]->addr = map[i].addr;
236 change_point[chgidx++]->pentry = &map[i];
237 change_point[chgidx]->addr = map[i].addr + map[i].size;
238 change_point[chgidx++]->pentry = &map[i];
239 }
240 }
241 chg_nr = chgidx; /* true number of change-points */
242
243 /* sort change-point list by memory addresses (low -> high) */
244 still_changing = 1;
245 while (still_changing) {
246 still_changing = 0;
247 for (i = 1; i < chg_nr; i++) {
248 /* if <current_addr> > <last_addr>, swap */
249 /* or, if current=<start_addr> & last=<end_addr>, swap */
250 if ((change_point[i]->addr < change_point[i-1]->addr) ||
251 ((change_point[i]->addr == change_point[i-1]->addr) &&
252 (change_point[i]->addr == change_point[i]->pentry->addr) &&
253 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
254 ) {
255 change_tmp = change_point[i];
256 change_point[i] = change_point[i-1];
257 change_point[i-1] = change_tmp;
258 still_changing = 1;
259 }
260 }
261 }
262
263 /* create a new memmap, removing overlaps */
264 overlap_entries = 0; /* number of entries in the overlap table */
265 new_entry = 0; /* index for creating new memmap entries */
266 last_type = 0; /* start with undefined memory type */
267 last_addr = 0; /* start with 0 as last starting address */
268 /* loop through change-points, determining affect on the new memmap */
269 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
270 /* keep track of all overlapping memmap entries */
271 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
272 /* add map entry to overlap list (> 1 entry implies an overlap) */
273 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
274 } else {
275 /* remove entry from list (order independent, so swap with last) */
276 for (i = 0; i < overlap_entries; i++) {
277 if (overlap_list[i] == change_point[chgidx]->pentry)
278 overlap_list[i] = overlap_list[overlap_entries-1];
279 }
280 overlap_entries--;
281 }
282 /* if there are overlapping entries, decide which "type" to use */
283 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
284 current_type = 0;
285 for (i = 0; i < overlap_entries; i++)
286 if (overlap_list[i]->type > current_type)
287 current_type = overlap_list[i]->type;
288 /* continue building up new memmap based on this information */
289 if (current_type != last_type) {
290 if (last_type != 0) {
291 new_map[new_entry].size =
292 change_point[chgidx]->addr - last_addr;
293 /* move forward only if the new size was non-zero */
294 if (new_map[new_entry].size != 0)
295 if (++new_entry >= BFIN_MEMMAP_MAX)
296 break; /* no more space left for new entries */
297 }
298 if (current_type != 0) {
299 new_map[new_entry].addr = change_point[chgidx]->addr;
300 new_map[new_entry].type = current_type;
301 last_addr = change_point[chgidx]->addr;
302 }
303 last_type = current_type;
304 }
305 }
306 new_nr = new_entry; /* retain count for new entries */
307
308 /* copy new mapping into original location */
309 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
310 *pnr_map = new_nr;
311
312 return 0;
313 }
314
315 static void __init print_memory_map(char *who)
316 {
317 int i;
318
319 for (i = 0; i < bfin_memmap.nr_map; i++) {
320 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
321 bfin_memmap.map[i].addr,
322 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
323 switch (bfin_memmap.map[i].type) {
324 case BFIN_MEMMAP_RAM:
325 printk("(usable)\n");
326 break;
327 case BFIN_MEMMAP_RESERVED:
328 printk("(reserved)\n");
329 break;
330 default: printk("type %lu\n", bfin_memmap.map[i].type);
331 break;
332 }
333 }
334 }
335
336 static __init int parse_memmap(char *arg)
337 {
338 unsigned long long start_at, mem_size;
339
340 if (!arg)
341 return -EINVAL;
342
343 mem_size = memparse(arg, &arg);
344 if (*arg == '@') {
345 start_at = memparse(arg+1, &arg);
346 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
347 } else if (*arg == '$') {
348 start_at = memparse(arg+1, &arg);
349 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
350 }
351
352 return 0;
353 }
354
355 /*
356 * Initial parsing of the command line. Currently, we support:
