]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/blackfin/mach-common/ints-priority.c
fault-inject: add ratelimit option
[mirror_ubuntu-artful-kernel.git] / arch / blackfin / mach-common / ints-priority.c
1 /*
2 * Set up the interrupt priorities
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 * 2003 Bas Vermeulen <bas@buyways.nl>
6 * 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7 * 2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8 * 1999 D. Jeff Dionne <jeff@uclinux.org>
9 * 1996 Roman Zippel
10 *
11 * Licensed under the GPL-2
12 */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/syscore_ops.h>
20 #include <asm/delay.h>
21 #ifdef CONFIG_IPIPE
22 #include <linux/ipipe.h>
23 #endif
24 #include <asm/traps.h>
25 #include <asm/blackfin.h>
26 #include <asm/gpio.h>
27 #include <asm/irq_handler.h>
28 #include <asm/dpmc.h>
29 #include <asm/traps.h>
30
31 /*
32 * NOTES:
33 * - we have separated the physical Hardware interrupt from the
34 * levels that the LINUX kernel sees (see the description in irq.h)
35 * -
36 */
37
38 #ifndef CONFIG_SMP
39 /* Initialize this to an actual value to force it into the .data
40 * section so that we know it is properly initialized at entry into
41 * the kernel but before bss is initialized to zero (which is where
42 * it would live otherwise). The 0x1f magic represents the IRQs we
43 * cannot actually mask out in hardware.
44 */
45 unsigned long bfin_irq_flags = 0x1f;
46 EXPORT_SYMBOL(bfin_irq_flags);
47 #endif
48
49 #ifdef CONFIG_PM
50 unsigned long bfin_sic_iwr[3]; /* Up to 3 SIC_IWRx registers */
51 unsigned vr_wakeup;
52 #endif
53
54 #ifndef SEC_GCTL
55 static struct ivgx {
56 /* irq number for request_irq, available in mach-bf5xx/irq.h */
57 unsigned int irqno;
58 /* corresponding bit in the SIC_ISR register */
59 unsigned int isrflag;
60 } ivg_table[NR_PERI_INTS];
61
62 static struct ivg_slice {
63 /* position of first irq in ivg_table for given ivg */
64 struct ivgx *ifirst;
65 struct ivgx *istop;
66 } ivg7_13[IVG13 - IVG7 + 1];
67
68
69 /*
70 * Search SIC_IAR and fill tables with the irqvalues
71 * and their positions in the SIC_ISR register.
72 */
73 static void __init search_IAR(void)
74 {
75 unsigned ivg, irq_pos = 0;
76 for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
77 int irqN;
78
79 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
80
81 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
82 int irqn;
83 u32 iar =
84 bfin_read32((unsigned long *)SIC_IAR0 +
85 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
86 defined(CONFIG_BF538) || defined(CONFIG_BF539)
87 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
88 #else
89 (irqN >> 3)
90 #endif
91 );
92 for (irqn = irqN; irqn < irqN + 4; ++irqn) {
93 int iar_shift = (irqn & 7) * 4;
94 if (ivg == (0xf & (iar >> iar_shift))) {
95 ivg_table[irq_pos].irqno = IVG7 + irqn;
96 ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
97 ivg7_13[ivg].istop++;
98 irq_pos++;
99 }
100 }
101 }
102 }
103 }
104 #endif
105
106 /*
107 * This is for core internal IRQs
108 */
109 void bfin_ack_noop(struct irq_data *d)
110 {
111 /* Dummy function. */
112 }
113
114 static void bfin_core_mask_irq(struct irq_data *d)
115 {
116 bfin_irq_flags &= ~(1 << d->irq);
117 if (!hard_irqs_disabled())
118 hard_local_irq_enable();
119 }
120
121 static void bfin_core_unmask_irq(struct irq_data *d)
122 {
123 bfin_irq_flags |= 1 << d->irq;
124 /*
125 * If interrupts are enabled, IMASK must contain the same value
126 * as bfin_irq_flags. Make sure that invariant holds. If interrupts
127 * are currently disabled we need not do anything; one of the
128 * callers will take care of setting IMASK to the proper value
129 * when reenabling interrupts.
130 * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
131 * what we need.
