]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/blackfin/mm/sram-alloc.c
RealView: Select CPU_V6 for MACH_REALVIEW_PB11MP
[mirror_ubuntu-eoan-kernel.git] / arch / blackfin / mm / sram-alloc.c
1 /*
2 * File: arch/blackfin/mm/sram-alloc.c
3 * Based on:
4 * Author:
5 *
6 * Created:
7 * Description: SRAM allocator for Blackfin L1 and L2 memory
8 *
9 * Modified:
10 * Copyright 2004-2008 Analog Devices Inc.
11 *
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include "blackfin_sram.h"
43
44 static spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
45 static spinlock_t l2_sram_lock;
46
47 /* the data structure for L1 scratchpad and DATA SRAM */
48 struct sram_piece {
49 void *paddr;
50 int size;
51 pid_t pid;
52 struct sram_piece *next;
53 };
54
55 static struct sram_piece free_l1_ssram_head, used_l1_ssram_head;
56
57 #if L1_DATA_A_LENGTH != 0
58 static struct sram_piece free_l1_data_A_sram_head, used_l1_data_A_sram_head;
59 #endif
60
61 #if L1_DATA_B_LENGTH != 0
62 static struct sram_piece free_l1_data_B_sram_head, used_l1_data_B_sram_head;
63 #endif
64
65 #if L1_CODE_LENGTH != 0
66 static struct sram_piece free_l1_inst_sram_head, used_l1_inst_sram_head;
67 #endif
68
69 #if L2_LENGTH != 0
70 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
71 #endif
72
73 static struct kmem_cache *sram_piece_cache;
74
75 /* L1 Scratchpad SRAM initialization function */
76 static void __init l1sram_init(void)
77 {
78 free_l1_ssram_head.next =
79 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80 if (!free_l1_ssram_head.next) {
81 printk(KERN_INFO "Failed to initialize Scratchpad data SRAM\n");
82 return;
83 }
84
85 free_l1_ssram_head.next->paddr = (void *)L1_SCRATCH_START;
86 free_l1_ssram_head.next->size = L1_SCRATCH_LENGTH;
87 free_l1_ssram_head.next->pid = 0;
88 free_l1_ssram_head.next->next = NULL;
89
90 used_l1_ssram_head.next = NULL;
91
92 /* mutex initialize */
93 spin_lock_init(&l1sram_lock);
94
95 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
96 L1_SCRATCH_LENGTH >> 10);
97 }
98
99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0
102 free_l1_data_A_sram_head.next =
103 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
104 if (!free_l1_data_A_sram_head.next) {
105 printk(KERN_INFO "Failed to initialize L1 Data A SRAM\n");
106 return;
107 }
108
109 free_l1_data_A_sram_head.next->paddr =
110 (void *)L1_DATA_A_START + (_ebss_l1 - _sdata_l1);
111 free_l1_data_A_sram_head.next->size =
112 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
113 free_l1_data_A_sram_head.next->pid = 0;
114 free_l1_data_A_sram_head.next->next = NULL;
115
116 used_l1_data_A_sram_head.next = NULL;
117
118 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
119 L1_DATA_A_LENGTH >> 10,
120 free_l1_data_A_sram_head.next->size >> 10);
121 #endif
122 #if L1_DATA_B_LENGTH != 0
123 free_l1_data_B_sram_head.next =
124 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
125 if (!free_l1_data_B_sram_head.next) {
126 printk(KERN_INFO "Failed to initialize L1 Data B SRAM\n");
127 return;
128 }
129
130 free_l1_data_B_sram_head.next->paddr =
131 (void *)L1_DATA_B_START + (_ebss_b_l1 - _sdata_b_l1);
132 free_l1_data_B_sram_head.next->size =
133 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
134 free_l1_data_B_sram_head.next->pid = 0;
135 free_l1_data_B_sram_head.next->next = NULL;
136
137 used_l1_data_B_sram_head.next = NULL;
138
139 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
140 L1_DATA_B_LENGTH >> 10,
141 free_l1_data_B_sram_head.next->size >> 10);
142 #endif
143
144 /* mutex initialize */
145 spin_lock_init(&l1_data_sram_lock);
146 }
147
148 static void __init l1_inst_sram_init(void)
149 {
150 #if L1_CODE_LENGTH != 0
151 free_l1_inst_sram_head.next =
152 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
153 if (!free_l1_inst_sram_head.next) {
154 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
