]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/blackfin/mm/blackfin_sram.c
Blackfin arch: convert L2 defines to be the same as the L1 defines
[mirror_ubuntu-zesty-kernel.git] / arch / blackfin / mm / blackfin_sram.c
1 /*
2 * File: arch/blackfin/mm/blackfin_sram.c
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: SRAM driver for Blackfin ADSP-BF5xx
8 *
9 * Modified:
10 * Copyright 2004-2007 Analog Devices Inc.
11 *
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include "blackfin_sram.h"
43
44 static spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
45 static spinlock_t l2_sram_lock;
46
47 /* the data structure for L1 scratchpad and DATA SRAM */
48 struct sram_piece {
49 void *paddr;
50 int size;
51 pid_t pid;
52 struct sram_piece *next;
53 };
54
55 static struct sram_piece free_l1_ssram_head, used_l1_ssram_head;
56
57 #if L1_DATA_A_LENGTH != 0
58 static struct sram_piece free_l1_data_A_sram_head, used_l1_data_A_sram_head;
59 #endif
60
61 #if L1_DATA_B_LENGTH != 0
62 static struct sram_piece free_l1_data_B_sram_head, used_l1_data_B_sram_head;
63 #endif
64
65 #if L1_CODE_LENGTH != 0
66 static struct sram_piece free_l1_inst_sram_head, used_l1_inst_sram_head;
67 #endif
68
69 #if L2_LENGTH != 0
70 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
71 #endif
72
73 static struct kmem_cache *sram_piece_cache;
74
75 /* L1 Scratchpad SRAM initialization function */
76 static void __init l1sram_init(void)
77 {
78 free_l1_ssram_head.next =
79 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80 if (!free_l1_ssram_head.next) {
81 printk(KERN_INFO"Fail to initialize Scratchpad data SRAM.\n");
82 return;
83 }
84
85 free_l1_ssram_head.next->paddr = (void *)L1_SCRATCH_START;
86 free_l1_ssram_head.next->size = L1_SCRATCH_LENGTH;
87 free_l1_ssram_head.next->pid = 0;
88 free_l1_ssram_head.next->next = NULL;
89
90 used_l1_ssram_head.next = NULL;
91
92 /* mutex initialize */
93 spin_lock_init(&l1sram_lock);
94
95 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
96 L1_SCRATCH_LENGTH >> 10);
97 }
98
99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0
102 free_l1_data_A_sram_head.next =
103 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
104 if (!free_l1_data_A_sram_head.next) {
105 printk(KERN_INFO"Fail to initialize L1 Data A SRAM.\n");
106 return;
107 }
108
109 free_l1_data_A_sram_head.next->paddr =
110 (void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1);
111 free_l1_data_A_sram_head.next->size =
112 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
113 free_l1_data_A_sram_head.next->pid = 0;
114 free_l1_data_A_sram_head.next->next = NULL;
115
116 used_l1_data_A_sram_head.next = NULL;
117
118 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
119 L1_DATA_A_LENGTH >> 10,
120 free_l1_data_A_sram_head.next->size >> 10);
121 #endif
122 #if L1_DATA_B_LENGTH != 0
123 free_l1_data_B_sram_head.next =
124 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
125 if (!free_l1_data_B_sram_head.next) {
126 printk(KERN_INFO"Fail to initialize L1 Data B SRAM.\n");
127 return;
128 }
129
130 free_l1_data_B_sram_head.next->paddr =
131 (void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1);
132 free_l1_data_B_sram_head.next->size =
133 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
134 free_l1_data_B_sram_head.next->pid = 0;
135 free_l1_data_B_sram_head.next->next = NULL;
136
137 used_l1_data_B_sram_head.next = NULL;
138
139 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
140 L1_DATA_B_LENGTH >> 10,
141 free_l1_data_B_sram_head.next->size >> 10);
142 #endif
143
144 /* mutex initialize */
145 spin_lock_init(&l1_data_sram_lock);
146 }
147
148 static void __init l1_inst_sram_init(void)
149 {
150 #if L1_CODE_LENGTH != 0
151 free_l1_inst_sram_head.next =
152 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
153 if (!free_l1_inst_sram_head.next) {