357 * - Controlling the linux memory size: mem=xxx[KMG]
358 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
359 * $ -> reserved memory is dcacheable
360 * # -> reserved memory is icacheable
361 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
362 * @ from <start> to <start>+<mem>, type RAM
363 * $ from <start> to <start>+<mem>, type RESERVED
364 *
365 */
366 static __init void parse_cmdline_early(char *cmdline_p)
367 {
368 char c = ' ', *to = cmdline_p;
369 unsigned int memsize;
370 for (;;) {
371 if (c == ' ') {
372 if (!memcmp(to, "mem=", 4)) {
373 to += 4;
374 memsize = memparse(to, &to);
375 if (memsize)
376 _ramend = memsize;
377
378 } else if (!memcmp(to, "max_mem=", 8)) {
379 to += 8;
380 memsize = memparse(to, &to);
381 if (memsize) {
382 physical_mem_end = memsize;
383 if (*to != ' ') {
384 if (*to == '$'
385 || *(to + 1) == '$')
386 reserved_mem_dcache_on =
387 1;
388 if (*to == '#'
389 || *(to + 1) == '#')
390 reserved_mem_icache_on =
391 1;
392 }
393 }
394 } else if (!memcmp(to, "earlyprintk=", 12)) {
395 to += 12;
396 setup_early_printk(to);
397 } else if (!memcmp(to, "memmap=", 7)) {
398 to += 7;
399 parse_memmap(to);
400 }
401 }
402 c = *(to++);
403 if (!c)
404 break;
405 }
406 }
407
408 /*
409 * Setup memory defaults from user config.
410 * The physical memory layout looks like:
411 *
412 * [_rambase, _ramstart]: kernel image
413 * [memory_start, memory_end]: dynamic memory managed by kernel
414 * [memory_end, _ramend]: reserved memory
415 * [memory_mtd_start(memory_end),
416 * memory_mtd_start + mtd_size]: rootfs (if any)
417 * [_ramend - DMA_UNCACHED_REGION,
418 * _ramend]: uncached DMA region
419 * [_ramend, physical_mem_end]: memory not managed by kernel
420 *
421 */
422 static __init void memory_setup(void)
423 {
424 #ifdef CONFIG_MTD_UCLINUX
425 unsigned long mtd_phys = 0;
426 #endif
427
428 _rambase = (unsigned long)_stext;
429 _ramstart = (unsigned long)_end;
430
431 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
432 console_init();
433 panic("DMA region exceeds memory limit: %lu.\n",
434 _ramend - _ramstart);
435 }
436 memory_end = _ramend - DMA_UNCACHED_REGION;
437
438 #ifdef CONFIG_MPU
439 /* Round up to multiple of 4MB. */
440 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
441 #else
442 memory_start = PAGE_ALIGN(_ramstart);
443 #endif
444
445 #if defined(CONFIG_MTD_UCLINUX)
446 /* generic memory mapped MTD driver */
447 memory_mtd_end = memory_end;
448
449 mtd_phys = _ramstart;
450 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
451
452 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
453 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
454 mtd_size =
455 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
456 # endif
457
458 # if defined(CONFIG_CRAMFS)
459 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
460 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
461 # endif
462
463 # if defined(CONFIG_ROMFS_FS)
464 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
465 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
466 mtd_size =
467 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
468 # if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
469 /* Due to a Hardware Anomaly we need to limit the size of usable
470 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
471 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
472 */
473 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
474 if (memory_end >= 56 * 1024 * 1024)
475 memory_end = 56 * 1024 * 1024;
476 # else
477 if (memory_end >= 60 * 1024 * 1024)
478 memory_end = 60 * 1024 * 1024;
479 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
480 # endif /* ANOMALY_05000263 */
481 # endif /* CONFIG_ROMFS_FS */
482
483 memory_end -= mtd_size;
484
485 if (mtd_size == 0) {
486 console_init();
487 panic("Don't boot kernel without rootfs attached.\n");
488 }
489
490 /* Relocate MTD image to the top of memory after the uncached memory area */
491 dma_memcpy((char *)memory_end, _end, mtd_size);
492
493 memory_mtd_start = memory_end;
