]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/blackfin/kernel/setup.c
Blackfin arch: rewrite dma_memcpy() and dma in/out functions
[mirror_ubuntu-artful-kernel.git] / arch / blackfin / kernel / setup.c
1 /*
2 * arch/blackfin/kernel/setup.c
3 *
4 * Copyright 2004-2006 Analog Devices Inc.
5 *
6 * Enter bugs at http://blackfin.uclinux.org/
7 *
8 * Licensed under the GPL-2 or later.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/module.h>
17 #include <linux/tty.h>
18 #include <linux/pfn.h>
19
20 #include <linux/ext2_fs.h>
21 #include <linux/cramfs_fs.h>
22 #include <linux/romfs_fs.h>
23
24 #include <asm/cplb.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
29 #include <asm/cpu.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
32
33 u16 _bfin_swrst;
34 EXPORT_SYMBOL(_bfin_swrst);
35
36 unsigned long memory_start, memory_end, physical_mem_end;
37 unsigned long _rambase, _ramstart, _ramend;
38 unsigned long reserved_mem_dcache_on;
39 unsigned long reserved_mem_icache_on;
40 EXPORT_SYMBOL(memory_start);
41 EXPORT_SYMBOL(memory_end);
42 EXPORT_SYMBOL(physical_mem_end);
43 EXPORT_SYMBOL(_ramend);
44 EXPORT_SYMBOL(reserved_mem_dcache_on);
45
46 #ifdef CONFIG_MTD_UCLINUX
47 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
48 unsigned long _ebss;
49 EXPORT_SYMBOL(memory_mtd_end);
50 EXPORT_SYMBOL(memory_mtd_start);
51 EXPORT_SYMBOL(mtd_size);
52 #endif
53
54 char __initdata command_line[COMMAND_LINE_SIZE];
55 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
56 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
57
58 /* boot memmap, for parsing "memmap=" */
59 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
60 #define BFIN_MEMMAP_RAM 1
61 #define BFIN_MEMMAP_RESERVED 2
62 struct bfin_memmap {
63 int nr_map;
64 struct bfin_memmap_entry {
65 unsigned long long addr; /* start of memory segment */
66 unsigned long long size;
67 unsigned long type;
68 } map[BFIN_MEMMAP_MAX];
69 } bfin_memmap __initdata;
70
71 /* for memmap sanitization */
72 struct change_member {
73 struct bfin_memmap_entry *pentry; /* pointer to original entry */
74 unsigned long long addr; /* address for this change point */
75 };
76 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
77 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
78 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
79 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
80
81 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
82
83 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
84 void __init generate_cplb_tables(void)
85 {
86 unsigned int cpu;
87
88 /* Generate per-CPU I&D CPLB tables */
89 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
90 generate_cplb_tables_cpu(cpu);
91 }
92 #endif
93
94 void __cpuinit bfin_setup_caches(unsigned int cpu)
95 {
96 #ifdef CONFIG_BFIN_ICACHE
97 #ifdef CONFIG_MPU
98 bfin_icache_init(icplb_tbl[cpu]);
99 #else
100 bfin_icache_init(icplb_tables[cpu]);
101 #endif
102 #endif
103
104 #ifdef CONFIG_BFIN_DCACHE
105 #ifdef CONFIG_MPU
106 bfin_dcache_init(dcplb_tbl[cpu]);
107 #else
108 bfin_dcache_init(dcplb_tables[cpu]);
109 #endif
110 #endif
111
112 /*
113 * In cache coherence emulation mode, we need to have the
114 * D-cache enabled before running any atomic operation which
115 * might invove cache invalidation (i.e. spinlock, rwlock).
116 * So printk's are deferred until then.
117 */
118 #ifdef CONFIG_BFIN_ICACHE
119 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120 #endif
121 #ifdef CONFIG_BFIN_DCACHE
122 printk(KERN_INFO "Data Cache Enabled for CPU%u"
123 # if defined CONFIG_BFIN_WB
124 " (write-back)"
125 # elif defined CONFIG_BFIN_WT
126 " (write-through)"
127 # endif
128 "\n", cpu);
129 #endif
130 }
131
132 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
133 {
134 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
135
136 cpudata->idle = current;
137 cpudata->loops_per_jiffy = loops_per_jiffy;
138 cpudata->imemctl = bfin_read_IMEM_CONTROL();
139 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
140 }
141
142 void __init bfin_cache_init(void)
143 {
144 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
145 generate_cplb_tables();
146 #endif
147 bfin_setup_caches(0);
148 }
149
150 void __init bfin_relocate_l1_mem(void)
151 {
152 unsigned long l1_code_length;
153 unsigned long l1_data_a_length;
154 unsigned long l1_data_b_length;
155 unsigned long l2_length;
156
157 blackfin_dma_early_init();
158
159 l1_code_length = _etext_l1 - _stext_l1;
160 if (l1_code_length > L1_CODE_LENGTH)
161 panic("L1 Instruction SRAM Overflow\n");
162 /* cannot complain as printk is not available as yet.