132 */
133 if (!hard_irqs_disabled())
134 hard_local_irq_enable();
135 return;
136 }
137
138 #ifndef SEC_GCTL
139 void bfin_internal_mask_irq(unsigned int irq)
140 {
141 unsigned long flags = hard_local_irq_save();
142 #ifdef SIC_IMASK0
143 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
144 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
145 bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
146 ~(1 << mask_bit));
147 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
148 bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
149 ~(1 << mask_bit));
150 # endif
151 #else
152 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
153 ~(1 << BFIN_SYSIRQ(irq)));
154 #endif /* end of SIC_IMASK0 */
155 hard_local_irq_restore(flags);
156 }
157
158 static void bfin_internal_mask_irq_chip(struct irq_data *d)
159 {
160 bfin_internal_mask_irq(d->irq);
161 }
162
163 #ifdef CONFIG_SMP
164 void bfin_internal_unmask_irq_affinity(unsigned int irq,
165 const struct cpumask *affinity)
166 #else
167 void bfin_internal_unmask_irq(unsigned int irq)
168 #endif
169 {
170 unsigned long flags = hard_local_irq_save();
171
172 #ifdef SIC_IMASK0
173 unsigned mask_bank = BFIN_SYSIRQ(irq) / 32;
174 unsigned mask_bit = BFIN_SYSIRQ(irq) % 32;
175 # ifdef CONFIG_SMP
176 if (cpumask_test_cpu(0, affinity))
177 # endif
178 bfin_write_SIC_IMASK(mask_bank,
179 bfin_read_SIC_IMASK(mask_bank) |
180 (1 << mask_bit));
181 # ifdef CONFIG_SMP
182 if (cpumask_test_cpu(1, affinity))
183 bfin_write_SICB_IMASK(mask_bank,
184 bfin_read_SICB_IMASK(mask_bank) |
185 (1 << mask_bit));
186 # endif
187 #else
188 bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
189 (1 << BFIN_SYSIRQ(irq)));
190 #endif
191 hard_local_irq_restore(flags);
192 }
193
194 #ifdef CONFIG_SMP
195 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
196 {
197 bfin_internal_unmask_irq_affinity(d->irq, d->affinity);
198 }
199
200 static int bfin_internal_set_affinity(struct irq_data *d,
201 const struct cpumask *mask, bool force)
202 {
203 bfin_internal_mask_irq(d->irq);
204 bfin_internal_unmask_irq_affinity(d->irq, mask);
205
206 return 0;
207 }
208 #else
209 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
210 {
211 bfin_internal_unmask_irq(d->irq);
212 }
213 #endif
214
215 #if defined(CONFIG_PM)
216 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
217 {
218 u32 bank, bit, wakeup = 0;
219 unsigned long flags;
220 bank = BFIN_SYSIRQ(irq) / 32;
221 bit = BFIN_SYSIRQ(irq) % 32;
222
223 switch (irq) {
224 #ifdef IRQ_RTC
225 case IRQ_RTC:
226 wakeup |= WAKE;
227 break;
228 #endif
229 #ifdef IRQ_CAN0_RX
230 case IRQ_CAN0_RX:
231 wakeup |= CANWE;
232 break;
233 #endif
234 #ifdef IRQ_CAN1_RX
235 case IRQ_CAN1_RX:
236 wakeup |= CANWE;
237 break;
238 #endif
239 #ifdef IRQ_USB_INT0
240 case IRQ_USB_INT0:
241 wakeup |= USBWE;
242 break;
243 #endif
244 #ifdef CONFIG_BF54x
245 case IRQ_CNT:
246 wakeup |= ROTWE;
247 break;
248 #endif
249 default:
250 break;
251 }
252
253 flags = hard_local_irq_save();
254
255 if (state) {
256 bfin_sic_iwr[bank] |= (1 << bit);
257 vr_wakeup |= wakeup;
258
259 } else {
260 bfin_sic_iwr[bank] &= ~(1 << bit);
261 vr_wakeup &= ~wakeup;
262 }
263
264 hard_local_irq_restore(flags);
265
266 return 0;
267 }
268
269 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
270 {
271 return bfin_internal_set_wake(d->irq, state);
272 }
273 #else
274 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
275 {
276 return 0;
277 }
278 # define bfin_internal_set_wake_chip NULL
279 #endif
280
281 #else /* SEC_GCTL */
282 static void bfin_sec_preflow_handler(struct irq_data *d)
283 {
284 unsigned long flags = hard_local_irq_save();
285 unsigned int sid = BFIN_SYSIRQ(d->irq);
286
287 bfin_write_SEC_SCI(0, SEC_CSID, sid);
288
289 hard_local_irq_restore(flags);
290 }
291
292 static void bfin_sec_mask_ack_irq(struct irq_data *d)
293 {
294 unsigned long flags = hard_local_irq_save();
295 unsigned int sid = BFIN_SYSIRQ(d->irq);
296
297 bfin_write_SEC_SCI(0, SEC_CSID, sid);
298
299 hard_local_irq_restore(flags);
300 }
301
302 static void bfin_sec_unmask_irq(struct irq_data *d)
303 {
304 unsigned long flags = hard_local_irq_save();
305 unsigned int sid = BFIN_SYSIRQ(d->irq);
306
307 bfin_write32(SEC_END, sid);
308
309 hard_local_irq_restore(flags);
310 }
311
312 static void bfin_sec_enable_ssi(unsigned int sid)
313 {
314 unsigned long flags = hard_local_irq_save();
315 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
316
317 reg_sctl |= SEC_SCTL_SRC_EN;
318 bfin_write_SEC_SCTL(sid, reg_sctl);
319
320 hard_local_irq_restore(flags);
321 }
322
323 static void bfin_sec_disable_ssi(unsigned int sid)