155 return;
156 }
157
158 free_l1_inst_sram_head.next->paddr =
159 (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
160 free_l1_inst_sram_head.next->size =
161 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
162 free_l1_inst_sram_head.next->pid = 0;
163 free_l1_inst_sram_head.next->next = NULL;
164
165 used_l1_inst_sram_head.next = NULL;
166
167 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
168 L1_CODE_LENGTH >> 10,
169 free_l1_inst_sram_head.next->size >> 10);
170 #endif
171
172 /* mutex initialize */
173 spin_lock_init(&l1_inst_sram_lock);
174 }
175
176 static void __init l2_sram_init(void)
177 {
178 #if L2_LENGTH != 0
179 free_l2_sram_head.next =
180 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
181 if (!free_l2_sram_head.next) {
182 printk(KERN_INFO "Failed to initialize L2 SRAM\n");
183 return;
184 }
185
186 free_l2_sram_head.next->paddr = (void *)L2_START +
187 (_etext_l2 - _stext_l2) + (_edata_l2 - _sdata_l2);
188 free_l2_sram_head.next->size = L2_LENGTH -
189 (_etext_l2 - _stext_l2) + (_edata_l2 - _sdata_l2);
190 free_l2_sram_head.next->pid = 0;
191 free_l2_sram_head.next->next = NULL;
192
193 used_l2_sram_head.next = NULL;
194
195 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
196 L2_LENGTH >> 10,
197 free_l2_sram_head.next->size >> 10);
198 #endif
199
200 /* mutex initialize */
201 spin_lock_init(&l2_sram_lock);
202 }
203 void __init bfin_sram_init(void)
204 {
205 sram_piece_cache = kmem_cache_create("sram_piece_cache",
206 sizeof(struct sram_piece),
207 0, SLAB_PANIC, NULL);
208
209 l1sram_init();
210 l1_data_sram_init();
211 l1_inst_sram_init();
212 l2_sram_init();
213 }
214
215 /* SRAM allocate function */
216 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
217 struct sram_piece *pused_head)
218 {
219 struct sram_piece *pslot, *plast, *pavail;
220
221 if (size <= 0 || !pfree_head || !pused_head)
222 return NULL;
223
224 /* Align the size */
225 size = (size + 3) & ~3;
226
227 pslot = pfree_head->next;
228 plast = pfree_head;
229
230 /* search an available piece slot */
231 while (pslot != NULL && size > pslot->size) {
232 plast = pslot;
233 pslot = pslot->next;
234 }
235
236 if (!pslot)
237 return NULL;
238
239 if (pslot->size == size) {
240 plast->next = pslot->next;
241 pavail = pslot;
242 } else {
243 pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
244
245 if (!pavail)
246 return NULL;
247
248 pavail->paddr = pslot->paddr;
249 pavail->size = size;
250 pslot->paddr += size;
251 pslot->size -= size;
252 }
253
254 pavail->pid = current->pid;
255
256 pslot = pused_head->next;
257 plast = pused_head;
258
259 /* insert new piece into used piece list !!! */
260 while (pslot != NULL && pavail->paddr < pslot->paddr) {
261 plast = pslot;
262 pslot = pslot->next;
263 }
264
265 pavail->next = pslot;
266 plast->next = pavail;
267
268 return pavail->paddr;
269 }
270
271 /* Allocate the largest available block. */
272 static void *_sram_alloc_max(struct sram_piece *pfree_head,
273 struct sram_piece *pused_head,
274 unsigned long *psize)
275 {
276 struct sram_piece *pslot, *pmax;
277
278 if (!pfree_head || !pused_head)
279 return NULL;
280
281 pmax = pslot = pfree_head->next;
282
283 /* search an available piece slot */
284 while (pslot != NULL) {
285 if (pslot->size > pmax->size)
286 pmax = pslot;
287 pslot = pslot->next;
288 }
289
290 if (!pmax)
291 return NULL;
292
293 *psize = pmax->size;
294
295 return _sram_alloc(*psize, pfree_head, pused_head);
296 }
297
298 /* SRAM free function */
299 static int _sram_free(const void *addr,
300 struct sram_piece *pfree_head,
301 struct sram_piece *pused_head)
302 {
303 struct sram_piece *pslot, *plast, *pavail;
304
305 if (!pfree_head || !pused_head)
306 return -1;
307
308 /* search the relevant memory slot */
309 pslot = pused_head->next;
310 plast = pused_head;
311
312 /* search an available piece slot */
313 while (pslot != NULL && pslot->paddr != addr) {