163 * But we can continue booting and complain later!
164 */
165
166 /* Copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
167 dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
168
169 l1_data_a_length = _sbss_l1 - _sdata_l1;
170 if (l1_data_a_length > L1_DATA_A_LENGTH)
171 panic("L1 Data SRAM Bank A Overflow\n");
172
173 /* Copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
174 dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
175
176 l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
177 if (l1_data_b_length > L1_DATA_B_LENGTH)
178 panic("L1 Data SRAM Bank B Overflow\n");
179
180 /* Copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
181 dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
182 l1_data_a_length, l1_data_b_length);
183
184 if (L2_LENGTH != 0) {
185 l2_length = _sbss_l2 - _stext_l2;
186 if (l2_length > L2_LENGTH)
187 panic("L2 SRAM Overflow\n");
188
189 /* Copy _stext_l2 to _edata_l2 to L2 SRAM */
190 dma_memcpy(_stext_l2, _l2_lma_start, l2_length);
191 }
192 }
193
194 /* add_memory_region to memmap */
195 static void __init add_memory_region(unsigned long long start,
196 unsigned long long size, int type)
197 {
198 int i;
199
200 i = bfin_memmap.nr_map;
201
202 if (i == BFIN_MEMMAP_MAX) {
203 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
204 return;
205 }
206
207 bfin_memmap.map[i].addr = start;
208 bfin_memmap.map[i].size = size;
209 bfin_memmap.map[i].type = type;
210 bfin_memmap.nr_map++;
211 }
212
213 /*
214 * Sanitize the boot memmap, removing overlaps.
215 */
216 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
217 {
218 struct change_member *change_tmp;
219 unsigned long current_type, last_type;
220 unsigned long long last_addr;
221 int chgidx, still_changing;
222 int overlap_entries;
223 int new_entry;
224 int old_nr, new_nr, chg_nr;
225 int i;
226
227 /*
228 Visually we're performing the following (1,2,3,4 = memory types)
229
230 Sample memory map (w/overlaps):
231 ____22__________________
232 ______________________4_
233 ____1111________________
234 _44_____________________
235 11111111________________
236 ____________________33__
237 ___________44___________
238 __________33333_________
239 ______________22________
240 ___________________2222_
241 _________111111111______
242 _____________________11_
243 _________________4______
244
245 Sanitized equivalent (no overlap):
246 1_______________________
247 _44_____________________
248 ___1____________________
249 ____22__________________
250 ______11________________
251 _________1______________
252 __________3_____________
253 ___________44___________
254 _____________33_________
255 _______________2________
256 ________________1_______
257 _________________4______
258 ___________________2____
259 ____________________33__
260 ______________________4_
261 */
262 /* if there's only one memory region, don't bother */
263 if (*pnr_map < 2)
264 return -1;
265
266 old_nr = *pnr_map;
267
268 /* bail out if we find any unreasonable addresses in memmap */
269 for (i = 0; i < old_nr; i++)
270 if (map[i].addr + map[i].size < map[i].addr)
271 return -1;
272
273 /* create pointers for initial change-point information (for sorting) */
274 for (i = 0; i < 2*old_nr; i++)
275 change_point[i] = &change_point_list[i];
276
277 /* record all known change-points (starting and ending addresses),
278 omitting those that are for empty memory regions */
279 chgidx = 0;
280 for (i = 0; i < old_nr; i++) {
281 if (map[i].size != 0) {
282 change_point[chgidx]->addr = map[i].addr;
283 change_point[chgidx++]->pentry = &map[i];
284 change_point[chgidx]->addr = map[i].addr + map[i].size;
285 change_point[chgidx++]->pentry = &map[i];
286 }
287 }
288 chg_nr = chgidx; /* true number of change-points */
289
290 /* sort change-point list by memory addresses (low -> high) */
291 still_changing = 1;
292 while (still_changing) {
293 still_changing = 0;
294 for (i = 1; i < chg_nr; i++) {
295 /* if <current_addr> > <last_addr>, swap */
296 /* or, if current=<start_addr> & last=<end_addr>, swap */
297 if ((change_point[i]->addr < change_point[i-1]->addr) ||
298 ((change_point[i]->addr == change_point[i-1]->addr) &&
299 (change_point[i]->addr == change_point[i]->pentry->addr) &&
300 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
301 ) {
302 change_tmp = change_point[i];
303 change_point[i] = change_point[i-1];
304 change_point[i-1] = change_tmp;
305 still_changing = 1;
