]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/blackfin/mach-bf561/atomic.S
Orangefs: merge to v4.5
[mirror_ubuntu-bionic-kernel.git] / arch / blackfin / mach-bf561 / atomic.S
1 /*
2 * Copyright 2007-2008 Analog Devices Inc.
3 * Philippe Gerum <rpm@xenomai.org>
4 *
5 * Licensed under the GPL-2 or later.
6 */
7
8 #include <linux/linkage.h>
9 #include <asm/blackfin.h>
10 #include <asm/cache.h>
11 #include <asm/asm-offsets.h>
12 #include <asm/rwlock.h>
13 #include <asm/cplb.h>
14
15 .text
16
17 .macro coreslot_loadaddr reg:req
18 \reg\().l = _corelock;
19 \reg\().h = _corelock;
20 .endm
21
22 .macro safe_testset addr:req, scratch:req
23 #if ANOMALY_05000477
24 cli \scratch;
25 testset (\addr);
26 sti \scratch;
27 #else
28 testset (\addr);
29 #endif
30 .endm
31
32 /*
33 * r0 = address of atomic data to flush and invalidate (32bit).
34 *
35 * Clear interrupts and return the old mask.
36 * We assume that no atomic data can span cachelines.
37 *
38 * Clobbers: r2:0, p0
39 */
40 ENTRY(_get_core_lock)
41 r1 = -L1_CACHE_BYTES;
42 r1 = r0 & r1;
43 cli r0;
44 coreslot_loadaddr p0;
45 .Lretry_corelock:
46 safe_testset p0, r2;
47 if cc jump .Ldone_corelock;
48 SSYNC(r2);
49 jump .Lretry_corelock
50 .Ldone_corelock:
51 p0 = r1;
52 /* flush core internal write buffer before invalidate dcache */
53 CSYNC(r2);
54 flushinv[p0];
55 SSYNC(r2);
56 rts;
57 ENDPROC(_get_core_lock)
58
59 /*
60 * r0 = address of atomic data in uncacheable memory region (32bit).
61 *
62 * Clear interrupts and return the old mask.
63 *
64 * Clobbers: r0, p0
65 */
66 ENTRY(_get_core_lock_noflush)
67 cli r0;
68 coreslot_loadaddr p0;
69 .Lretry_corelock_noflush:
70 safe_testset p0, r2;
71 if cc jump .Ldone_corelock_noflush;
72 SSYNC(r2);
73 jump .Lretry_corelock_noflush
74 .Ldone_corelock_noflush:
75 /*
76 * SMP kgdb runs into dead loop without NOP here, when one core
77 * single steps over get_core_lock_noflush and the other executes
78 * get_core_lock as a slave node.
79 */
80 nop;
81 CSYNC(r2);
82 rts;
83 ENDPROC(_get_core_lock_noflush)
84
85 /*
86 * r0 = interrupt mask to restore.
87 * r1 = address of atomic data to flush and invalidate (32bit).
88 *
89 * Interrupts are masked on entry (see _get_core_lock).
90 * Clobbers: r2:0, p0
91 */
92 ENTRY(_put_core_lock)
93 /* Write-through cache assumed, so no flush needed here. */
94 coreslot_loadaddr p0;
95 r1 = 0;
96 [p0] = r1;
97 SSYNC(r2);
98 sti r0;
99 rts;
100 ENDPROC(_put_core_lock)
101
102 #ifdef __ARCH_SYNC_CORE_DCACHE
103
104 ENTRY(___raw_smp_mark_barrier_asm)
105 [--sp] = rets;
106 [--sp] = ( r7:5 );
107 [--sp] = r0;
108 [--sp] = p1;
109 [--sp] = p0;
110 call _get_core_lock_noflush;
111
112 /*
113 * Calculate current core mask
114 */
115 GET_CPUID(p1, r7);
116 r6 = 1;
117 r6 <<= r7;
118
119 /*
120 * Set bit of other cores in barrier mask. Don't change current core bit.