154 printk(KERN_INFO"Fail to initialize L1 Instruction SRAM.\n");
155 return;
156 }
157
158 free_l1_inst_sram_head.next->paddr =
159 (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
160 free_l1_inst_sram_head.next->size =
161 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
162 free_l1_inst_sram_head.next->pid = 0;
163 free_l1_inst_sram_head.next->next = NULL;
164
165 used_l1_inst_sram_head.next = NULL;
166
167 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
168 L1_CODE_LENGTH >> 10,
169 free_l1_inst_sram_head.next->size >> 10);
170 #endif
171
172 /* mutex initialize */
173 spin_lock_init(&l1_inst_sram_lock);
174 }
175
176 static void __init l2_sram_init(void)
177 {
178 #if L2_LENGTH != 0
179 free_l2_sram_head.next =
180 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
181 if (!free_l2_sram_head.next) {
182 printk(KERN_INFO"Fail to initialize L2 SRAM.\n");
183 return;
184 }
185
186 free_l2_sram_head.next->paddr = (void *)L2_START +
187 (_etext_l2 - _stext_l2) + (_edata_l2 - _sdata_l2);
188 free_l2_sram_head.next->size = L2_LENGTH -
189 (_etext_l2 - _stext_l2) + (_edata_l2 - _sdata_l2);
190 free_l2_sram_head.next->pid = 0;
191 free_l2_sram_head.next->next = NULL;
192
193 used_l2_sram_head.next = NULL;
194
195 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
196 L2_LENGTH >> 10,
197 free_l2_sram_head.next->size >> 10);
198 #endif
199
200 /* mutex initialize */
201 spin_lock_init(&l2_sram_lock);
202 }
203 void __init bfin_sram_init(void)
204 {
205 sram_piece_cache = kmem_cache_create("sram_piece_cache",
206 sizeof(struct sram_piece),
207 0, SLAB_PANIC, NULL);
208
209 l1sram_init();
210 l1_data_sram_init();
211 l1_inst_sram_init();
212 l2_sram_init();
213 }
214
215 /* SRAM allocate function */
216 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
217 struct sram_piece *pused_head)
218 {
219 struct sram_piece *pslot, *plast, *pavail;
220
221 if (size <= 0 || !pfree_head || !pused_head)
222 return NULL;
223
224 /* Align the size */
225 size = (size + 3) & ~3;
226
227 pslot = pfree_head->next;
228 plast = pfree_head;
229
230 /* search an available piece slot */
231 while (pslot != NULL && size > pslot->size) {
232 plast = pslot;
233 pslot = pslot->next;
234 }
235
236 if (!pslot)
237 return NULL;
238
239 if (pslot->size == size) {
240 plast->next = pslot->next;
241 pavail = pslot;
242 } else {
243 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
244
245 if (!pavail)
246 return NULL;
247
248 pavail->paddr = pslot->paddr;
249 pavail->size = size;
250 pslot->paddr += size;
251 pslot->size -= size;
252 }
253
254 pavail->pid = current->pid;
255
256 pslot = pused_head->next;
257 plast = pused_head;
258
259 /* insert new piece into used piece list !!! */
260 while (pslot != NULL && pavail->paddr < pslot->paddr) {
261 plast = pslot;
262 pslot = pslot->next;
263 }
264
265 pavail->next = pslot;
266 plast->next = pavail;
267
268 return pavail->paddr;
269 }
270
271 /* Allocate the largest available block. */
272 static void *_sram_alloc_max(struct sram_piece *pfree_head,
273 struct sram_piece *pused_head,
274 unsigned long *psize)
275 {
276 struct sram_piece *pslot, *pmax;
277
278 if (!pfree_head || !pused_head)
279 return NULL;
280
281 pmax = pslot = pfree_head->next;
282
283 /* search an available piece slot */
284 while (pslot != NULL) {
285 if (pslot->size > pmax->size)
286 pmax = pslot;
287 pslot = pslot->next;
288 }
289
290 if (!pmax)
291 return NULL;
292
293 *psize = pmax->size;
294
295 return _sram_alloc(*psize, pfree_head, pused_head);
296 }
297
298 /* SRAM free function */
299 static int _sram_free(const void *addr,
300 struct sram_piece *pfree_head,
301 struct sram_piece *pused_head)
302 {
303 struct sram_piece *pslot, *plast, *pavail;
304
305 if (!pfree_head || !pused_head)
306 return -1;
307
308 /* search the relevant memory slot */
309 pslot = pused_head->next;
310 plast = pused_head;
311