324 {
325 unsigned long flags = hard_local_irq_save();
326 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
327
328 reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
329 bfin_write_SEC_SCTL(sid, reg_sctl);
330
331 hard_local_irq_restore(flags);
332 }
333
334 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
335 {
336 unsigned long flags = hard_local_irq_save();
337 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
338
339 reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
340 bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
341
342 hard_local_irq_restore(flags);
343 }
344
345 static void bfin_sec_enable_sci(unsigned int sid)
346 {
347 unsigned long flags = hard_local_irq_save();
348 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
349
350 if (sid == BFIN_SYSIRQ(IRQ_WATCH0))
351 reg_sctl |= SEC_SCTL_FAULT_EN;
352 else
353 reg_sctl |= SEC_SCTL_INT_EN;
354 bfin_write_SEC_SCTL(sid, reg_sctl);
355
356 hard_local_irq_restore(flags);
357 }
358
359 static void bfin_sec_disable_sci(unsigned int sid)
360 {
361 unsigned long flags = hard_local_irq_save();
362 uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
363
364 reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
365 bfin_write_SEC_SCTL(sid, reg_sctl);
366
367 hard_local_irq_restore(flags);
368 }
369
370 static void bfin_sec_enable(struct irq_data *d)
371 {
372 unsigned long flags = hard_local_irq_save();
373 unsigned int sid = BFIN_SYSIRQ(d->irq);
374
375 bfin_sec_enable_sci(sid);
376 bfin_sec_enable_ssi(sid);
377
378 hard_local_irq_restore(flags);
379 }
380
381 static void bfin_sec_disable(struct irq_data *d)
382 {
383 unsigned long flags = hard_local_irq_save();
384 unsigned int sid = BFIN_SYSIRQ(d->irq);
385
386 bfin_sec_disable_sci(sid);
387 bfin_sec_disable_ssi(sid);
388
389 hard_local_irq_restore(flags);
390 }
391
392 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
393 {
394 unsigned long flags = hard_local_irq_save();
395 uint32_t reg_sctl;
396 int i;
397
398 bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
399
400 for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
401 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
402 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
403 bfin_write_SEC_SCTL(i, reg_sctl);
404 }
405
406 hard_local_irq_restore(flags);
407 }
408
409 void bfin_sec_raise_irq(unsigned int irq)
410 {
411 unsigned long flags = hard_local_irq_save();
412 unsigned int sid = BFIN_SYSIRQ(irq);
413
414 bfin_write32(SEC_RAISE, sid);
415
416 hard_local_irq_restore(flags);
417 }
418
419 static void init_software_driven_irq(void)
420 {
421 bfin_sec_set_ssi_coreid(34, 0);
422 bfin_sec_set_ssi_coreid(35, 1);
423
424 bfin_sec_enable_sci(35);
425 bfin_sec_enable_ssi(35);
426 bfin_sec_set_ssi_coreid(36, 0);
427 bfin_sec_set_ssi_coreid(37, 1);
428 bfin_sec_enable_sci(37);
429 bfin_sec_enable_ssi(37);
430 }
431
432 void bfin_sec_resume(void)
433 {
434 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
435 udelay(100);
436 bfin_write_SEC_GCTL(SEC_GCTL_EN);
437 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
438 }
439
440 void handle_sec_sfi_fault(uint32_t gstat)
441 {
442
443 }
444
445 void handle_sec_sci_fault(uint32_t gstat)
446 {
447 uint32_t core_id;
448 uint32_t cstat;
449
450 core_id = gstat & SEC_GSTAT_SCI;
451 cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
452 if (cstat & SEC_CSTAT_ERR) {
453 switch (cstat & SEC_CSTAT_ERRC) {
454 case SEC_CSTAT_ACKERR:
455 printk(KERN_DEBUG "sec ack err\n");
456 break;
457 default:
458 printk(KERN_DEBUG "sec sci unknown err\n");
459 }
460 }
461
462 }
463
464 void handle_sec_ssi_fault(uint32_t gstat)
465 {
466 uint32_t sid;
467 uint32_t sstat;
468
469 sid = gstat & SEC_GSTAT_SID;
470 sstat = bfin_read_SEC_SSTAT(sid);
471
472 }
473
474 void handle_sec_fault(uint32_t sec_gstat)
475 {
476 if (sec_gstat & SEC_GSTAT_ERR) {
477
478 switch (sec_gstat & SEC_GSTAT_ERRC) {
479 case 0:
480 handle_sec_sfi_fault(sec_gstat);
481 break;
482 case SEC_GSTAT_SCIERR:
483 handle_sec_sci_fault(sec_gstat);
484 break;
485 case SEC_GSTAT_SSIERR:
486 handle_sec_ssi_fault(sec_gstat);
487 break;
488 }
489
490
491 }
492 }
493
494 static struct irqaction bfin_fault_irq = {
495 .name = "Blackfin fault",
496 };
497
498 static irqreturn_t bfin_fault_routine(int irq, void *data)
499 {
500 struct pt_regs *fp = get_irq_regs();
501
502 switch (irq) {
503 case IRQ_C0_DBL_FAULT:
504 double_fault_c(fp);
505 break;
506 case IRQ_C0_HW_ERR:
507 dump_bfin_process(fp);
508 dump_bfin_mem(fp);
509 show_regs(fp);
510 printk(KERN_NOTICE "Kernel Stack\n");
511 show_stack(current, NULL);