306 }
307 }
308 }
309
310 /* create a new memmap, removing overlaps */
311 overlap_entries = 0; /* number of entries in the overlap table */
312 new_entry = 0; /* index for creating new memmap entries */
313 last_type = 0; /* start with undefined memory type */
314 last_addr = 0; /* start with 0 as last starting address */
315 /* loop through change-points, determining affect on the new memmap */
316 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
317 /* keep track of all overlapping memmap entries */
318 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
319 /* add map entry to overlap list (> 1 entry implies an overlap) */
320 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
321 } else {
322 /* remove entry from list (order independent, so swap with last) */
323 for (i = 0; i < overlap_entries; i++) {
324 if (overlap_list[i] == change_point[chgidx]->pentry)
325 overlap_list[i] = overlap_list[overlap_entries-1];
326 }
327 overlap_entries--;
328 }
329 /* if there are overlapping entries, decide which "type" to use */
330 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
331 current_type = 0;
332 for (i = 0; i < overlap_entries; i++)
333 if (overlap_list[i]->type > current_type)
334 current_type = overlap_list[i]->type;
335 /* continue building up new memmap based on this information */
336 if (current_type != last_type) {
337 if (last_type != 0) {
338 new_map[new_entry].size =
339 change_point[chgidx]->addr - last_addr;
340 /* move forward only if the new size was non-zero */
341 if (new_map[new_entry].size != 0)
342 if (++new_entry >= BFIN_MEMMAP_MAX)
343 break; /* no more space left for new entries */
344 }
345 if (current_type != 0) {
346 new_map[new_entry].addr = change_point[chgidx]->addr;
347 new_map[new_entry].type = current_type;
348 last_addr = change_point[chgidx]->addr;
349 }
350 last_type = current_type;
351 }
352 }
353 new_nr = new_entry; /* retain count for new entries */
354
355 /* copy new mapping into original location */
356 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
357 *pnr_map = new_nr;
358
359 return 0;
360 }
361
362 static void __init print_memory_map(char *who)
363 {
364 int i;
365
366 for (i = 0; i < bfin_memmap.nr_map; i++) {
367 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
368 bfin_memmap.map[i].addr,
369 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
370 switch (bfin_memmap.map[i].type) {
371 case BFIN_MEMMAP_RAM:
372 printk("(usable)\n");
373 break;
374 case BFIN_MEMMAP_RESERVED:
375 printk("(reserved)\n");
376 break;
377 default: printk("type %lu\n", bfin_memmap.map[i].type);
378 break;
379 }
380 }
381 }
382
383 static __init int parse_memmap(char *arg)
384 {
385 unsigned long long start_at, mem_size;
386
387 if (!arg)
388 return -EINVAL;
389
390 mem_size = memparse(arg, &arg);
391 if (*arg == '@') {
392 start_at = memparse(arg+1, &arg);
393 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
394 } else if (*arg == '$') {
395 start_at = memparse(arg+1, &arg);
396 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
397 }
398
399 return 0;
400 }
401
402 /*
403 * Initial parsing of the command line. Currently, we support:
404 * - Controlling the linux memory size: mem=xxx[KMG]
405 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
406 * $ -> reserved memory is dcacheable
407 * # -> reserved memory is icacheable
408 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
409 * @ from <start> to <start>+<mem>, type RAM
410 * $ from <start> to <start>+<mem>, type RESERVED
411 */
412 static __init void parse_cmdline_early(char *cmdline_p)
413 {
414 char c = ' ', *to = cmdline_p;
415 unsigned int memsize;
416 for (;;) {
417 if (c == ' ') {
418 if (!memcmp(to, "mem=", 4)) {
419 to += 4;
420 memsize = memparse(to, &to);
421 if (memsize)
422 _ramend = memsize;
423
424 } else if (!memcmp(to, "max_mem=", 8)) {
425 to += 8;
426 memsize = memparse(to, &to);
427 if (memsize) {
428 physical_mem_end = memsize;
429 if (*to != ' ') {
430 if (*to == '$'
431 || *(to + 1) == '$')
432 reserved_mem_dcache_on = 1;
433 if (*to == '#'
434 || *(to + 1) == '#')
435 reserved_mem_icache_on = 1;
436 }
437 }
438 } else if (!memcmp(to, "earlyprintk=", 12)) {
439 to += 12;
440 setup_early_printk(to);
441 } else if (!memcmp(to, "memmap=", 7)) {
442 to += 7;
443 parse_memmap(to);
444 }
445 }
446 c = *(to++);
447 if (!c)
448 break;
449 }
450 }
451
452 /*
453 * Setup memory defaults from user config.