494 _ebss = memory_mtd_start; /* define _ebss for compatible */
495 #endif /* CONFIG_MTD_UCLINUX */
496
497 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
498 /* Due to a Hardware Anomaly we need to limit the size of usable
499 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
500 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
501 */
502 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
503 if (memory_end >= 56 * 1024 * 1024)
504 memory_end = 56 * 1024 * 1024;
505 #else
506 if (memory_end >= 60 * 1024 * 1024)
507 memory_end = 60 * 1024 * 1024;
508 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
509 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
510 #endif /* ANOMALY_05000263 */
511
512 #ifdef CONFIG_MPU
513 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
514 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
515 #endif
516
517 #if !defined(CONFIG_MTD_UCLINUX)
518 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
519 memory_end -= SIZE_4K;
520 #endif
521
522 init_mm.start_code = (unsigned long)_stext;
523 init_mm.end_code = (unsigned long)_etext;
524 init_mm.end_data = (unsigned long)_edata;
525 init_mm.brk = (unsigned long)0;
526
527 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
528 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
529
530 printk(KERN_INFO "Memory map:\n"
531 KERN_INFO " fixedcode = 0x%p-0x%p\n"
532 KERN_INFO " text = 0x%p-0x%p\n"
533 KERN_INFO " rodata = 0x%p-0x%p\n"
534 KERN_INFO " bss = 0x%p-0x%p\n"
535 KERN_INFO " data = 0x%p-0x%p\n"
536 KERN_INFO " stack = 0x%p-0x%p\n"
537 KERN_INFO " init = 0x%p-0x%p\n"
538 KERN_INFO " available = 0x%p-0x%p\n"
539 #ifdef CONFIG_MTD_UCLINUX
540 KERN_INFO " rootfs = 0x%p-0x%p\n"
541 #endif
542 #if DMA_UNCACHED_REGION > 0
543 KERN_INFO " DMA Zone = 0x%p-0x%p\n"
544 #endif
545 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
546 _stext, _etext,
547 __start_rodata, __end_rodata,
548 __bss_start, __bss_stop,
549 _sdata, _edata,
550 (void *)&init_thread_union,
551 (void *)((int)(&init_thread_union) + 0x2000),
552 __init_begin, __init_end,
553 (void *)_ramstart, (void *)memory_end
554 #ifdef CONFIG_MTD_UCLINUX
555 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
556 #endif
557 #if DMA_UNCACHED_REGION > 0
558 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
559 #endif
560 );
561 }
562
563 /*
564 * Find the lowest, highest page frame number we have available
565 */
566 void __init find_min_max_pfn(void)
567 {
568 int i;
569
570 max_pfn = 0;
571 min_low_pfn = memory_end;
572
573 for (i = 0; i < bfin_memmap.nr_map; i++) {
574 unsigned long start, end;
575 /* RAM? */
576 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
577 continue;
578 start = PFN_UP(bfin_memmap.map[i].addr);
579 end = PFN_DOWN(bfin_memmap.map[i].addr +
580 bfin_memmap.map[i].size);
581 if (start >= end)
582 continue;
583 if (end > max_pfn)
584 max_pfn = end;
585 if (start < min_low_pfn)
586 min_low_pfn = start;
587 }
588 }
589
590 static __init void setup_bootmem_allocator(void)
591 {
592 int bootmap_size;
593 int i;
594 unsigned long start_pfn, end_pfn;
595 unsigned long curr_pfn, last_pfn, size;
596
597 /* mark memory between memory_start and memory_end usable */
598 add_memory_region(memory_start,
599 memory_end - memory_start, BFIN_MEMMAP_RAM);
600 /* sanity check for overlap */
601 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
602 print_memory_map("boot memmap");
603
604 /* intialize globals in linux/bootmem.h */
605 find_min_max_pfn();
606 /* pfn of the last usable page frame */
607 if (max_pfn > memory_end >> PAGE_SHIFT)
608 max_pfn = memory_end >> PAGE_SHIFT;
609 /* pfn of last page frame directly mapped by kernel */
610 max_low_pfn = max_pfn;
611 /* pfn of the first usable page frame after kernel image*/
612 if (min_low_pfn < memory_start >> PAGE_SHIFT)
613 min_low_pfn = memory_start >> PAGE_SHIFT;
614
615 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
616 end_pfn = memory_end >> PAGE_SHIFT;
617
618 /*
619 * give all the memory to the bootmap allocator, tell it to put the
620 * boot mem_map at the start of memory.