512 print_modules();
513 panic("Core 0 hardware error");
514 break;
515 case IRQ_C0_NMI_L1_PARITY_ERR:
516 panic("Core 0 NMI L1 parity error");
517 break;
518 case IRQ_SEC_ERR:
519 pr_err("SEC error\n");
520 handle_sec_fault(bfin_read32(SEC_GSTAT));
521 break;
522 default:
523 panic("Unknown fault %d", irq);
524 }
525
526 return IRQ_HANDLED;
527 }
528 #endif /* SEC_GCTL */
529
530 static struct irq_chip bfin_core_irqchip = {
531 .name = "CORE",
532 .irq_mask = bfin_core_mask_irq,
533 .irq_unmask = bfin_core_unmask_irq,
534 };
535
536 #ifndef SEC_GCTL
537 static struct irq_chip bfin_internal_irqchip = {
538 .name = "INTN",
539 .irq_mask = bfin_internal_mask_irq_chip,
540 .irq_unmask = bfin_internal_unmask_irq_chip,
541 .irq_disable = bfin_internal_mask_irq_chip,
542 .irq_enable = bfin_internal_unmask_irq_chip,
543 #ifdef CONFIG_SMP
544 .irq_set_affinity = bfin_internal_set_affinity,
545 #endif
546 .irq_set_wake = bfin_internal_set_wake_chip,
547 };
548 #else
549 static struct irq_chip bfin_sec_irqchip = {
550 .name = "SEC",
551 .irq_mask_ack = bfin_sec_mask_ack_irq,
552 .irq_mask = bfin_sec_mask_ack_irq,
553 .irq_unmask = bfin_sec_unmask_irq,
554 .irq_eoi = bfin_sec_unmask_irq,
555 .irq_disable = bfin_sec_disable,
556 .irq_enable = bfin_sec_enable,
557 };
558 #endif
559
560 void bfin_handle_irq(unsigned irq)
561 {
562 #ifdef CONFIG_IPIPE
563 struct pt_regs regs; /* Contents not used. */
564 ipipe_trace_irq_entry(irq);
565 __ipipe_handle_irq(irq, &regs);
566 ipipe_trace_irq_exit(irq);
567 #else /* !CONFIG_IPIPE */
568 generic_handle_irq(irq);
569 #endif /* !CONFIG_IPIPE */
570 }
571
572 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
573 static int mac_stat_int_mask;
574
575 static void bfin_mac_status_ack_irq(unsigned int irq)
576 {
577 switch (irq) {
578 case IRQ_MAC_MMCINT:
579 bfin_write_EMAC_MMC_TIRQS(
580 bfin_read_EMAC_MMC_TIRQE() &
581 bfin_read_EMAC_MMC_TIRQS());
582 bfin_write_EMAC_MMC_RIRQS(
583 bfin_read_EMAC_MMC_RIRQE() &
584 bfin_read_EMAC_MMC_RIRQS());
585 break;
586 case IRQ_MAC_RXFSINT:
587 bfin_write_EMAC_RX_STKY(
588 bfin_read_EMAC_RX_IRQE() &
589 bfin_read_EMAC_RX_STKY());
590 break;
591 case IRQ_MAC_TXFSINT:
592 bfin_write_EMAC_TX_STKY(
593 bfin_read_EMAC_TX_IRQE() &
594 bfin_read_EMAC_TX_STKY());
595 break;
596 case IRQ_MAC_WAKEDET:
597 bfin_write_EMAC_WKUP_CTL(
598 bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
599 break;
600 default:
601 /* These bits are W1C */
602 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
603 break;
604 }
605 }
606
607 static void bfin_mac_status_mask_irq(struct irq_data *d)
608 {
609 unsigned int irq = d->irq;
610
611 mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
612 #ifdef BF537_FAMILY
613 switch (irq) {
614 case IRQ_MAC_PHYINT:
615 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
616 break;
617 default:
618 break;
619 }
620 #else
621 if (!mac_stat_int_mask)
622 bfin_internal_mask_irq(IRQ_MAC_ERROR);
623 #endif
624 bfin_mac_status_ack_irq(irq);
625 }
626
627 static void bfin_mac_status_unmask_irq(struct irq_data *d)
628 {
629 unsigned int irq = d->irq;
630
631 #ifdef BF537_FAMILY
632 switch (irq) {
633 case IRQ_MAC_PHYINT:
634 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
635 break;
636 default:
637 break;
638 }
639 #else
640 if (!mac_stat_int_mask)
641 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
642 #endif
643 mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
644 }
645
646 #ifdef CONFIG_PM
647 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
648 {
649 #ifdef BF537_FAMILY
650 return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
651 #else
652 return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
653 #endif
654 }
655 #else
656 # define bfin_mac_status_set_wake NULL
657 #endif
658
659 static struct irq_chip bfin_mac_status_irqchip = {
660 .name = "MACST",
661 .irq_mask = bfin_mac_status_mask_irq,
662 .irq_unmask = bfin_mac_status_unmask_irq,
663 .irq_set_wake = bfin_mac_status_set_wake,
664 };
665
666 void bfin_demux_mac_status_irq(unsigned int int_err_irq,
667 struct irq_desc *inta_desc)
668 {
669 int i, irq = 0;
670 u32 status = bfin_read_EMAC_SYSTAT();
671
672 for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
673 if (status & (1L << i)) {
674 irq = IRQ_MAC_PHYINT + i;
675 break;
676 }
677
678 if (irq) {
679 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
680 bfin_handle_irq(irq);
681 } else {
682 bfin_mac_status_ack_irq(irq);
683 pr_debug("IRQ %d:"
684 " MASKED MAC ERROR INTERRUPT ASSERTED\n",
685 irq);
686 }
687 } else
688 printk(KERN_ERR
689 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