454 * The physical memory layout looks like:
455 *
456 * [_rambase, _ramstart]: kernel image
457 * [memory_start, memory_end]: dynamic memory managed by kernel
458 * [memory_end, _ramend]: reserved memory
459 * [memory_mtd_start(memory_end),
460 * memory_mtd_start + mtd_size]: rootfs (if any)
461 * [_ramend - DMA_UNCACHED_REGION,
462 * _ramend]: uncached DMA region
463 * [_ramend, physical_mem_end]: memory not managed by kernel
464 */
465 static __init void memory_setup(void)
466 {
467 #ifdef CONFIG_MTD_UCLINUX
468 unsigned long mtd_phys = 0;
469 #endif
470
471 _rambase = (unsigned long)_stext;
472 _ramstart = (unsigned long)_end;
473
474 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
475 console_init();
476 panic("DMA region exceeds memory limit: %lu.\n",
477 _ramend - _ramstart);
478 }
479 memory_end = _ramend - DMA_UNCACHED_REGION;
480
481 #ifdef CONFIG_MPU
482 /* Round up to multiple of 4MB */
483 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
484 #else
485 memory_start = PAGE_ALIGN(_ramstart);
486 #endif
487
488 #if defined(CONFIG_MTD_UCLINUX)
489 /* generic memory mapped MTD driver */
490 memory_mtd_end = memory_end;
491
492 mtd_phys = _ramstart;
493 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
494
495 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
496 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
497 mtd_size =
498 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
499 # endif
500
501 # if defined(CONFIG_CRAMFS)
502 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
503 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
504 # endif
505
506 # if defined(CONFIG_ROMFS_FS)
507 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
508 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
509 mtd_size =
510 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
511 # if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
512 /* Due to a Hardware Anomaly we need to limit the size of usable
513 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
514 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
515 */
516 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
517 if (memory_end >= 56 * 1024 * 1024)
518 memory_end = 56 * 1024 * 1024;
519 # else
520 if (memory_end >= 60 * 1024 * 1024)
521 memory_end = 60 * 1024 * 1024;
522 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
523 # endif /* ANOMALY_05000263 */
524 # endif /* CONFIG_ROMFS_FS */
525
526 memory_end -= mtd_size;
527
528 if (mtd_size == 0) {
529 console_init();
530 panic("Don't boot kernel without rootfs attached.\n");
531 }
532
533 /* Relocate MTD image to the top of memory after the uncached memory area */
534 dma_memcpy((char *)memory_end, _end, mtd_size);
535
536 memory_mtd_start = memory_end;
537 _ebss = memory_mtd_start; /* define _ebss for compatible */
538 #endif /* CONFIG_MTD_UCLINUX */
539
540 #if (defined(CONFIG_BFIN_ICACHE) && ANOMALY_05000263)
541 /* Due to a Hardware Anomaly we need to limit the size of usable
542 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
543 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
544 */
545 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
546 if (memory_end >= 56 * 1024 * 1024)
547 memory_end = 56 * 1024 * 1024;
548 #else
549 if (memory_end >= 60 * 1024 * 1024)
550 memory_end = 60 * 1024 * 1024;
551 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
552 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
553 #endif /* ANOMALY_05000263 */
554
555 #ifdef CONFIG_MPU
556 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
557 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
558 #endif
559
560 #if !defined(CONFIG_MTD_UCLINUX)
561 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
562 memory_end -= SIZE_4K;
563 #endif
564
565 init_mm.start_code = (unsigned long)_stext;
566 init_mm.end_code = (unsigned long)_etext;
567 init_mm.end_data = (unsigned long)_edata;
568 init_mm.brk = (unsigned long)0;
569
570 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
571 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
572
573 printk(KERN_INFO "Memory map:\n"
574 KERN_INFO " fixedcode = 0x%p-0x%p\n"
575 KERN_INFO " text = 0x%p-0x%p\n"
576 KERN_INFO " rodata = 0x%p-0x%p\n"
577 KERN_INFO " bss = 0x%p-0x%p\n"
578 KERN_INFO " data = 0x%p-0x%p\n"
579 KERN_INFO " stack = 0x%p-0x%p\n"
580 KERN_INFO " init = 0x%p-0x%p\n"
581 KERN_INFO " available = 0x%p-0x%p\n"