121 */
122 p1.l = _barrier_mask;
123 p1.h = _barrier_mask;
124 r7 = [p1];
125 r5 = r7 & r6;
126 r7 = ~r6;
127 cc = r5 == 0;
128 if cc jump 1f;
129 r7 = r7 | r6;
130 1:
131 [p1] = r7;
132 SSYNC(r2);
133
134 call _put_core_lock;
135 p0 = [sp++];
136 p1 = [sp++];
137 r0 = [sp++];
138 ( r7:5 ) = [sp++];
139 rets = [sp++];
140 rts;
141 ENDPROC(___raw_smp_mark_barrier_asm)
142
143 ENTRY(___raw_smp_check_barrier_asm)
144 [--sp] = rets;
145 [--sp] = ( r7:5 );
146 [--sp] = r0;
147 [--sp] = p1;
148 [--sp] = p0;
149 call _get_core_lock_noflush;
150
151 /*
152 * Calculate current core mask
153 */
154 GET_CPUID(p1, r7);
155 r6 = 1;
156 r6 <<= r7;
157
158 /*
159 * Clear current core bit in barrier mask if it is set.
160 */
161 p1.l = _barrier_mask;
162 p1.h = _barrier_mask;
163 r7 = [p1];
164 r5 = r7 & r6;
165 cc = r5 == 0;
166 if cc jump 1f;
167 r6 = ~r6;
168 r7 = r7 & r6;
169 [p1] = r7;
170 SSYNC(r2);
171
172 call _put_core_lock;
173
174 /*
175 * Invalidate the entire D-cache of current core.
176 */
177 sp += -12;
178 call _resync_core_dcache
179 sp += 12;
180 jump 2f;
181 1:
182 call _put_core_lock;
183 2:
184 p0 = [sp++];
185 p1 = [sp++];
186 r0 = [sp++];
187 ( r7:5 ) = [sp++];
188 rets = [sp++];
189 rts;
190 ENDPROC(___raw_smp_check_barrier_asm)
191
192 /*
193 * r0 = irqflags
194 * r1 = address of atomic data
195 *
196 * Clobbers: r2:0, p1:0
197 */
198 _start_lock_coherent:
199
200 [--sp] = rets;
201 [--sp] = ( r7:6 );
202 r7 = r0;
203 p1 = r1;
204
205 /*
206 * Determine whether the atomic data was previously
207 * owned by another CPU (=r6).
208 */
209 GET_CPUID(p0, r2);
210 r1 = 1;
211 r1 <<= r2;
212 r2 = ~r1;
213
214 r1 = [p1];
215 r1 >>= 28; /* CPU fingerprints are stored in the high nibble. */
216 r6 = r1 & r2;
217 r1 = [p1];
218 r1 <<= 4;
219 r1 >>= 4;
220 [p1] = r1;
221
222 /*
223 * Release the core lock now, but keep IRQs disabled while we are
224 * performing the remaining housekeeping chores for the current CPU.
225 */
226 coreslot_loadaddr p0;
227 r1 = 0;
228 [p0] = r1;
229
230 /*
231 * If another CPU has owned the same atomic section before us,
232 * then our D-cached copy of the shared data protected by the
233 * current spin/write_lock may be obsolete.
234 */
235 cc = r6 == 0;
236 if cc jump .Lcache_synced
237
238 /*
239 * Invalidate the entire D-cache of the current core.