621 */
622 bootmap_size = init_bootmem_node(NODE_DATA(0),
623 memory_start >> PAGE_SHIFT, /* map goes here */
624 start_pfn, end_pfn);
625
626 /* register the memmap regions with the bootmem allocator */
627 for (i = 0; i < bfin_memmap.nr_map; i++) {
628 /*
629 * Reserve usable memory
630 */
631 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
632 continue;
633 /*
634 * We are rounding up the start address of usable memory:
635 */
636 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
637 if (curr_pfn >= end_pfn)
638 continue;
639 /*
640 * ... and at the end of the usable range downwards:
641 */
642 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
643 bfin_memmap.map[i].size);
644
645 if (last_pfn > end_pfn)
646 last_pfn = end_pfn;
647
648 /*
649 * .. finally, did all the rounding and playing
650 * around just make the area go away?
651 */
652 if (last_pfn <= curr_pfn)
653 continue;
654
655 size = last_pfn - curr_pfn;
656 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
657 }
658
659 /* reserve memory before memory_start, including bootmap */
660 reserve_bootmem(PAGE_OFFSET,
661 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
662 BOOTMEM_DEFAULT);
663 }
664
665 #define EBSZ_TO_MEG(ebsz) \
666 ({ \
667 int meg = 0; \
668 switch (ebsz & 0xf) { \
669 case 0x1: meg = 16; break; \
670 case 0x3: meg = 32; break; \
671 case 0x5: meg = 64; break; \
672 case 0x7: meg = 128; break; \
673 case 0x9: meg = 256; break; \
674 case 0xb: meg = 512; break; \
675 } \
676 meg; \
677 })
678 static inline int __init get_mem_size(void)
679 {
680 #if defined(EBIU_SDBCTL)
681 # if defined(BF561_FAMILY)
682 int ret = 0;
683 u32 sdbctl = bfin_read_EBIU_SDBCTL();
684 ret += EBSZ_TO_MEG(sdbctl >> 0);
685 ret += EBSZ_TO_MEG(sdbctl >> 8);
686 ret += EBSZ_TO_MEG(sdbctl >> 16);
687 ret += EBSZ_TO_MEG(sdbctl >> 24);
688 return ret;
689 # else
690 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
691 # endif
692 #elif defined(EBIU_DDRCTL1)
693 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
694 int ret = 0;
695 switch (ddrctl & 0xc0000) {
696 case DEVSZ_64: ret = 64 / 8;
697 case DEVSZ_128: ret = 128 / 8;
698 case DEVSZ_256: ret = 256 / 8;
699 case DEVSZ_512: ret = 512 / 8;
700 }
701 switch (ddrctl & 0x30000) {
702 case DEVWD_4: ret *= 2;
703 case DEVWD_8: ret *= 2;
704 case DEVWD_16: break;
705 }
706 if ((ddrctl & 0xc000) == 0x4000)
707 ret *= 2;
708 return ret;
709 #endif
710 BUG();
711 }
712
713 void __init setup_arch(char **cmdline_p)
714 {
715 unsigned long sclk, cclk;
716
717 #ifdef CONFIG_DUMMY_CONSOLE
718 conswitchp = &dummy_con;
719 #endif
720
721 #if defined(CONFIG_CMDLINE_BOOL)
722 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
723 command_line[sizeof(command_line) - 1] = 0;
724 #endif
725
726 /* Keep a copy of command line */
727 *cmdline_p = &command_line[0];
728 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
729 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
730
731 /* setup memory defaults from the user config */
732 physical_mem_end = 0;
733 _ramend = get_mem_size() * 1024 * 1024;
734
735 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
736
737 parse_cmdline_early(&command_line[0]);
738
739 if (physical_mem_end == 0)
740 physical_mem_end = _ramend;
741
742 memory_setup();
743
744 /* Initialize Async memory banks */
745 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
746 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
747 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
748 #ifdef CONFIG_EBIU_MBSCTLVAL
749 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
750 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
751 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
752 #endif
753
754 cclk = get_cclk();
755 sclk = get_sclk();
756
757 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
758 if (ANOMALY_05000273 && cclk == sclk)
759 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
760 #endif
761