582 #ifdef CONFIG_MTD_UCLINUX
583 KERN_INFO " rootfs = 0x%p-0x%p\n"
584 #endif
585 #if DMA_UNCACHED_REGION > 0
586 KERN_INFO " DMA Zone = 0x%p-0x%p\n"
587 #endif
588 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
589 _stext, _etext,
590 __start_rodata, __end_rodata,
591 __bss_start, __bss_stop,
592 _sdata, _edata,
593 (void *)&init_thread_union,
594 (void *)((int)(&init_thread_union) + 0x2000),
595 __init_begin, __init_end,
596 (void *)_ramstart, (void *)memory_end
597 #ifdef CONFIG_MTD_UCLINUX
598 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
599 #endif
600 #if DMA_UNCACHED_REGION > 0
601 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
602 #endif
603 );
604 }
605
606 /*
607 * Find the lowest, highest page frame number we have available
608 */
609 void __init find_min_max_pfn(void)
610 {
611 int i;
612
613 max_pfn = 0;
614 min_low_pfn = memory_end;
615
616 for (i = 0; i < bfin_memmap.nr_map; i++) {
617 unsigned long start, end;
618 /* RAM? */
619 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
620 continue;
621 start = PFN_UP(bfin_memmap.map[i].addr);
622 end = PFN_DOWN(bfin_memmap.map[i].addr +
623 bfin_memmap.map[i].size);
624 if (start >= end)
625 continue;
626 if (end > max_pfn)
627 max_pfn = end;
628 if (start < min_low_pfn)
629 min_low_pfn = start;
630 }
631 }
632
633 static __init void setup_bootmem_allocator(void)
634 {
635 int bootmap_size;
636 int i;
637 unsigned long start_pfn, end_pfn;
638 unsigned long curr_pfn, last_pfn, size;
639
640 /* mark memory between memory_start and memory_end usable */
641 add_memory_region(memory_start,
642 memory_end - memory_start, BFIN_MEMMAP_RAM);
643 /* sanity check for overlap */
644 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
645 print_memory_map("boot memmap");
646
647 /* intialize globals in linux/bootmem.h */
648 find_min_max_pfn();
649 /* pfn of the last usable page frame */
650 if (max_pfn > memory_end >> PAGE_SHIFT)
651 max_pfn = memory_end >> PAGE_SHIFT;
652 /* pfn of last page frame directly mapped by kernel */
653 max_low_pfn = max_pfn;
654 /* pfn of the first usable page frame after kernel image*/
655 if (min_low_pfn < memory_start >> PAGE_SHIFT)
656 min_low_pfn = memory_start >> PAGE_SHIFT;
657
658 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
659 end_pfn = memory_end >> PAGE_SHIFT;
660
661 /*
662 * give all the memory to the bootmap allocator, tell it to put the
663 * boot mem_map at the start of memory.
664 */
665 bootmap_size = init_bootmem_node(NODE_DATA(0),
666 memory_start >> PAGE_SHIFT, /* map goes here */
667 start_pfn, end_pfn);
668
669 /* register the memmap regions with the bootmem allocator */
670 for (i = 0; i < bfin_memmap.nr_map; i++) {
671 /*
672 * Reserve usable memory
673 */
674 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
675 continue;
676 /*
677 * We are rounding up the start address of usable memory:
678 */
679 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
680 if (curr_pfn >= end_pfn)
681 continue;
682 /*
683 * ... and at the end of the usable range downwards:
684 */
685 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
686 bfin_memmap.map[i].size);
687
688 if (last_pfn > end_pfn)
689 last_pfn = end_pfn;
690
691 /*
692 * .. finally, did all the rounding and playing
693 * around just make the area go away?
694 */
695 if (last_pfn <= curr_pfn)
696 continue;
697
698 size = last_pfn - curr_pfn;
699 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
700 }
701
702 /* reserve memory before memory_start, including bootmap */
703 reserve_bootmem(PAGE_OFFSET,
704 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
705 BOOTMEM_DEFAULT);
706 }
707
708 #define EBSZ_TO_MEG(ebsz) \
709 ({ \
710 int meg = 0; \
711 switch (ebsz & 0xf) { \
712 case 0x1: meg = 16; break; \
713 case 0x3: meg = 32; break; \
714 case 0x5: meg = 64; break; \
715 case 0x7: meg = 128; break; \
716 case 0x9: meg = 256; break; \
717 case 0xb: meg = 512; break; \
718 } \
719 meg; \
720 })
721 static inline int __init get_mem_size(void)
722 {
723 #if defined(EBIU_SDBCTL)
724 # if defined(BF561_FAMILY)
725 int ret = 0;
726 u32 sdbctl = bfin_read_EBIU_SDBCTL();
727 ret += EBSZ_TO_MEG(sdbctl >> 0);
728 ret += EBSZ_TO_MEG(sdbctl >> 8);
729 ret += EBSZ_TO_MEG(sdbctl >> 16);
730 ret += EBSZ_TO_MEG(sdbctl >> 24);
731 return ret;
732 # else
733 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
734 # endif