240 */
241 sp += -12;
242 call _resync_core_dcache
243 sp += 12;
244
245 .Lcache_synced:
246 SSYNC(r2);
247 sti r7;
248 ( r7:6 ) = [sp++];
249 rets = [sp++];
250 rts
251
252 /*
253 * r0 = irqflags
254 * r1 = address of atomic data
255 *
256 * Clobbers: r2:0, p1:0
257 */
258 _end_lock_coherent:
259
260 p1 = r1;
261 GET_CPUID(p0, r2);
262 r2 += 28;
263 r1 = 1;
264 r1 <<= r2;
265 r2 = [p1];
266 r2 = r1 | r2;
267 [p1] = r2;
268 r1 = p1;
269 jump _put_core_lock;
270
271 #endif /* __ARCH_SYNC_CORE_DCACHE */
272
273 /*
274 * r0 = &spinlock->lock
275 *
276 * Clobbers: r3:0, p1:0
277 */
278 ENTRY(___raw_spin_is_locked_asm)
279 p1 = r0;
280 [--sp] = rets;
281 call _get_core_lock;
282 r3 = [p1];
283 cc = bittst( r3, 0 );
284 r3 = cc;
285 r1 = p1;
286 call _put_core_lock;
287 rets = [sp++];
288 r0 = r3;
289 rts;
290 ENDPROC(___raw_spin_is_locked_asm)
291
292 /*
293 * r0 = &spinlock->lock
294 *
295 * Clobbers: r3:0, p1:0
296 */
297 ENTRY(___raw_spin_lock_asm)
298 p1 = r0;
299 [--sp] = rets;
300 .Lretry_spinlock:
301 call _get_core_lock;
302 r1 = p1;
303 r2 = [p1];
304 cc = bittst( r2, 0 );
305 if cc jump .Lbusy_spinlock
306 #ifdef __ARCH_SYNC_CORE_DCACHE
307 r3 = p1;
308 bitset ( r2, 0 ); /* Raise the lock bit. */
309 [p1] = r2;
310 call _start_lock_coherent
311 #else
312 r2 = 1;
313 [p1] = r2;
314 call _put_core_lock;
315 #endif
316 rets = [sp++];
317 rts;
318
319 .Lbusy_spinlock:
320 /* We don't touch the atomic area if busy, so that flush
321 will behave like nop in _put_core_lock. */
322 call _put_core_lock;
323 SSYNC(r2);
324 r0 = p1;
325 jump .Lretry_spinlock
326 ENDPROC(___raw_spin_lock_asm)
327
328 /*
329 * r0 = &spinlock->lock
330 *
331 * Clobbers: r3:0, p1:0
332 */
333 ENTRY(___raw_spin_trylock_asm)
334 p1 = r0;
335 [--sp] = rets;
336 call _get_core_lock;
337 r1 = p1;
338 r3 = [p1];
339 cc = bittst( r3, 0 );
340 if cc jump .Lfailed_trylock
341 #ifdef __ARCH_SYNC_CORE_DCACHE
342 bitset ( r3, 0 ); /* Raise the lock bit. */
343 [p1] = r3;
344 call _start_lock_coherent
345 #else
346 r2 = 1;
347 [p1] = r2;
348 call _put_core_lock;
349 #endif
350 r0 = 1;
351 rets = [sp++];
352 rts;
353 .Lfailed_trylock:
354 call _put_core_lock;
355 r0 = 0;
356 rets = [sp++];
357 rts;
358 ENDPROC(___raw_spin_trylock_asm)
359
360 /*
361 * r0 = &spinlock->lock
362 *
363 * Clobbers: r2:0, p1:0
364 */
365 ENTRY(___raw_spin_unlock_asm)
366 p1 = r0;
367 [--sp] = rets;
368 call _get_core_lock;
369 r2 = [p1];
370 bitclr ( r2, 0 );
371 [p1] = r2;
372 r1 = p1;
373 #ifdef __ARCH_SYNC_CORE_DCACHE
374 call _end_lock_coherent
375 #else
376 call _put_core_lock;
377 #endif
378 rets = [sp++];
379 rts;
380 ENDPROC(___raw_spin_unlock_asm)
381
382 /*