762 #ifdef BF561_FAMILY
763 if (ANOMALY_05000266) {
764 bfin_read_IMDMA_D0_IRQ_STATUS();
765 bfin_read_IMDMA_D1_IRQ_STATUS();
766 }
767 #endif
768 printk(KERN_INFO "Hardware Trace ");
769 if (bfin_read_TBUFCTL() & 0x1)
770 printk("Active ");
771 else
772 printk("Off ");
773 if (bfin_read_TBUFCTL() & 0x2)
774 printk("and Enabled\n");
775 else
776 printk("and Disabled\n");
777
778 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
779 /* we need to initialize the Flashrom device here since we might
780 * do things with flash early on in the boot
781 */
782 flash_probe();
783 #endif
784
785 _bfin_swrst = bfin_read_SWRST();
786
787 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
788 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
789 #endif
790 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
791 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
792 #endif
793
794 if (_bfin_swrst & RESET_DOUBLE) {
795 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
796 #ifdef CONFIG_DEBUG_DOUBLEFAULT
797 /* We assume the crashing kernel, and the current symbol table match */
798 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
799 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
800 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
801 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
802 #endif
803 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
804 init_retx);
805 } else if (_bfin_swrst & RESET_WDOG)
806 printk(KERN_INFO "Recovering from Watchdog event\n");
807 else if (_bfin_swrst & RESET_SOFTWARE)
808 printk(KERN_NOTICE "Reset caused by Software reset\n");
809
810 printk(KERN_INFO "Blackfin support (C) 2004-2008 Analog Devices, Inc.\n");
811 if (bfin_compiled_revid() == 0xffff)
812 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
813 else if (bfin_compiled_revid() == -1)
814 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
815 else
816 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
817
818 if (unlikely(CPUID != bfin_cpuid()))
819 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
820 CPU, bfin_cpuid(), bfin_revid());
821 else {
822 if (bfin_revid() != bfin_compiled_revid()) {
823 if (bfin_compiled_revid() == -1)
824 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
825 bfin_revid());
826 else if (bfin_compiled_revid() != 0xffff)
827 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
828 bfin_compiled_revid(), bfin_revid());
829 }
830 if (bfin_revid() <= CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
831 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
832 CPU, bfin_revid());
833 }
834
835 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
836
837 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
838 cclk / 1000000, sclk / 1000000);
839
840 if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
841 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
842
843 setup_bootmem_allocator();
844
845 paging_init();
846
847 /* Copy atomic sequences to their fixed location, and sanity check that
848 these locations are the ones that we advertise to userspace. */
849 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
850 FIXED_CODE_END - FIXED_CODE_START);
851 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
852 != SIGRETURN_STUB - FIXED_CODE_START);
853 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
854 != ATOMIC_XCHG32 - FIXED_CODE_START);
855 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
856 != ATOMIC_CAS32 - FIXED_CODE_START);
857 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
858 != ATOMIC_ADD32 - FIXED_CODE_START);
859 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
860 != ATOMIC_SUB32 - FIXED_CODE_START);
861 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
862 != ATOMIC_IOR32 - FIXED_CODE_START);
863 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
864 != ATOMIC_AND32 - FIXED_CODE_START);
865 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