735 #elif defined(EBIU_DDRCTL1)
736 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
737 int ret = 0;
738 switch (ddrctl & 0xc0000) {
739 case DEVSZ_64: ret = 64 / 8;
740 case DEVSZ_128: ret = 128 / 8;
741 case DEVSZ_256: ret = 256 / 8;
742 case DEVSZ_512: ret = 512 / 8;
743 }
744 switch (ddrctl & 0x30000) {
745 case DEVWD_4: ret *= 2;
746 case DEVWD_8: ret *= 2;
747 case DEVWD_16: break;
748 }
749 if ((ddrctl & 0xc000) == 0x4000)
750 ret *= 2;
751 return ret;
752 #endif
753 BUG();
754 }
755
756 void __init setup_arch(char **cmdline_p)
757 {
758 unsigned long sclk, cclk;
759
760 #ifdef CONFIG_DUMMY_CONSOLE
761 conswitchp = &dummy_con;
762 #endif
763
764 #if defined(CONFIG_CMDLINE_BOOL)
765 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
766 command_line[sizeof(command_line) - 1] = 0;
767 #endif
768
769 /* Keep a copy of command line */
770 *cmdline_p = &command_line[0];
771 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
772 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
773
774 /* setup memory defaults from the user config */
775 physical_mem_end = 0;
776 _ramend = get_mem_size() * 1024 * 1024;
777
778 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
779
780 parse_cmdline_early(&command_line[0]);
781
782 if (physical_mem_end == 0)
783 physical_mem_end = _ramend;
784
785 memory_setup();
786
787 /* Initialize Async memory banks */
788 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
789 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
790 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
791 #ifdef CONFIG_EBIU_MBSCTLVAL
792 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
793 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
794 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
795 #endif
796
797 cclk = get_cclk();
798 sclk = get_sclk();
799
800 #if !defined(CONFIG_BFIN_KERNEL_CLOCK)
801 if (ANOMALY_05000273 && cclk == sclk)
802 panic("ANOMALY 05000273, SCLK can not be same as CCLK");
803 #endif
804
805 #ifdef BF561_FAMILY
806 if (ANOMALY_05000266) {
807 bfin_read_IMDMA_D0_IRQ_STATUS();
808 bfin_read_IMDMA_D1_IRQ_STATUS();
809 }
810 #endif
811 printk(KERN_INFO "Hardware Trace ");
812 if (bfin_read_TBUFCTL() & 0x1)
813 printk("Active ");
814 else
815 printk("Off ");
816 if (bfin_read_TBUFCTL() & 0x2)
817 printk("and Enabled\n");
818 else
819 printk("and Disabled\n");
820
821 #if defined(CONFIG_CHR_DEV_FLASH) || defined(CONFIG_BLK_DEV_FLASH)
822 /* we need to initialize the Flashrom device here since we might
823 * do things with flash early on in the boot
824 */
825 flash_probe();
826 #endif
827
828 _bfin_swrst = bfin_read_SWRST();
829
830 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
831 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
832 #endif
833 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
834 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
835 #endif
836
837 #ifdef CONFIG_SMP
838 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
839 #else
840 if (_bfin_swrst & RESET_DOUBLE) {
841 #endif
842 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
843 #ifdef CONFIG_DEBUG_DOUBLEFAULT
844 /* We assume the crashing kernel, and the current symbol table match */
845 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
846 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
847 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
848 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
849 #endif
850 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
851 init_retx);
852 } else if (_bfin_swrst & RESET_WDOG)
853 printk(KERN_INFO "Recovering from Watchdog event\n");
854 else if (_bfin_swrst & RESET_SOFTWARE)
855 printk(KERN_NOTICE "Reset caused by Software reset\n");
856
857 printk(KERN_INFO "Blackfin support (C) 2004-2008 Analog Devices, Inc.\n");
858 if (bfin_compiled_revid() == 0xffff)
859 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
860 else if (bfin_compiled_revid() == -1)
861 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
862 else
863 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
864
865 if (unlikely(CPUID != bfin_cpuid()))
866 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
867 CPU, bfin_cpuid(), bfin_revid());
868 else {
869 if (bfin_revid() != bfin_compiled_revid()) {
870 if (bfin_compiled_revid() == -1)
871 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
872 bfin_revid());