312 /* search an available piece slot */
313 while (pslot != NULL && pslot->paddr != addr) {
314 plast = pslot;
315 pslot = pslot->next;
316 }
317
318 if (!pslot)
319 return -1;
320
321 plast->next = pslot->next;
322 pavail = pslot;
323 pavail->pid = 0;
324
325 /* insert free pieces back to the free list */
326 pslot = pfree_head->next;
327 plast = pfree_head;
328
329 while (pslot != NULL && addr > pslot->paddr) {
330 plast = pslot;
331 pslot = pslot->next;
332 }
333
334 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
335 plast->size += pavail->size;
336 kmem_cache_free(sram_piece_cache, pavail);
337 } else {
338 pavail->next = plast;
339 plast->next = pavail;
340 plast = pavail;
341 }
342
343 if (pslot && plast->paddr + plast->size == pslot->paddr) {
344 plast->size += pslot->size;
345 plast->next = pslot->next;
346 kmem_cache_free(sram_piece_cache, pslot);
347 }
348
349 return 0;
350 }
351
352 int sram_free(const void *addr)
353 {
354 if (0) {}
355 #if L1_CODE_LENGTH != 0
356 else if (addr >= (void *)L1_CODE_START
357 && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
358 return l1_inst_sram_free(addr);
359 #endif
360 #if L1_DATA_A_LENGTH != 0
361 else if (addr >= (void *)L1_DATA_A_START
362 && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
363 return l1_data_A_sram_free(addr);
364 #endif
365 #if L1_DATA_B_LENGTH != 0
366 else if (addr >= (void *)L1_DATA_B_START
367 && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
368 return l1_data_B_sram_free(addr);
369 #endif
370 #if L2_LENGTH != 0
371 else if (addr >= (void *)L2_START
372 && addr < (void *)(L2_START + L2_LENGTH))
373 return l2_sram_free(addr);
374 #endif
375 else
376 return -1;
377 }
378 EXPORT_SYMBOL(sram_free);
379
380 void *l1_data_A_sram_alloc(size_t size)
381 {
382 unsigned flags;
383 void *addr = NULL;
384
385 /* add mutex operation */
386 spin_lock_irqsave(&l1_data_sram_lock, flags);
387
388 #if L1_DATA_A_LENGTH != 0
389 addr = _sram_alloc(size, &free_l1_data_A_sram_head,
390 &used_l1_data_A_sram_head);
391 #endif
392
393 /* add mutex operation */
394 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
395
396 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
397 (long unsigned int)addr, size);
398
399 return addr;
400 }
401 EXPORT_SYMBOL(l1_data_A_sram_alloc);
402
403 int l1_data_A_sram_free(const void *addr)
404 {
405 unsigned flags;
406 int ret;
407
408 /* add mutex operation */
409 spin_lock_irqsave(&l1_data_sram_lock, flags);
410
411 #if L1_DATA_A_LENGTH != 0
412 ret = _sram_free(addr, &free_l1_data_A_sram_head,
413 &used_l1_data_A_sram_head);
414 #else
415 ret = -1;
416 #endif
417
418 /* add mutex operation */
419 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
420
421 return ret;
422 }
423 EXPORT_SYMBOL(l1_data_A_sram_free);
424
425 void *l1_data_B_sram_alloc(size_t size)
426 {
427 #if L1_DATA_B_LENGTH != 0
428 unsigned flags;
429 void *addr;
430
431 /* add mutex operation */
432 spin_lock_irqsave(&l1_data_sram_lock, flags);
433
434 addr = _sram_alloc(size, &free_l1_data_B_sram_head,
435 &used_l1_data_B_sram_head);
436
437 /* add mutex operation */
438 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
439
440 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
441 (long unsigned int)addr, size);
442
443 return addr;
444 #else
445 return NULL;
446 #endif
447 }
448 EXPORT_SYMBOL(l1_data_B_sram_alloc);
449
450 int l1_data_B_sram_free(const void *addr)
451 {
452 #if L1_DATA_B_LENGTH != 0
453 unsigned flags;
454 int ret;
455
456 /* add mutex operation */
457 spin_lock_irqsave(&l1_data_sram_lock, flags);
458
459 ret = _sram_free(addr, &free_l1_data_B_sram_head,
460 &used_l1_data_B_sram_head);
461
462 /* add mutex operation */
463 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
464
465 return ret;
466 #else
467 return -1;
468 #endif
469 }
470 EXPORT_SYMBOL(l1_data_B_sram_free);
471
472 void *l1_data_sram_alloc(size_t size)