866 != ATOMIC_XOR32 - FIXED_CODE_START);
867 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
868 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
869
870 init_exception_vectors();
871 bfin_cache_init();
872 }
873
874 static int __init topology_init(void)
875 {
876 int cpu;
877
878 for_each_possible_cpu(cpu) {
879 struct cpu *c = &per_cpu(cpu_devices, cpu);
880
881 register_cpu(c, cpu);
882 }
883
884 return 0;
885 }
886
887 subsys_initcall(topology_init);
888
889 /* Get the voltage input multiplier */
890 static u_long cached_vco_pll_ctl, cached_vco;
891 static u_long get_vco(void)
892 {
893 u_long msel;
894
895 u_long pll_ctl = bfin_read_PLL_CTL();
896 if (pll_ctl == cached_vco_pll_ctl)
897 return cached_vco;
898 else
899 cached_vco_pll_ctl = pll_ctl;
900
901 msel = (pll_ctl >> 9) & 0x3F;
902 if (0 == msel)
903 msel = 64;
904
905 cached_vco = CONFIG_CLKIN_HZ;
906 cached_vco >>= (1 & pll_ctl); /* DF bit */
907 cached_vco *= msel;
908 return cached_vco;
909 }
910
911 /* Get the Core clock */
912 static u_long cached_cclk_pll_div, cached_cclk;
913 u_long get_cclk(void)
914 {
915 u_long csel, ssel;
916
917 if (bfin_read_PLL_STAT() & 0x1)
918 return CONFIG_CLKIN_HZ;
919
920 ssel = bfin_read_PLL_DIV();
921 if (ssel == cached_cclk_pll_div)
922 return cached_cclk;
923 else
924 cached_cclk_pll_div = ssel;
925
926 csel = ((ssel >> 4) & 0x03);
927 ssel &= 0xf;
928 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
929 cached_cclk = get_vco() / ssel;
930 else
931 cached_cclk = get_vco() >> csel;
932 return cached_cclk;
933 }
934 EXPORT_SYMBOL(get_cclk);
935
936 /* Get the System clock */
937 static u_long cached_sclk_pll_div, cached_sclk;
938 u_long get_sclk(void)
939 {
940 u_long ssel;
941
942 if (bfin_read_PLL_STAT() & 0x1)
943 return CONFIG_CLKIN_HZ;
944
945 ssel = bfin_read_PLL_DIV();
946 if (ssel == cached_sclk_pll_div)
947 return cached_sclk;
948 else
949 cached_sclk_pll_div = ssel;
950
951 ssel &= 0xf;
952 if (0 == ssel) {
953 printk(KERN_WARNING "Invalid System Clock\n");
954 ssel = 1;
955 }
956
957 cached_sclk = get_vco() / ssel;
958 return cached_sclk;
959 }
960 EXPORT_SYMBOL(get_sclk);
961
962 unsigned long sclk_to_usecs(unsigned long sclk)
963 {
964 u64 tmp = USEC_PER_SEC * (u64)sclk;
965 do_div(tmp, get_sclk());
966 return tmp;
967 }
968 EXPORT_SYMBOL(sclk_to_usecs);
969
970 unsigned long usecs_to_sclk(unsigned long usecs)
971 {
972 u64 tmp = get_sclk() * (u64)usecs;
973 do_div(tmp, USEC_PER_SEC);
974 return tmp;
975 }
976 EXPORT_SYMBOL(usecs_to_sclk);
977
978 /*
979 * Get CPU information for use by the procfs.
980 */
981 static int show_cpuinfo(struct seq_file *m, void *v)
982 {
983 char *cpu, *mmu, *fpu, *vendor, *cache;
984 uint32_t revid;
985
986 u_long cclk = 0, sclk = 0;
987 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
988
989 cpu = CPU;
990 mmu = "none";
991 fpu = "none";
992 revid = bfin_revid();
993
994 cclk = get_cclk();
995 sclk = get_sclk();
996
997 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
998 case 0xca:
999 vendor = "Analog Devices";
1000 break;
1001 default:
1002 vendor = "unknown";
1003 break;
1004 }
1005
1006 seq_printf(m, "processor\t: %d\n"
1007 "vendor_id\t: %s\n",
1008 *(unsigned int *)v,
1009 vendor);
1010
1011 if (CPUID == bfin_cpuid())
1012 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1013 else
1014 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1015 CPUID, bfin_cpuid());
1016
1017 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1018 "stepping\t: %d\n",
1019 cpu, cclk/1000000, sclk/1000000,
1020 #ifdef CONFIG_MPU
1021 "mpu on",
1022 #else
1023 "mpu off",
1024 #endif
1025 revid);
1026
1027 seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1028 cclk/1000000, cclk%1000000,
1029 sclk/1000000, sclk%1000000);
1030 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1031 "Calibration\t: %lu loops\n",
1032 (loops_per_jiffy * HZ) / 500000,
1033 ((loops_per_jiffy * HZ) / 5000) % 100,