314 plast = pslot;
315 pslot = pslot->next;
316 }
317
318 if (!pslot)
319 return -1;
320
321 plast->next = pslot->next;
322 pavail = pslot;
323 pavail->pid = 0;
324
325 /* insert free pieces back to the free list */
326 pslot = pfree_head->next;
327 plast = pfree_head;
328
329 while (pslot != NULL && addr > pslot->paddr) {
330 plast = pslot;
331 pslot = pslot->next;
332 }
333
334 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
335 plast->size += pavail->size;
336 kmem_cache_free(sram_piece_cache, pavail);
337 } else {
338 pavail->next = plast->next;
339 plast->next = pavail;
340 plast = pavail;
341 }
342
343 if (pslot && plast->paddr + plast->size == pslot->paddr) {
344 plast->size += pslot->size;
345 plast->next = pslot->next;
346 kmem_cache_free(sram_piece_cache, pslot);
347 }
348
349 return 0;
350 }
351
352 int sram_free(const void *addr)
353 {
354
355 #if L1_CODE_LENGTH != 0
356 if (addr >= (void *)L1_CODE_START
357 && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
358 return l1_inst_sram_free(addr);
359 else
360 #endif
361 #if L1_DATA_A_LENGTH != 0
362 if (addr >= (void *)L1_DATA_A_START
363 && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
364 return l1_data_A_sram_free(addr);
365 else
366 #endif
367 #if L1_DATA_B_LENGTH != 0
368 if (addr >= (void *)L1_DATA_B_START
369 && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
370 return l1_data_B_sram_free(addr);
371 else
372 #endif
373 #if L2_LENGTH != 0
374 if (addr >= (void *)L2_START
375 && addr < (void *)(L2_START + L2_LENGTH))
376 return l2_sram_free(addr);
377 else
378 #endif
379 return -1;
380 }
381 EXPORT_SYMBOL(sram_free);
382
383 void *l1_data_A_sram_alloc(size_t size)
384 {
385 unsigned long flags;
386 void *addr = NULL;
387
388 /* add mutex operation */
389 spin_lock_irqsave(&l1_data_sram_lock, flags);
390
391 #if L1_DATA_A_LENGTH != 0
392 addr = _sram_alloc(size, &free_l1_data_A_sram_head,
393 &used_l1_data_A_sram_head);
394 #endif
395
396 /* add mutex operation */
397 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
398
399 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
400 (long unsigned int)addr, size);
401
402 return addr;
403 }
404 EXPORT_SYMBOL(l1_data_A_sram_alloc);
405
406 int l1_data_A_sram_free(const void *addr)
407 {
408 unsigned long flags;
409 int ret;
410
411 /* add mutex operation */
412 spin_lock_irqsave(&l1_data_sram_lock, flags);
413
414 #if L1_DATA_A_LENGTH != 0
415 ret = _sram_free(addr, &free_l1_data_A_sram_head,
416 &used_l1_data_A_sram_head);
417 #else
418 ret = -1;
419 #endif
420
421 /* add mutex operation */
422 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
423
424 return ret;
425 }
426 EXPORT_SYMBOL(l1_data_A_sram_free);
427
428 void *l1_data_B_sram_alloc(size_t size)
429 {
430 #if L1_DATA_B_LENGTH != 0
431 unsigned long flags;
432 void *addr;
433
434 /* add mutex operation */
435 spin_lock_irqsave(&l1_data_sram_lock, flags);
436
437 addr = _sram_alloc(size, &free_l1_data_B_sram_head,
438 &used_l1_data_B_sram_head);
439
440 /* add mutex operation */
441 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
442
443 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
444 (long unsigned int)addr, size);
445
446 return addr;
447 #else
448 return NULL;
449 #endif
450 }
451 EXPORT_SYMBOL(l1_data_B_sram_alloc);
452
453 int l1_data_B_sram_free(const void *addr)
454 {
455 #if L1_DATA_B_LENGTH != 0
456 unsigned long flags;
457 int ret;
458
459 /* add mutex operation */
460 spin_lock_irqsave(&l1_data_sram_lock, flags);
461
462 ret = _sram_free(addr, &free_l1_data_B_sram_head,
463 &used_l1_data_B_sram_head);
464
465 /* add mutex operation */
466 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
467
468 return ret;
469 #else
470 return -1;
471 #endif
472 }
473 EXPORT_SYMBOL(l1_data_B_sram_free);
474
475 void *l1_data_sram_alloc(size_t size)
476 {
477 void *addr = l1_data_A_sram_alloc(size);