383 * r0 = &rwlock->lock
384 *
385 * Clobbers: r2:0, p1:0
386 */
387 ENTRY(___raw_read_lock_asm)
388 p1 = r0;
389 [--sp] = rets;
390 call _get_core_lock;
391 .Lrdlock_try:
392 r1 = [p1];
393 r1 += -1;
394 [p1] = r1;
395 cc = r1 < 0;
396 if cc jump .Lrdlock_failed
397 r1 = p1;
398 #ifdef __ARCH_SYNC_CORE_DCACHE
399 call _start_lock_coherent
400 #else
401 call _put_core_lock;
402 #endif
403 rets = [sp++];
404 rts;
405
406 .Lrdlock_failed:
407 r1 += 1;
408 [p1] = r1;
409 .Lrdlock_wait:
410 r1 = p1;
411 call _put_core_lock;
412 SSYNC(r2);
413 r0 = p1;
414 call _get_core_lock;
415 r1 = [p1];
416 cc = r1 < 2;
417 if cc jump .Lrdlock_wait;
418 jump .Lrdlock_try
419 ENDPROC(___raw_read_lock_asm)
420
421 /*
422 * r0 = &rwlock->lock
423 *
424 * Clobbers: r3:0, p1:0
425 */
426 ENTRY(___raw_read_trylock_asm)
427 p1 = r0;
428 [--sp] = rets;
429 call _get_core_lock;
430 r1 = [p1];
431 cc = r1 <= 0;
432 if cc jump .Lfailed_tryrdlock;
433 r1 += -1;
434 [p1] = r1;
435 r1 = p1;
436 #ifdef __ARCH_SYNC_CORE_DCACHE
437 call _start_lock_coherent
438 #else
439 call _put_core_lock;
440 #endif
441 rets = [sp++];
442 r0 = 1;
443 rts;
444 .Lfailed_tryrdlock:
445 r1 = p1;
446 call _put_core_lock;
447 rets = [sp++];
448 r0 = 0;
449 rts;
450 ENDPROC(___raw_read_trylock_asm)
451
452 /*
453 * r0 = &rwlock->lock
454 *
455 * Note: Processing controlled by a reader lock should not have
456 * any side-effect on cache issues with the other core, so we
457 * just release the core lock and exit (no _end_lock_coherent).
458 *
459 * Clobbers: r3:0, p1:0
460 */
461 ENTRY(___raw_read_unlock_asm)
462 p1 = r0;
463 [--sp] = rets;
464 call _get_core_lock;
465 r1 = [p1];
466 r1 += 1;
467 [p1] = r1;
468 r1 = p1;
469 call _put_core_lock;
470 rets = [sp++];
471 rts;
472 ENDPROC(___raw_read_unlock_asm)
473
474 /*
475 * r0 = &rwlock->lock
476 *
477 * Clobbers: r3:0, p1:0
478 */
479 ENTRY(___raw_write_lock_asm)
480 p1 = r0;
481 r3.l = lo(RW_LOCK_BIAS);
482 r3.h = hi(RW_LOCK_BIAS);
483 [--sp] = rets;
484 call _get_core_lock;
485 .Lwrlock_try:
486 r1 = [p1];
487 r1 = r1 - r3;
488 #ifdef __ARCH_SYNC_CORE_DCACHE
489 r2 = r1;
490 r2 <<= 4;
491 r2 >>= 4;
492 cc = r2 == 0;
493 #else
494 cc = r1 == 0;
495 #endif
496 if !cc jump .Lwrlock_wait
497 [p1] = r1;
498 r1 = p1;
499 #ifdef __ARCH_SYNC_CORE_DCACHE
500 call _start_lock_coherent
501 #else
502 call _put_core_lock;
503 #endif
504 rets = [sp++];
505 rts;
506
507 .Lwrlock_wait:
508 r1 = p1;
509 call _put_core_lock;
510 SSYNC(r2);
511 r0 = p1;
512 call _get_core_lock;
513 r1 = [p1];
514 #ifdef __ARCH_SYNC_CORE_DCACHE
515 r1 <<= 4;
516 r1 >>= 4;
517 #endif
518 cc = r1 == r3;
519 if !cc jump .Lwrlock_wait;
520 jump .Lwrlock_try