873 else if (bfin_compiled_revid() != 0xffff)
874 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
875 bfin_compiled_revid(), bfin_revid());
876 }
877 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
878 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
879 CPU, bfin_revid());
880 }
881
882 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
883
884 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
885 cclk / 1000000, sclk / 1000000);
886
887 if (ANOMALY_05000273 && (cclk >> 1) <= sclk)
888 printk("\n\n\nANOMALY_05000273: CCLK must be >= 2*SCLK !!!\n\n\n");
889
890 setup_bootmem_allocator();
891
892 paging_init();
893
894 /* Copy atomic sequences to their fixed location, and sanity check that
895 these locations are the ones that we advertise to userspace. */
896 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
897 FIXED_CODE_END - FIXED_CODE_START);
898 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
899 != SIGRETURN_STUB - FIXED_CODE_START);
900 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
901 != ATOMIC_XCHG32 - FIXED_CODE_START);
902 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
903 != ATOMIC_CAS32 - FIXED_CODE_START);
904 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
905 != ATOMIC_ADD32 - FIXED_CODE_START);
906 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
907 != ATOMIC_SUB32 - FIXED_CODE_START);
908 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
909 != ATOMIC_IOR32 - FIXED_CODE_START);
910 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
911 != ATOMIC_AND32 - FIXED_CODE_START);
912 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
913 != ATOMIC_XOR32 - FIXED_CODE_START);
914 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
915 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
916
917 #ifdef CONFIG_SMP
918 platform_init_cpus();
919 #endif
920 init_exception_vectors();
921 bfin_cache_init(); /* Initialize caches for the boot CPU */
922 }
923
924 static int __init topology_init(void)
925 {
926 unsigned int cpu;
927 /* Record CPU-private information for the boot processor. */
928 bfin_setup_cpudata(0);
929
930 for_each_possible_cpu(cpu) {
931 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
932 }
933
934 return 0;
935 }
936
937 subsys_initcall(topology_init);
938
939 /* Get the voltage input multiplier */
940 static u_long cached_vco_pll_ctl, cached_vco;
941 static u_long get_vco(void)
942 {
943 u_long msel;
944
945 u_long pll_ctl = bfin_read_PLL_CTL();
946 if (pll_ctl == cached_vco_pll_ctl)
947 return cached_vco;
948 else
949 cached_vco_pll_ctl = pll_ctl;
950
951 msel = (pll_ctl >> 9) & 0x3F;
952 if (0 == msel)
953 msel = 64;
954
955 cached_vco = CONFIG_CLKIN_HZ;
956 cached_vco >>= (1 & pll_ctl); /* DF bit */
957 cached_vco *= msel;
958 return cached_vco;
959 }
960
961 /* Get the Core clock */
962 static u_long cached_cclk_pll_div, cached_cclk;
963 u_long get_cclk(void)
964 {
965 u_long csel, ssel;
966
967 if (bfin_read_PLL_STAT() & 0x1)
968 return CONFIG_CLKIN_HZ;
969
970 ssel = bfin_read_PLL_DIV();
971 if (ssel == cached_cclk_pll_div)
972 return cached_cclk;
973 else
974 cached_cclk_pll_div = ssel;
975
976 csel = ((ssel >> 4) & 0x03);
977 ssel &= 0xf;
978 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
979 cached_cclk = get_vco() / ssel;
980 else
981 cached_cclk = get_vco() >> csel;
982 return cached_cclk;
983 }
984 EXPORT_SYMBOL(get_cclk);
985
986 /* Get the System clock */
987 static u_long cached_sclk_pll_div, cached_sclk;
988 u_long get_sclk(void)
989 {
990 u_long ssel;
991
992 if (bfin_read_PLL_STAT() & 0x1)
993 return CONFIG_CLKIN_HZ;
994
995 ssel = bfin_read_PLL_DIV();
996 if (ssel == cached_sclk_pll_div)
997 return cached_sclk;
998 else
999 cached_sclk_pll_div = ssel;
1000
1001 ssel &= 0xf;
1002 if (0 == ssel) {
1003 printk(KERN_WARNING "Invalid System Clock\n");
1004 ssel = 1;
1005 }
1006
1007 cached_sclk = get_vco() / ssel;
1008 return cached_sclk;
1009 }
1010 EXPORT_SYMBOL(get_sclk);
1011
1012 unsigned long sclk_to_usecs(unsigned long sclk)
1013 {
1014 u64 tmp = USEC_PER_SEC * (u64)sclk;
1015 do_div(tmp, get_sclk());
1016 return tmp;
1017 }
1018 EXPORT_SYMBOL(sclk_to_usecs);
1019
1020 unsigned long usecs_to_sclk(unsigned long usecs)
1021 {
1022 u64 tmp = get_sclk() * (u64)usecs;
1023 do_div(tmp, USEC_PER_SEC);
1024 return tmp;
1025 }
1026 EXPORT_SYMBOL(usecs_to_sclk);
1027
1028 /*
1029 * Get CPU information for use by the procfs.