473 {
474 void *addr = l1_data_A_sram_alloc(size);
475
476 if (!addr)
477 addr = l1_data_B_sram_alloc(size);
478
479 return addr;
480 }
481 EXPORT_SYMBOL(l1_data_sram_alloc);
482
483 void *l1_data_sram_zalloc(size_t size)
484 {
485 void *addr = l1_data_sram_alloc(size);
486
487 if (addr)
488 memset(addr, 0x00, size);
489
490 return addr;
491 }
492 EXPORT_SYMBOL(l1_data_sram_zalloc);
493
494 int l1_data_sram_free(const void *addr)
495 {
496 int ret;
497 ret = l1_data_A_sram_free(addr);
498 if (ret == -1)
499 ret = l1_data_B_sram_free(addr);
500 return ret;
501 }
502 EXPORT_SYMBOL(l1_data_sram_free);
503
504 void *l1_inst_sram_alloc(size_t size)
505 {
506 #if L1_CODE_LENGTH != 0
507 unsigned flags;
508 void *addr;
509
510 /* add mutex operation */
511 spin_lock_irqsave(&l1_inst_sram_lock, flags);
512
513 addr = _sram_alloc(size, &free_l1_inst_sram_head,
514 &used_l1_inst_sram_head);
515
516 /* add mutex operation */
517 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
518
519 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
520 (long unsigned int)addr, size);
521
522 return addr;
523 #else
524 return NULL;
525 #endif
526 }
527 EXPORT_SYMBOL(l1_inst_sram_alloc);
528
529 int l1_inst_sram_free(const void *addr)
530 {
531 #if L1_CODE_LENGTH != 0
532 unsigned flags;
533 int ret;
534
535 /* add mutex operation */
536 spin_lock_irqsave(&l1_inst_sram_lock, flags);
537
538 ret = _sram_free(addr, &free_l1_inst_sram_head,
539 &used_l1_inst_sram_head);
540
541 /* add mutex operation */
542 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
543
544 return ret;
545 #else
546 return -1;
547 #endif
548 }
549 EXPORT_SYMBOL(l1_inst_sram_free);
550
551 /* L1 Scratchpad memory allocate function */
552 void *l1sram_alloc(size_t size)
553 {
554 unsigned flags;
555 void *addr;
556
557 /* add mutex operation */
558 spin_lock_irqsave(&l1sram_lock, flags);
559
560 addr = _sram_alloc(size, &free_l1_ssram_head,
561 &used_l1_ssram_head);
562
563 /* add mutex operation */
564 spin_unlock_irqrestore(&l1sram_lock, flags);
565
566 return addr;
567 }
568
569 /* L1 Scratchpad memory allocate function */
570 void *l1sram_alloc_max(size_t *psize)
571 {
572 unsigned flags;
573 void *addr;
574
575 /* add mutex operation */
576 spin_lock_irqsave(&l1sram_lock, flags);
577
578 addr = _sram_alloc_max(&free_l1_ssram_head,
579 &used_l1_ssram_head, psize);
580
581 /* add mutex operation */
582 spin_unlock_irqrestore(&l1sram_lock, flags);
583
584 return addr;
585 }
586
587 /* L1 Scratchpad memory free function */
588 int l1sram_free(const void *addr)
589 {
590 unsigned flags;
591 int ret;
592
593 /* add mutex operation */
594 spin_lock_irqsave(&l1sram_lock, flags);
595
596 ret = _sram_free(addr, &free_l1_ssram_head,
597 &used_l1_ssram_head);
598
599 /* add mutex operation */
600 spin_unlock_irqrestore(&l1sram_lock, flags);
601
602 return ret;
603 }
604
605 void *l2_sram_alloc(size_t size)
606 {
607 #if L2_LENGTH != 0
608 unsigned flags;
609 void *addr;
610
611 /* add mutex operation */
612 spin_lock_irqsave(&l2_sram_lock, flags);
613
614 addr = _sram_alloc(size, &free_l2_sram_head,
615 &used_l2_sram_head);
616
617 /* add mutex operation */
618 spin_unlock_irqrestore(&l2_sram_lock, flags);
619
620 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
621 (long unsigned int)addr, size);
622
623 return addr;
624 #else
625 return NULL;
626 #endif
627 }
628 EXPORT_SYMBOL(l2_sram_alloc);
629
630 void *l2_sram_zalloc(size_t size)
631 {
632 void *addr = l2_sram_alloc(size);
633
634 if (addr)
635 memset(addr, 0x00, size);
636
637 return addr;
638 }
639 EXPORT_SYMBOL(l2_sram_zalloc);
640
641 int l2_sram_free(const void *addr)
642 {
643 #if L2_LENGTH != 0
644 unsigned flags;
645 int ret;
646
647 /* add mutex operation */
648 spin_lock_irqsave(&l2_sram_lock, flags);
649
650 ret = _sram_free(addr, &free_l2_sram_head,
651 &used_l2_sram_head);
652