521 ENDPROC(___raw_write_lock_asm)
522
523 /*
524 * r0 = &rwlock->lock
525 *
526 * Clobbers: r3:0, p1:0
527 */
528 ENTRY(___raw_write_trylock_asm)
529 p1 = r0;
530 [--sp] = rets;
531 call _get_core_lock;
532 r1 = [p1];
533 r2.l = lo(RW_LOCK_BIAS);
534 r2.h = hi(RW_LOCK_BIAS);
535 cc = r1 == r2;
536 if !cc jump .Lfailed_trywrlock;
537 #ifdef __ARCH_SYNC_CORE_DCACHE
538 r1 >>= 28;
539 r1 <<= 28;
540 #else
541 r1 = 0;
542 #endif
543 [p1] = r1;
544 r1 = p1;
545 #ifdef __ARCH_SYNC_CORE_DCACHE
546 call _start_lock_coherent
547 #else
548 call _put_core_lock;
549 #endif
550 rets = [sp++];
551 r0 = 1;
552 rts;
553
554 .Lfailed_trywrlock:
555 r1 = p1;
556 call _put_core_lock;
557 rets = [sp++];
558 r0 = 0;
559 rts;
560 ENDPROC(___raw_write_trylock_asm)
561
562 /*
563 * r0 = &rwlock->lock
564 *
565 * Clobbers: r3:0, p1:0
566 */
567 ENTRY(___raw_write_unlock_asm)
568 p1 = r0;
569 r3.l = lo(RW_LOCK_BIAS);
570 r3.h = hi(RW_LOCK_BIAS);
571 [--sp] = rets;
572 call _get_core_lock;
573 r1 = [p1];
574 r1 = r1 + r3;
575 [p1] = r1;
576 r1 = p1;
577 #ifdef __ARCH_SYNC_CORE_DCACHE
578 call _end_lock_coherent
579 #else
580 call _put_core_lock;
581 #endif
582 rets = [sp++];
583 rts;
584 ENDPROC(___raw_write_unlock_asm)
585
586 /*
587 * r0 = ptr
588 * r1 = value
589 *
590 * ADD a signed value to a 32bit word and return the new value atomically.
591 * Clobbers: r3:0, p1:0
592 */
593 ENTRY(___raw_atomic_add_asm)
594 p1 = r0;
595 r3 = r1;
596 [--sp] = rets;
597 call _get_core_lock;
598 r2 = [p1];
599 r3 = r3 + r2;
600 [p1] = r3;
601 r1 = p1;
602 call _put_core_lock;
603 r0 = r3;
604 rets = [sp++];
605 rts;
606 ENDPROC(___raw_atomic_add_asm)
607
608 /*
609 * r0 = ptr
610 * r1 = mask
611 *
612 * AND the mask bits from a 32bit word and return the old 32bit value
613 * atomically.
614 * Clobbers: r3:0, p1:0
615 */
616 ENTRY(___raw_atomic_and_asm)
617 p1 = r0;
618 r3 = r1;
619 [--sp] = rets;
620 call _get_core_lock;
621 r2 = [p1];
622 r3 = r2 & r3;
623 [p1] = r3;
624 r3 = r2;
625 r1 = p1;
626 call _put_core_lock;
627 r0 = r3;
628 rets = [sp++];
629 rts;
630 ENDPROC(___raw_atomic_and_asm)
631
632 /*
633 * r0 = ptr
634 * r1 = mask
635 *
636 * OR the mask bits into a 32bit word and return the old 32bit value
637 * atomically.
638 * Clobbers: r3:0, p1:0
639 */
640 ENTRY(___raw_atomic_or_asm)
641 p1 = r0;
642 r3 = r1;
643 [--sp] = rets;
644 call _get_core_lock;
645 r2 = [p1];
646 r3 = r2 | r3;
647 [p1] = r3;
648 r3 = r2;
649 r1 = p1;
650 call _put_core_lock;
651 r0 = r3;
652 rets = [sp++];
653 rts;
654 ENDPROC(___raw_atomic_or_asm)
655
656 /*
657 * r0 = ptr
658 * r1 = mask
659 *
660 * XOR the mask bits with a 32bit word and return the old 32bit value
661 * atomically.