478
479 if (!addr)
480 addr = l1_data_B_sram_alloc(size);
481
482 return addr;
483 }
484 EXPORT_SYMBOL(l1_data_sram_alloc);
485
486 void *l1_data_sram_zalloc(size_t size)
487 {
488 void *addr = l1_data_sram_alloc(size);
489
490 if (addr)
491 memset(addr, 0x00, size);
492
493 return addr;
494 }
495 EXPORT_SYMBOL(l1_data_sram_zalloc);
496
497 int l1_data_sram_free(const void *addr)
498 {
499 int ret;
500 ret = l1_data_A_sram_free(addr);
501 if (ret == -1)
502 ret = l1_data_B_sram_free(addr);
503 return ret;
504 }
505 EXPORT_SYMBOL(l1_data_sram_free);
506
507 void *l1_inst_sram_alloc(size_t size)
508 {
509 #if L1_CODE_LENGTH != 0
510 unsigned long flags;
511 void *addr;
512
513 /* add mutex operation */
514 spin_lock_irqsave(&l1_inst_sram_lock, flags);
515
516 addr = _sram_alloc(size, &free_l1_inst_sram_head,
517 &used_l1_inst_sram_head);
518
519 /* add mutex operation */
520 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
521
522 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
523 (long unsigned int)addr, size);
524
525 return addr;
526 #else
527 return NULL;
528 #endif
529 }
530 EXPORT_SYMBOL(l1_inst_sram_alloc);
531
532 int l1_inst_sram_free(const void *addr)
533 {
534 #if L1_CODE_LENGTH != 0
535 unsigned long flags;
536 int ret;
537
538 /* add mutex operation */
539 spin_lock_irqsave(&l1_inst_sram_lock, flags);
540
541 ret = _sram_free(addr, &free_l1_inst_sram_head,
542 &used_l1_inst_sram_head);
543
544 /* add mutex operation */
545 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
546
547 return ret;
548 #else
549 return -1;
550 #endif
551 }
552 EXPORT_SYMBOL(l1_inst_sram_free);
553
554 /* L1 Scratchpad memory allocate function */
555 void *l1sram_alloc(size_t size)
556 {
557 unsigned long flags;
558 void *addr;
559
560 /* add mutex operation */
561 spin_lock_irqsave(&l1sram_lock, flags);
562
563 addr = _sram_alloc(size, &free_l1_ssram_head,
564 &used_l1_ssram_head);
565
566 /* add mutex operation */
567 spin_unlock_irqrestore(&l1sram_lock, flags);
568
569 return addr;
570 }
571
572 /* L1 Scratchpad memory allocate function */
573 void *l1sram_alloc_max(size_t *psize)
574 {
575 unsigned long flags;
576 void *addr;
577
578 /* add mutex operation */
579 spin_lock_irqsave(&l1sram_lock, flags);
580
581 addr = _sram_alloc_max(&free_l1_ssram_head,
582 &used_l1_ssram_head, psize);
583
584 /* add mutex operation */
585 spin_unlock_irqrestore(&l1sram_lock, flags);
586
587 return addr;
588 }
589
590 /* L1 Scratchpad memory free function */
591 int l1sram_free(const void *addr)
592 {
593 unsigned long flags;
594 int ret;
595
596 /* add mutex operation */
597 spin_lock_irqsave(&l1sram_lock, flags);
598
599 ret = _sram_free(addr, &free_l1_ssram_head,
600 &used_l1_ssram_head);
601
602 /* add mutex operation */
603 spin_unlock_irqrestore(&l1sram_lock, flags);
604
605 return ret;
606 }
607
608 void *l2_sram_alloc(size_t size)
609 {
610 #if L2_LENGTH != 0
611 unsigned long flags;
612 void *addr;
613
614 /* add mutex operation */
615 spin_lock_irqsave(&l2_sram_lock, flags);
616
617 addr = _sram_alloc(size, &free_l2_sram_head,
618 &used_l2_sram_head);
619
620 /* add mutex operation */
621 spin_unlock_irqrestore(&l2_sram_lock, flags);
622
623 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
624 (long unsigned int)addr, size);
625
626 return addr;
627 #else
628 return NULL;
629 #endif
630 }
631 EXPORT_SYMBOL(l2_sram_alloc);
632
633 void *l2_sram_zalloc(size_t size)
634 {
635 void *addr = l2_sram_alloc(size);
636
637 if (addr)
638 memset(addr, 0x00, size);
639
640 return addr;
641 }
642 EXPORT_SYMBOL(l2_sram_zalloc);
643
644 int l2_sram_free(const void *addr)
645 {
646 #if L2_LENGTH != 0
647 unsigned long flags;
648 int ret;
649
650 /* add mutex operation */
651 spin_lock_irqsave(&l2_sram_lock, flags);
652
653 ret = _sram_free(addr, &free_l2_sram_head,
654 &used_l2_sram_head);
655
656 /* add mutex operation */