1030 */
1031 static int show_cpuinfo(struct seq_file *m, void *v)
1032 {
1033 char *cpu, *mmu, *fpu, *vendor, *cache;
1034 uint32_t revid;
1035
1036 u_long sclk, cclk;
1037 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1038 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, *(unsigned int *)v);
1039
1040 cpu = CPU;
1041 mmu = "none";
1042 fpu = "none";
1043 revid = bfin_revid();
1044
1045 sclk = get_sclk();
1046 cclk = get_cclk();
1047
1048 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1049 case 0xca:
1050 vendor = "Analog Devices";
1051 break;
1052 default:
1053 vendor = "unknown";
1054 break;
1055 }
1056
1057 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n",
1058 *(unsigned int *)v, vendor);
1059
1060 if (CPUID == bfin_cpuid())
1061 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1062 else
1063 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1064 CPUID, bfin_cpuid());
1065
1066 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1067 "stepping\t: %d\n",
1068 cpu, cclk/1000000, sclk/1000000,
1069 #ifdef CONFIG_MPU
1070 "mpu on",
1071 #else
1072 "mpu off",
1073 #endif
1074 revid);
1075
1076 seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1077 cclk/1000000, cclk%1000000,
1078 sclk/1000000, sclk%1000000);
1079 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1080 "Calibration\t: %lu loops\n",
1081 (cpudata->loops_per_jiffy * HZ) / 500000,
1082 ((cpudata->loops_per_jiffy * HZ) / 5000) % 100,
1083 (cpudata->loops_per_jiffy * HZ));
1084
1085 /* Check Cache configutation */
1086 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1087 case ACACHE_BSRAM:
1088 cache = "dbank-A/B\t: cache/sram";
1089 dcache_size = 16;
1090 dsup_banks = 1;
1091 break;
1092 case ACACHE_BCACHE:
1093 cache = "dbank-A/B\t: cache/cache";
1094 dcache_size = 32;
1095 dsup_banks = 2;
1096 break;
1097 case ASRAM_BSRAM:
1098 cache = "dbank-A/B\t: sram/sram";
1099 dcache_size = 0;
1100 dsup_banks = 0;
1101 break;
1102 default:
1103 cache = "unknown";
1104 dcache_size = 0;
1105 dsup_banks = 0;
1106 break;
1107 }
1108
1109 /* Is it turned on? */
1110 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1111 dcache_size = 0;
1112
1113 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1114 icache_size = 0;
1115
1116 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1117 "%d KB(L1 dcache-%s) %d KB(L2 cache)\n",
1118 icache_size, dcache_size,
1119 #if defined CONFIG_BFIN_WB
1120 "wb"
1121 #elif defined CONFIG_BFIN_WT
1122 "wt"
1123 #endif
1124 "", 0);
1125
1126 seq_printf(m, "%s\n", cache);
1127
1128 if (icache_size)
1129 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1130 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1131 else
1132 seq_printf(m, "icache setup\t: off\n");
1133
1134 seq_printf(m,
1135 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1136 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1137 BFIN_DLINES);
1138 #ifdef __ARCH_SYNC_CORE_DCACHE
1139 seq_printf(m,
1140 "SMP Dcache Flushes\t: %lu\n\n",
1141 per_cpu(cpu_data, *(unsigned int *)v).dcache_invld_count);
1142 #endif
1143 #ifdef CONFIG_BFIN_ICACHE_LOCK
1144 switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1145 case WAY0_L:
1146 seq_printf(m, "Way0 Locked-Down\n");
1147 break;
1148 case WAY1_L:
1149 seq_printf(m, "Way1 Locked-Down\n");
1150 break;
1151 case WAY01_L:
1152 seq_printf(m, "Way0,Way1 Locked-Down\n");
1153 break;
1154 case WAY2_L:
1155 seq_printf(m, "Way2 Locked-Down\n");
1156 break;
1157 case WAY02_L:
1158 seq_printf(m, "Way0,Way2 Locked-Down\n");
1159 break;
1160 case WAY12_L:
1161 seq_printf(m, "Way1,Way2 Locked-Down\n");
1162 break;
1163 case WAY012_L:
1164 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1165 break;
1166 case WAY3_L:
1167 seq_printf(m, "Way3 Locked-Down\n");
1168 break;
1169 case WAY03_L:
1170 seq_printf(m, "Way0,Way3 Locked-Down\n");
1171 break;
1172 case WAY13_L:
1173 seq_printf(m, "Way1,Way3 Locked-Down\n");
1174 break;
1175 case WAY013_L:
1176 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1177 break;
1178 case WAY32_L:
1179 seq_printf(m, "Way3,Way2 Locked-Down\n");
1180 break;
1181 case WAY320_L:
1182 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1183 break;
1184 case WAY321_L:
1185 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1186 break;
1187 case WAYALL_L:
1188 seq_printf(m, "All Ways are locked\n");
1189 break;
1190 default:
1191 seq_printf(m, "No Ways are locked\n");
1192 }
1193 #endif
1194 if (*(unsigned int *)v != NR_CPUS-1)
1195 return 0;
1196
1197 #if L2_LENGTH
1198 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1199 #endif
1200 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1201 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1202 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1203 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1204 ((int)memory_end - (int)_stext) >> 10,
1205 _stext,
1206 (void *)memory_end);
1207 seq_printf(m, "\n");
1208
1209 return 0;
1210 }
1211
1212 static void *c_start(struct seq_file *m, loff_t *pos)
1213 {
1214 if (*pos == 0)
1215 *pos = first_cpu(cpu_online_map);
1216 if (*pos >= num_online_cpus())
1217 return NULL;
1218
1219 return pos;
1220 }
1221
1222 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1223 {
1224 *pos = next_cpu(*pos, cpu_online_map);
1225
1226 return c_start(m, pos);
1227 }
1228
1229 static void c_stop(struct seq_file *m, void *v)
1230 {
1231 }
1232
1233 const struct seq_operations cpuinfo_op = {
1234 .start = c_start,
1235 .next = c_next,
1236 .stop = c_stop,
1237 .show = show_cpuinfo,
1238 };
1239
1240 void __init cmdline_init(const char *r0)
1241 {
1242 if (r0)
1243 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1244 }