1034 (loops_per_jiffy * HZ));
1035
1036 /* Check Cache configutation */
1037 switch (bfin_read_DMEM_CONTROL() & (1 << DMC0_P | 1 << DMC1_P)) {
1038 case ACACHE_BSRAM:
1039 cache = "dbank-A/B\t: cache/sram";
1040 dcache_size = 16;
1041 dsup_banks = 1;
1042 break;
1043 case ACACHE_BCACHE:
1044 cache = "dbank-A/B\t: cache/cache";
1045 dcache_size = 32;
1046 dsup_banks = 2;
1047 break;
1048 case ASRAM_BSRAM:
1049 cache = "dbank-A/B\t: sram/sram";
1050 dcache_size = 0;
1051 dsup_banks = 0;
1052 break;
1053 default:
1054 cache = "unknown";
1055 dcache_size = 0;
1056 dsup_banks = 0;
1057 break;
1058 }
1059
1060 /* Is it turned on? */
1061 if ((bfin_read_DMEM_CONTROL() & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1062 dcache_size = 0;
1063
1064 if ((bfin_read_IMEM_CONTROL() & (IMC | ENICPLB)) != (IMC | ENICPLB))
1065 icache_size = 0;
1066
1067 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1068 "%d KB(L1 dcache-%s) %d KB(L2 cache)\n",
1069 icache_size, dcache_size,
1070 #if defined CONFIG_BFIN_WB
1071 "wb"
1072 #elif defined CONFIG_BFIN_WT
1073 "wt"
1074 #endif
1075 "", 0);
1076
1077 seq_printf(m, "%s\n", cache);
1078
1079 if (icache_size)
1080 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1081 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1082 else
1083 seq_printf(m, "icache setup\t: off\n");
1084
1085 seq_printf(m,
1086 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1087 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1088 BFIN_DLINES);
1089 #ifdef CONFIG_BFIN_ICACHE_LOCK
1090 switch ((bfin_read_IMEM_CONTROL() >> 3) & WAYALL_L) {
1091 case WAY0_L:
1092 seq_printf(m, "Way0 Locked-Down\n");
1093 break;
1094 case WAY1_L:
1095 seq_printf(m, "Way1 Locked-Down\n");
1096 break;
1097 case WAY01_L:
1098 seq_printf(m, "Way0,Way1 Locked-Down\n");
1099 break;
1100 case WAY2_L:
1101 seq_printf(m, "Way2 Locked-Down\n");
1102 break;
1103 case WAY02_L:
1104 seq_printf(m, "Way0,Way2 Locked-Down\n");
1105 break;
1106 case WAY12_L:
1107 seq_printf(m, "Way1,Way2 Locked-Down\n");
1108 break;
1109 case WAY012_L:
1110 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1111 break;
1112 case WAY3_L:
1113 seq_printf(m, "Way3 Locked-Down\n");
1114 break;
1115 case WAY03_L:
1116 seq_printf(m, "Way0,Way3 Locked-Down\n");
1117 break;
1118 case WAY13_L:
1119 seq_printf(m, "Way1,Way3 Locked-Down\n");
1120 break;
1121 case WAY013_L:
1122 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1123 break;
1124 case WAY32_L:
1125 seq_printf(m, "Way3,Way2 Locked-Down\n");
1126 break;
1127 case WAY320_L:
1128 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1129 break;
1130 case WAY321_L:
1131 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1132 break;
1133 case WAYALL_L:
1134 seq_printf(m, "All Ways are locked\n");
1135 break;
1136 default:
1137 seq_printf(m, "No Ways are locked\n");
1138 }
1139 #endif
1140 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1141 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1142 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1143 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1144 ((int)memory_end - (int)_stext) >> 10,
1145 _stext,
1146 (void *)memory_end);
1147
1148 return 0;
1149 }
1150
1151 static void *c_start(struct seq_file *m, loff_t *pos)
1152 {
1153 if (*pos == 0)
1154 *pos = first_cpu(cpu_online_map);
1155 if (*pos >= num_online_cpus())
1156 return NULL;
1157
1158 return pos;
1159 }
1160
1161 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1162 {
1163 *pos = next_cpu(*pos, cpu_online_map);
1164
1165 return c_start(m, pos);
1166 }
1167
1168 static void c_stop(struct seq_file *m, void *v)
1169 {
1170 }
1171
1172 const struct seq_operations cpuinfo_op = {
1173 .start = c_start,
1174 .next = c_next,
1175 .stop = c_stop,
1176 .show = show_cpuinfo,
1177 };
1178
1179 void __init cmdline_init(const char *r0)
1180 {
1181 if (r0)
1182 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1183 }