690 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
691 "(EMAC_SYSTAT=0x%X)\n",
692 __func__, __FILE__, __LINE__, status);
693 }
694 #endif
695
696 static inline void bfin_set_irq_handler(unsigned irq, irq_flow_handler_t handle)
697 {
698 #ifdef CONFIG_IPIPE
699 handle = handle_level_irq;
700 #endif
701 __irq_set_handler_locked(irq, handle);
702 }
703
704 #ifdef CONFIG_GPIO_ADI
705
706 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
707
708 static void bfin_gpio_ack_irq(struct irq_data *d)
709 {
710 /* AFAIK ack_irq in case mask_ack is provided
711 * get's only called for edge sense irqs
712 */
713 set_gpio_data(irq_to_gpio(d->irq), 0);
714 }
715
716 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
717 {
718 unsigned int irq = d->irq;
719 u32 gpionr = irq_to_gpio(irq);
720
721 if (!irqd_is_level_type(d))
722 set_gpio_data(gpionr, 0);
723
724 set_gpio_maska(gpionr, 0);
725 }
726
727 static void bfin_gpio_mask_irq(struct irq_data *d)
728 {
729 set_gpio_maska(irq_to_gpio(d->irq), 0);
730 }
731
732 static void bfin_gpio_unmask_irq(struct irq_data *d)
733 {
734 set_gpio_maska(irq_to_gpio(d->irq), 1);
735 }
736
737 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
738 {
739 u32 gpionr = irq_to_gpio(d->irq);
740
741 if (__test_and_set_bit(gpionr, gpio_enabled))
742 bfin_gpio_irq_prepare(gpionr);
743
744 bfin_gpio_unmask_irq(d);
745
746 return 0;
747 }
748
749 static void bfin_gpio_irq_shutdown(struct irq_data *d)
750 {
751 u32 gpionr = irq_to_gpio(d->irq);
752
753 bfin_gpio_mask_irq(d);
754 __clear_bit(gpionr, gpio_enabled);
755 bfin_gpio_irq_free(gpionr);
756 }
757
758 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
759 {
760 unsigned int irq = d->irq;
761 int ret;
762 char buf[16];
763 u32 gpionr = irq_to_gpio(irq);
764
765 if (type == IRQ_TYPE_PROBE) {
766 /* only probe unenabled GPIO interrupt lines */
767 if (test_bit(gpionr, gpio_enabled))
768 return 0;
769 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
770 }
771
772 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
773 IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
774
775 snprintf(buf, 16, "gpio-irq%d", irq);
776 ret = bfin_gpio_irq_request(gpionr, buf);
777 if (ret)
778 return ret;
779
780 if (__test_and_set_bit(gpionr, gpio_enabled))
781 bfin_gpio_irq_prepare(gpionr);
782
783 } else {
784 __clear_bit(gpionr, gpio_enabled);
785 return 0;
786 }
787
788 set_gpio_inen(gpionr, 0);
789 set_gpio_dir(gpionr, 0);
790
791 if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
792 == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
793 set_gpio_both(gpionr, 1);
794 else
795 set_gpio_both(gpionr, 0);
796
797 if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
798 set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */
799 else
800 set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */
801
802 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
803 set_gpio_edge(gpionr, 1);
804 set_gpio_inen(gpionr, 1);
805 set_gpio_data(gpionr, 0);
806
807 } else {
808 set_gpio_edge(gpionr, 0);
809 set_gpio_inen(gpionr, 1);
810 }
811
812 if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
813 bfin_set_irq_handler(irq, handle_edge_irq);
814 else
815 bfin_set_irq_handler(irq, handle_level_irq);
816
817 return 0;
818 }
819
820 static void bfin_demux_gpio_block(unsigned int irq)
821 {
822 unsigned int gpio, mask;
823
824 gpio = irq_to_gpio(irq);
825 mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
826
827 while (mask) {
828 if (mask & 1)
829 bfin_handle_irq(irq);
830 irq++;
831 mask >>= 1;
832 }
833 }
834
835 void bfin_demux_gpio_irq(unsigned int inta_irq,
836 struct irq_desc *desc)
837 {
838 unsigned int irq;
839
840 switch (inta_irq) {
841 #if defined(BF537_FAMILY)
842 case IRQ_PF_INTA_PG_INTA:
843 bfin_demux_gpio_block(IRQ_PF0);
844 irq = IRQ_PG0;
845 break;
846 case IRQ_PH_INTA_MAC_RX:
847 irq = IRQ_PH0;
848 break;
849 #elif defined(BF533_FAMILY)
850 case IRQ_PROG_INTA:
851 irq = IRQ_PF0;
852 break;
853 #elif defined(BF538_FAMILY)
854 case IRQ_PORTF_INTA:
855 irq = IRQ_PF0;
856 break;
857 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
858 case IRQ_PORTF_INTA:
859 irq = IRQ_PF0;
860 break;
861 case IRQ_PORTG_INTA:
862 irq = IRQ_PG0;
863 break;
864 case IRQ_PORTH_INTA:
865 irq = IRQ_PH0;
866 break;
867 #elif defined(CONFIG_BF561)
868 case IRQ_PROG0_INTA:
869 irq = IRQ_PF0;
870 break;
871 case IRQ_PROG1_INTA:
872 irq = IRQ_PF16;
873 break;
874 case IRQ_PROG2_INTA:
875 irq = IRQ_PF32;
876 break;
877 #endif
878 default:
879 BUG();
880 return;
881 }
882
883 bfin_demux_gpio_block(irq);
884 }
885
886 #ifdef CONFIG_PM
887