662 * Clobbers: r3:0, p1:0
663 */
664 ENTRY(___raw_atomic_xor_asm)
665 p1 = r0;
666 r3 = r1;
667 [--sp] = rets;
668 call _get_core_lock;
669 r2 = [p1];
670 r3 = r2 ^ r3;
671 [p1] = r3;
672 r3 = r2;
673 r1 = p1;
674 call _put_core_lock;
675 r0 = r3;
676 rets = [sp++];
677 rts;
678 ENDPROC(___raw_atomic_xor_asm)
679
680 /*
681 * r0 = ptr
682 * r1 = mask
683 *
684 * Perform a logical AND between the mask bits and a 32bit word, and
685 * return the masked value. We need this on this architecture in
686 * order to invalidate the local cache before testing.
687 *
688 * Clobbers: r3:0, p1:0
689 */
690 ENTRY(___raw_atomic_test_asm)
691 p1 = r0;
692 r3 = r1;
693 r1 = -L1_CACHE_BYTES;
694 r1 = r0 & r1;
695 p0 = r1;
696 /* flush core internal write buffer before invalidate dcache */
697 CSYNC(r2);
698 flushinv[p0];
699 SSYNC(r2);
700 r0 = [p1];
701 r0 = r0 & r3;
702 rts;
703 ENDPROC(___raw_atomic_test_asm)
704
705 /*
706 * r0 = ptr
707 * r1 = value
708 *
709 * Swap *ptr with value and return the old 32bit value atomically.
710 * Clobbers: r3:0, p1:0
711 */
712 #define __do_xchg(src, dst) \
713 p1 = r0; \
714 r3 = r1; \
715 [--sp] = rets; \
716 call _get_core_lock; \
717 r2 = src; \
718 dst = r3; \
719 r3 = r2; \
720 r1 = p1; \
721 call _put_core_lock; \
722 r0 = r3; \
723 rets = [sp++]; \
724 rts;
725
726 ENTRY(___raw_xchg_1_asm)
727 __do_xchg(b[p1] (z), b[p1])
728 ENDPROC(___raw_xchg_1_asm)
729
730 ENTRY(___raw_xchg_2_asm)
731 __do_xchg(w[p1] (z), w[p1])
732 ENDPROC(___raw_xchg_2_asm)
733
734 ENTRY(___raw_xchg_4_asm)
735 __do_xchg([p1], [p1])
736 ENDPROC(___raw_xchg_4_asm)
737
738 /*
739 * r0 = ptr
740 * r1 = new
741 * r2 = old
742 *
743 * Swap *ptr with new if *ptr == old and return the previous *ptr
744 * value atomically.
745 *
746 * Clobbers: r3:0, p1:0
747 */
748 #define __do_cmpxchg(src, dst) \
749 [--sp] = rets; \
750 [--sp] = r4; \
751 p1 = r0; \
752 r3 = r1; \
753 r4 = r2; \
754 call _get_core_lock; \
755 r2 = src; \
756 cc = r2 == r4; \
757 if !cc jump 1f; \
758 dst = r3; \
759 1: r3 = r2; \
760 r1 = p1; \
761 call _put_core_lock; \
762 r0 = r3; \
763 r4 = [sp++]; \
764 rets = [sp++]; \
765 rts;
766
767 ENTRY(___raw_cmpxchg_1_asm)
768 __do_cmpxchg(b[p1] (z), b[p1])
769 ENDPROC(___raw_cmpxchg_1_asm)
770
771 ENTRY(___raw_cmpxchg_2_asm)
772 __do_cmpxchg(w[p1] (z), w[p1])
773 ENDPROC(___raw_cmpxchg_2_asm)
774
775 ENTRY(___raw_cmpxchg_4_asm)
776 __do_cmpxchg([p1], [p1])
777 ENDPROC(___raw_cmpxchg_4_asm)
778
779 /*
780 * r0 = ptr
781 * r1 = bitnr
782 *
783 * Set a bit in a 32bit word and return the old 32bit value atomically.
784 * Clobbers: r3:0, p1:0
785 */
786 ENTRY(___raw_bit_set_asm)
787 r2 = r1;
788 r1 = 1;
789 r1 <<= r2;
790 jump ___raw_atomic_or_asm
791 ENDPROC(___raw_bit_set_asm)
792
793 /*
794 * r0 = ptr
795 * r1 = bitnr
796 *
797 * Clear a bit in a 32bit word and return the old 32bit value atomically.