657 spin_unlock_irqrestore(&l2_sram_lock, flags);
658
659 return ret;
660 #else
661 return -1;
662 #endif
663 }
664 EXPORT_SYMBOL(l2_sram_free);
665
666 int sram_free_with_lsl(const void *addr)
667 {
668 struct sram_list_struct *lsl, **tmp;
669 struct mm_struct *mm = current->mm;
670
671 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
672 if ((*tmp)->addr == addr)
673 goto found;
674 return -1;
675 found:
676 lsl = *tmp;
677 sram_free(addr);
678 *tmp = lsl->next;
679 kfree(lsl);
680
681 return 0;
682 }
683 EXPORT_SYMBOL(sram_free_with_lsl);
684
685 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
686 {
687 void *addr = NULL;
688 struct sram_list_struct *lsl = NULL;
689 struct mm_struct *mm = current->mm;
690
691 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
692 if (!lsl)
693 return NULL;
694
695 if (flags & L1_INST_SRAM)
696 addr = l1_inst_sram_alloc(size);
697
698 if (addr == NULL && (flags & L1_DATA_A_SRAM))
699 addr = l1_data_A_sram_alloc(size);
700
701 if (addr == NULL && (flags & L1_DATA_B_SRAM))
702 addr = l1_data_B_sram_alloc(size);
703
704 if (addr == NULL && (flags & L2_SRAM))
705 addr = l2_sram_alloc(size);
706
707 if (addr == NULL) {
708 kfree(lsl);
709 return NULL;
710 }
711 lsl->addr = addr;
712 lsl->length = size;
713 lsl->next = mm->context.sram_list;
714 mm->context.sram_list = lsl;
715 return addr;
716 }
717 EXPORT_SYMBOL(sram_alloc_with_lsl);
718
719 #ifdef CONFIG_PROC_FS
720 /* Once we get a real allocator, we'll throw all of this away.
721 * Until then, we need some sort of visibility into the L1 alloc.
722 */
723 /* Need to keep line of output the same. Currently, that is 44 bytes
724 * (including newline).
725 */
726 static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
727 struct sram_piece *pfree_head,
728 struct sram_piece *pused_head)
729 {
730 struct sram_piece *pslot;
731
732 if (!pfree_head || !pused_head)
733 return -1;
734
735 *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
736
737 /* search the relevant memory slot */
738 pslot = pused_head->next;
739
740 while (pslot != NULL) {
741 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
742 pslot->paddr, pslot->paddr + pslot->size,
743 pslot->size, pslot->pid, "ALLOCATED");
744
745 pslot = pslot->next;
746 }
747
748 pslot = pfree_head->next;
749
750 while (pslot != NULL) {
751 *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
752 pslot->paddr, pslot->paddr + pslot->size,
753 pslot->size, pslot->pid, "FREE");
754
755 pslot = pslot->next;
756 }
757
758 return 0;
759 }
760 static int sram_proc_read(char *buf, char **start, off_t offset, int count,
761 int *eof, void *data)
762 {
763 int len = 0;
764
765 if (_sram_proc_read(buf, &len, count, "Scratchpad",
766 &free_l1_ssram_head, &used_l1_ssram_head))
767 goto not_done;
768 #if L1_DATA_A_LENGTH != 0
769 if (_sram_proc_read(buf, &len, count, "L1 Data A",
770 &free_l1_data_A_sram_head,
771 &used_l1_data_A_sram_head))
772 goto not_done;
773 #endif
774 #if L1_DATA_B_LENGTH != 0
775 if (_sram_proc_read(buf, &len, count, "L1 Data B",
776 &free_l1_data_B_sram_head,
777 &used_l1_data_B_sram_head))
778 goto not_done;
779 #endif
780 #if L1_CODE_LENGTH != 0
781 if (_sram_proc_read(buf, &len, count, "L1 Instruction",
782 &free_l1_inst_sram_head, &used_l1_inst_sram_head))
783 goto not_done;
784 #endif
785 #if L2_LENGTH != 0
786 if (_sram_proc_read(buf, &len, count, "L2",
787 &free_l2_sram_head, &used_l2_sram_head))
788 goto not_done;
789 #endif
790
791 *eof = 1;
792 not_done:
793 return len;
794 }
795
796 static int __init sram_proc_init(void)
797 {
798 struct proc_dir_entry *ptr;
799 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
800 if (!ptr) {
801 printk(KERN_WARNING "unable to create /proc/sram\n");
802 return -1;
803 }
804 ptr->owner = THIS_MODULE;
805 ptr->read_proc = sram_proc_read;
806 return 0;
807 }
808 late_initcall(sram_proc_init);
809 #endif