888 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
889 {
890 return bfin_gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
891 }
892
893 #else
894
895 # define bfin_gpio_set_wake NULL
896
897 #endif
898
899 static struct irq_chip bfin_gpio_irqchip = {
900 .name = "GPIO",
901 .irq_ack = bfin_gpio_ack_irq,
902 .irq_mask = bfin_gpio_mask_irq,
903 .irq_mask_ack = bfin_gpio_mask_ack_irq,
904 .irq_unmask = bfin_gpio_unmask_irq,
905 .irq_disable = bfin_gpio_mask_irq,
906 .irq_enable = bfin_gpio_unmask_irq,
907 .irq_set_type = bfin_gpio_irq_type,
908 .irq_startup = bfin_gpio_irq_startup,
909 .irq_shutdown = bfin_gpio_irq_shutdown,
910 .irq_set_wake = bfin_gpio_set_wake,
911 };
912
913 #endif
914
915 #ifdef CONFIG_PM
916
917 #ifdef SEC_GCTL
918 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
919
920 static int sec_suspend(void)
921 {
922 u32 bank;
923
924 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
925 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0));
926 return 0;
927 }
928
929 static void sec_resume(void)
930 {
931 u32 bank;
932
933 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
934 udelay(100);
935 bfin_write_SEC_GCTL(SEC_GCTL_EN);
936 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
937
938 for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
939 bfin_write_SEC_SCTL(bank + BFIN_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
940 }
941
942 static struct syscore_ops sec_pm_syscore_ops = {
943 .suspend = sec_suspend,
944 .resume = sec_resume,
945 };
946 #endif
947
948 #endif
949
950 void init_exception_vectors(void)
951 {
952 /* cannot program in software:
953 * evt0 - emulation (jtag)
954 * evt1 - reset
955 */
956 bfin_write_EVT2(evt_nmi);
957 bfin_write_EVT3(trap);
958 bfin_write_EVT5(evt_ivhw);
959 bfin_write_EVT6(evt_timer);
960 bfin_write_EVT7(evt_evt7);
961 bfin_write_EVT8(evt_evt8);
962 bfin_write_EVT9(evt_evt9);
963 bfin_write_EVT10(evt_evt10);
964 bfin_write_EVT11(evt_evt11);
965 bfin_write_EVT12(evt_evt12);
966 bfin_write_EVT13(evt_evt13);
967 bfin_write_EVT14(evt_evt14);
968 bfin_write_EVT15(evt_system_call);
969 CSYNC();
970 }
971
972 #ifndef SEC_GCTL
973 /*
974 * This function should be called during kernel startup to initialize
975 * the BFin IRQ handling routines.
976 */
977
978 int __init init_arch_irq(void)
979 {
980 int irq;
981 unsigned long ilat = 0;
982
983 /* Disable all the peripheral intrs - page 4-29 HW Ref manual */
984 #ifdef SIC_IMASK0
985 bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
986 bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
987 # ifdef SIC_IMASK2
988 bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
989 # endif
990 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
991 bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
992 bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
993 # endif
994 #else
995 bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
996 #endif
997
998 local_irq_disable();
999
1000 for (irq = 0; irq <= SYS_IRQS; irq++) {
1001 if (irq <= IRQ_CORETMR)
1002 irq_set_chip(irq, &bfin_core_irqchip);
1003 else
1004 irq_set_chip(irq, &bfin_internal_irqchip);
1005
1006 switch (irq) {
1007 #if !BFIN_GPIO_PINT
1008 #if defined(BF537_FAMILY)
1009 case IRQ_PH_INTA_MAC_RX:
1010 case IRQ_PF_INTA_PG_INTA:
1011 #elif defined(BF533_FAMILY)
1012 case IRQ_PROG_INTA:
1013 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1014 case IRQ_PORTF_INTA:
1015 case IRQ_PORTG_INTA:
1016 case IRQ_PORTH_INTA:
1017 #elif defined(CONFIG_BF561)
1018 case IRQ_PROG0_INTA:
1019 case IRQ_PROG1_INTA:
1020 case IRQ_PROG2_INTA:
1021 #elif defined(BF538_FAMILY)
1022 case IRQ_PORTF_INTA:
1023 #endif
1024 irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1025 break;
1026 #endif
1027 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1028 case IRQ_MAC_ERROR:
1029 irq_set_chained_handler(irq,
1030 bfin_demux_mac_status_irq);
1031 break;
1032 #endif
1033 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1034 case IRQ_SUPPLE_0:
1035 case IRQ_SUPPLE_1:
1036 irq_set_handler(irq, handle_percpu_irq);
1037 break;
1038 #endif
1039
1040 #ifdef CONFIG_TICKSOURCE_CORETMR
1041 case IRQ_CORETMR:
1042 # ifdef CONFIG_SMP
1043 irq_set_handler(irq, handle_percpu_irq);
1044 # else
1045 irq_set_handler(irq, handle_simple_irq);
1046 # endif
1047 break;
1048 #endif
1049
1050 #ifdef CONFIG_TICKSOURCE_GPTMR0
1051 case IRQ_TIMER0:
1052 irq_set_handler(irq, handle_simple_irq);
1053 break;
1054 #endif
1055
1056 default:
1057 #ifdef CONFIG_IPIPE
1058 irq_set_handler(irq, handle_level_irq);
1059 #else
1060 irq_set_handler(irq, handle_simple_irq);
1061 #endif
1062 break;
1063 }