798 * Clobbers: r3:0, p1:0
799 */
800 ENTRY(___raw_bit_clear_asm)
801 r2 = 1;
802 r2 <<= r1;
803 r1 = ~r2;
804 jump ___raw_atomic_and_asm
805 ENDPROC(___raw_bit_clear_asm)
806
807 /*
808 * r0 = ptr
809 * r1 = bitnr
810 *
811 * Toggle a bit in a 32bit word and return the old 32bit value atomically.
812 * Clobbers: r3:0, p1:0
813 */
814 ENTRY(___raw_bit_toggle_asm)
815 r2 = r1;
816 r1 = 1;
817 r1 <<= r2;
818 jump ___raw_atomic_xor_asm
819 ENDPROC(___raw_bit_toggle_asm)
820
821 /*
822 * r0 = ptr
823 * r1 = bitnr
824 *
825 * Test-and-set a bit in a 32bit word and return the old bit value atomically.
826 * Clobbers: r3:0, p1:0
827 */
828 ENTRY(___raw_bit_test_set_asm)
829 [--sp] = rets;
830 [--sp] = r1;
831 call ___raw_bit_set_asm
832 r1 = [sp++];
833 r2 = 1;
834 r2 <<= r1;
835 r0 = r0 & r2;
836 cc = r0 == 0;
837 if cc jump 1f
838 r0 = 1;
839 1:
840 rets = [sp++];
841 rts;
842 ENDPROC(___raw_bit_test_set_asm)
843
844 /*
845 * r0 = ptr
846 * r1 = bitnr
847 *
848 * Test-and-clear a bit in a 32bit word and return the old bit value atomically.
849 * Clobbers: r3:0, p1:0
850 */
851 ENTRY(___raw_bit_test_clear_asm)
852 [--sp] = rets;
853 [--sp] = r1;
854 call ___raw_bit_clear_asm
855 r1 = [sp++];
856 r2 = 1;
857 r2 <<= r1;
858 r0 = r0 & r2;
859 cc = r0 == 0;
860 if cc jump 1f
861 r0 = 1;
862 1:
863 rets = [sp++];
864 rts;
865 ENDPROC(___raw_bit_test_clear_asm)
866
867 /*
868 * r0 = ptr
869 * r1 = bitnr
870 *
871 * Test-and-toggle a bit in a 32bit word,
872 * and return the old bit value atomically.
873 * Clobbers: r3:0, p1:0
874 */
875 ENTRY(___raw_bit_test_toggle_asm)
876 [--sp] = rets;
877 [--sp] = r1;
878 call ___raw_bit_toggle_asm
879 r1 = [sp++];
880 r2 = 1;
881 r2 <<= r1;
882 r0 = r0 & r2;
883 cc = r0 == 0;
884 if cc jump 1f
885 r0 = 1;
886 1:
887 rets = [sp++];
888 rts;
889 ENDPROC(___raw_bit_test_toggle_asm)
890
891 /*
892 * r0 = ptr
893 * r1 = bitnr
894 *
895 * Test a bit in a 32bit word and return its value.
896 * We need this on this architecture in order to invalidate
897 * the local cache before testing.
898 *
899 * Clobbers: r3:0, p1:0
900 */
901 ENTRY(___raw_bit_test_asm)
902 r2 = r1;
903 r1 = 1;
904 r1 <<= r2;
905 jump ___raw_atomic_test_asm
906 ENDPROC(___raw_bit_test_asm)
907
908 /*
909 * r0 = ptr
910 *
911 * Fetch and return an uncached 32bit value.
912 *
913 * Clobbers: r2:0, p1:0
914 */
915 ENTRY(___raw_uncached_fetch_asm)
916 p1 = r0;
917 r1 = -L1_CACHE_BYTES;
918 r1 = r0 & r1;
919 p0 = r1;
920 /* flush core internal write buffer before invalidate dcache */
921 CSYNC(r2);
922 flushinv[p0];
923 SSYNC(r2);
924 r0 = [p1];
925 rts;
926 ENDPROC(___raw_uncached_fetch_asm)