653 /* add mutex operation */
654 spin_unlock_irqrestore(&l2_sram_lock, flags);
655
656 return ret;
657 #else
658 return -1;
659 #endif
660 }
661 EXPORT_SYMBOL(l2_sram_free);
662
663 int sram_free_with_lsl(const void *addr)
664 {
665 struct sram_list_struct *lsl, **tmp;
666 struct mm_struct *mm = current->mm;
667
668 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
669 if ((*tmp)->addr == addr)
670 goto found;
671 return -1;
672 found:
673 lsl = *tmp;
674 sram_free(addr);
675 *tmp = lsl->next;
676 kfree(lsl);
677
678 return 0;
679 }
680 EXPORT_SYMBOL(sram_free_with_lsl);
681
682 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
683 {
684 void *addr = NULL;
685 struct sram_list_struct *lsl = NULL;
686 struct mm_struct *mm = current->mm;
687
688 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
689 if (!lsl)
690 return NULL;
691
692 if (flags & L1_INST_SRAM)
693 addr = l1_inst_sram_alloc(size);
694
695 if (addr == NULL && (flags & L1_DATA_A_SRAM))
696 addr = l1_data_A_sram_alloc(size);
697
698 if (addr == NULL && (flags & L1_DATA_B_SRAM))
699 addr = l1_data_B_sram_alloc(size);
700
701 if (addr == NULL && (flags & L2_SRAM))
702 addr = l2_sram_alloc(size);
703
704 if (addr == NULL) {
705 kfree(lsl);
706 return NULL;
707 }
708 lsl->addr = addr;
709 lsl->length = size;
710 lsl->next = mm->context.sram_list;
711 mm->context.sram_list = lsl;
712 return addr;
713 }
714 EXPORT_SYMBOL(sram_alloc_with_lsl);
715
716 #ifdef CONFIG_PROC_FS
717 /* Once we get a real allocator, we'll throw all of this away.
718 * Until then, we need some sort of visibility into the L1 alloc.
719 */
720 /* Need to keep line of output the same. Currently, that is 44 bytes
721 * (including newline).
722 */
723 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
724 struct sram_piece *pfree_head,
725 struct sram_piece *pused_head)
726 {
727 struct sram_piece *pslot;
728
729 if (!pfree_head || !pused_head)
730 return -1;
731
732 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
733
734 /* search the relevant memory slot */
735 pslot = pused_head->next;
736
737 while (pslot != NULL) {
738 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
739 pslot->paddr, pslot->paddr + pslot->size,
740 pslot->size, pslot->pid, "ALLOCATED");
741
742 pslot = pslot->next;
743 }
744
745 pslot = pfree_head->next;
746
747 while (pslot != NULL) {
748 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
749 pslot->paddr, pslot->paddr + pslot->size,
750 pslot->size, pslot->pid, "FREE");
751
752 pslot = pslot->next;
753 }
754
755 return 0;
756 }
757 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
758 int *eof, void *data)
759 {
760 int len = 0;
761
762 if (_sram_proc_read(buf, &len, count, "Scratchpad",
763 &free_l1_ssram_head, &used_l1_ssram_head))
764 goto not_done;
765 #if L1_DATA_A_LENGTH != 0
766 if (_sram_proc_read(buf, &len, count, "L1 Data A",
767 &free_l1_data_A_sram_head,
768 &used_l1_data_A_sram_head))
769 goto not_done;
770 #endif
771 #if L1_DATA_B_LENGTH != 0
772 if (_sram_proc_read(buf, &len, count, "L1 Data B",
773 &free_l1_data_B_sram_head,
774 &used_l1_data_B_sram_head))
775 goto not_done;
776 #endif
777 #if L1_CODE_LENGTH != 0
778 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
779 &free_l1_inst_sram_head, &used_l1_inst_sram_head))
780 goto not_done;
781 #endif
782 #if L2_LENGTH != 0
783 if (_sram_proc_read(buf, &len, count, "L2",
784 &free_l2_sram_head, &used_l2_sram_head))
785 goto not_done;
786 #endif
787
788 *eof = 1;
789 not_done:
790 return len;
791 }
792
793 static int __init sram_proc_init(void)
794 {
795 struct proc_dir_entry *ptr;
796 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
797 if (!ptr) {
798 printk(KERN_WARNING "unable to create /proc/sram\n");
799 return -1;
800 }
801 ptr->owner = THIS_MODULE;
802 ptr->read_proc = sram_proc_read;
803 return 0;
804 }
805 late_initcall(sram_proc_init);
806 #endif