1064 }
1065
1066 init_mach_irq();
1067
1068 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1069 for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1070 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1071 handle_level_irq);
1072 #endif
1073 /* if configured as edge, then will be changed to do_edge_IRQ */
1074 #ifdef CONFIG_GPIO_ADI
1075 for (irq = GPIO_IRQ_BASE;
1076 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1077 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1078 handle_level_irq);
1079 #endif
1080 bfin_write_IMASK(0);
1081 CSYNC();
1082 ilat = bfin_read_ILAT();
1083 CSYNC();
1084 bfin_write_ILAT(ilat);
1085 CSYNC();
1086
1087 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1088 /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1089 * local_irq_enable()
1090 */
1091 program_IAR();
1092 /* Therefore it's better to setup IARs before interrupts enabled */
1093 search_IAR();
1094
1095 /* Enable interrupts IVG7-15 */
1096 bfin_irq_flags |= IMASK_IVG15 |
1097 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1098 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1099
1100
1101 /* This implicitly covers ANOMALY_05000171
1102 * Boot-ROM code modifies SICA_IWRx wakeup registers
1103 */
1104 #ifdef SIC_IWR0
1105 bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1106 # ifdef SIC_IWR1
1107 /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1108 * will screw up the bootrom as it relies on MDMA0/1 waking it
1109 * up from IDLE instructions. See this report for more info:
1110 * http://blackfin.uclinux.org/gf/tracker/4323
1111 */
1112 if (ANOMALY_05000435)
1113 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1114 else
1115 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1116 # endif
1117 # ifdef SIC_IWR2
1118 bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1119 # endif
1120 #else
1121 bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1122 #endif
1123 return 0;
1124 }
1125
1126 #ifdef CONFIG_DO_IRQ_L1
1127 __attribute__((l1_text))
1128 #endif
1129 static int vec_to_irq(int vec)
1130 {
1131 struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1132 struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1133 unsigned long sic_status[3];
1134 if (likely(vec == EVT_IVTMR_P))
1135 return IRQ_CORETMR;
1136 #ifdef SIC_ISR
1137 sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1138 #else
1139 if (smp_processor_id()) {
1140 # ifdef SICB_ISR0
1141 /* This will be optimized out in UP mode. */
1142 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1143 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1144 # endif
1145 } else {
1146 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1147 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1148 }
1149 #endif
1150 #ifdef SIC_ISR2
1151 sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1152 #endif
1153
1154 for (;; ivg++) {
1155 if (ivg >= ivg_stop)
1156 return -1;
1157 #ifdef SIC_ISR
1158 if (sic_status[0] & ivg->isrflag)
1159 #else
1160 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1161 #endif
1162 return ivg->irqno;
1163 }
1164 }
1165
1166 #else /* SEC_GCTL */
1167
1168 /*
1169 * This function should be called during kernel startup to initialize
1170 * the BFin IRQ handling routines.
1171 */
1172
1173 int __init init_arch_irq(void)
1174 {
1175 int irq;
1176 unsigned long ilat = 0;
1177
1178 bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1179
1180 local_irq_disable();
1181
1182 for (irq = 0; irq <= SYS_IRQS; irq++) {
1183 if (irq <= IRQ_CORETMR) {
1184 irq_set_chip_and_handler(irq, &bfin_core_irqchip,
1185 handle_simple_irq);
1186 #if defined(CONFIG_TICKSOURCE_CORETMR) && defined(CONFIG_SMP)
1187 if (irq == IRQ_CORETMR)
1188 irq_set_handler(irq, handle_percpu_irq);
1189 #endif
1190 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1191 irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1192 handle_percpu_irq);
1193 } else {
1194 irq_set_chip(irq, &bfin_sec_irqchip);
1195 irq_set_handler(irq, handle_fasteoi_irq);
1196 __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1197 }
1198 }
1199
1200 bfin_write_IMASK(0);
1201 CSYNC();
1202 ilat = bfin_read_ILAT();
1203 CSYNC();
1204 bfin_write_ILAT(ilat);
1205 CSYNC();
1206
1207 printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1208
1209 bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1210
1211 /* Enable interrupts IVG7-15 */
1212 bfin_irq_flags |= IMASK_IVG15 |
1213 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1214 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1215
1216
1217 bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1218 bfin_sec_enable_sci(BFIN_SYSIRQ(IRQ_WATCH0));
1219 bfin_sec_enable_ssi(BFIN_SYSIRQ(IRQ_WATCH0));
1220 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1221 udelay(100);
1222 bfin_write_SEC_GCTL(SEC_GCTL_EN);
1223 bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1224 bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1225
1226 init_software_driven_irq();
1227
1228 #ifdef CONFIG_PM
1229 register_syscore_ops(&sec_pm_syscore_ops);
1230 #endif
1231
1232 bfin_fault_irq.handler = bfin_fault_routine;
1233 #ifdef CONFIG_L1_PARITY_CHECK
1234 setup_irq(IRQ_C0_NMI_L1_PARITY_ERR, &bfin_fault_irq);
1235 #endif
1236 setup_irq(IRQ_C0_DBL_FAULT, &bfin_fault_irq);
1237 setup_irq(IRQ_SEC_ERR, &bfin_fault_irq);
1238
1239 return 0;
1240 }
1241
1242 #ifdef CONFIG_DO_IRQ_L1
1243 __attribute__((l1_text))
1244 #endif
1245 static int vec_to_irq(int vec)
1246 {
1247 if (likely(vec == EVT_IVTMR_P))
1248 return IRQ_CORETMR;
1249
1250 return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1251 }
1252 #endif /* SEC_GCTL */
1253
1254 #ifdef CONFIG_DO_IRQ_L1
1255 __attribute__((l1_text))
1256 #endif
1257 void do_irq(int vec, struct pt_regs *fp)
1258 {
1259 int irq = vec_to_irq(vec);
1260 if (irq == -1)
1261 return;
1262 asm_do_IRQ(irq, fp);
1263 }
1264
1265 #ifdef CONFIG_IPIPE
1266
1267 int __ipipe_get_irq_priority(unsigned irq)
1268 {
1269 int ient, prio;
1270
1271 if (irq <= IRQ_CORETMR)
1272 return irq;
1273
1274 #ifdef SEC_GCTL
1275 if (irq >= BFIN_IRQ(0))
1276 return IVG11;
1277 #else
1278 for (ient = 0; ient < NR_PERI_INTS; ient++) {
1279 struct ivgx *ivg = ivg_table + ient;
1280 if (ivg->irqno == irq) {
1281 for (prio = 0; prio <= IVG13-IVG7; prio++) {
1282 if (ivg7_13[prio].ifirst <= ivg &&
1283 ivg7_13[prio].istop > ivg)
1284 return IVG7 + prio;
1285 }
1286 }
1287 }
1288 #endif
1289
1290 return IVG15;
1291 }
1292
1293 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1294 #ifdef CONFIG_DO_IRQ_L1
1295 __attribute__((l1_text))
1296 #endif
1297 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1298 {
1299 struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1300 struct ipipe_domain *this_domain = __ipipe_current_domain;
1301 int irq, s = 0;
1302
1303 irq = vec_to_irq(vec);
1304 if (irq == -1)
1305 return 0;
1306
1307 if (irq == IRQ_SYSTMR) {
1308 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1309 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1310 #endif
1311 /* This is basically what we need from the register frame. */
1312 __this_cpu_write(__ipipe_tick_regs.ipend, regs->ipend);
1313 __this_cpu_write(__ipipe_tick_regs.pc, regs->pc);
1314 if (this_domain != ipipe_root_domain)
1315 __this_cpu_and(__ipipe_tick_regs.ipend, ~0x10);
1316 else
1317 __this_cpu_or(__ipipe_tick_regs.ipend, 0x10);
1318 }
1319
1320 /*
1321 * We don't want Linux interrupt handlers to run at the
1322 * current core priority level (i.e. < EVT15), since this
1323 * might delay other interrupts handled by a high priority
1324 * domain. Here is what we do instead:
1325 *
1326 * - we raise the SYNCDEFER bit to prevent
1327 * __ipipe_handle_irq() to sync the pipeline for the root
1328 * stage for the incoming interrupt. Upon return, that IRQ is
1329 * pending in the interrupt log.
1330 *
1331 * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1332 * that _schedule_and_signal_from_int will eventually sync the
1333 * pipeline from EVT15.
1334 */
1335 if (this_domain == ipipe_root_domain) {
1336 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1337 barrier();
1338 }
1339
1340 ipipe_trace_irq_entry(irq);
1341 __ipipe_handle_irq(irq, regs);
1342 ipipe_trace_irq_exit(irq);
1343
1344 if (user_mode(regs) &&
1345 !ipipe_test_foreign_stack() &&
1346 (current->ipipe_flags & PF_EVTRET) != 0) {
1347 /*
1348 * Testing for user_regs() does NOT fully eliminate
1349 * foreign stack contexts, because of the forged
1350 * interrupt returns we do through
1351 * __ipipe_call_irqtail. In that case, we might have
1352 * preempted a foreign stack context in a high
1353 * priority domain, with a single interrupt level now
1354 * pending after the irqtail unwinding is done. In
1355 * which case user_mode() is now true, and the event
1356 * gets dispatched spuriously.
1357 */
1358 current->ipipe_flags &= ~PF_EVTRET;
1359 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1360 }
1361
1362 if (this_domain == ipipe_root_domain) {
1363 set_thread_flag(TIF_IRQ_SYNC);
1364 if (!s) {
1365 __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1366 return !test_bit(IPIPE_STALL_FLAG, &p->status);
1367 }
1368 }
1369
1370 return 0;
1371 }
1372
1373 #endif /* CONFIG_IPIPE */