]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/cris/arch-v10/kernel/kgdb.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / arch / cris / arch-v10 / kernel / kgdb.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*!**************************************************************************
3 *!
4 *! FILE NAME : kgdb.c
5 *!
6 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
7 *! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
8 *!
9 *!---------------------------------------------------------------------------
10 *! HISTORY
11 *!
12 *! DATE NAME CHANGES
13 *! ---- ---- -------
14 *! Apr 26 1999 Hendrik Ruijter Initial version.
15 *! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
16 *! struct assignment as it generates calls to
17 *! memcpy in libc.
18 *! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
19 *! Jul 21 1999 Bjorn Wesen eLinux port
20 *!
21 *!---------------------------------------------------------------------------
22 *!
23 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
24 *!
25 *!**************************************************************************/
26 /* @(#) cris_stub.c 1.3 06/17/99 */
27
28 /*
29 * kgdb usage notes:
30 * -----------------
31 *
32 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
33 * built with different gcc flags: "-g" is added to get debug infos, and
34 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
35 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
36 * before compresion. Such a kernel will behave just as usually, except if
37 * given a "debug=<device>" command line option. (Only serial devices are
38 * allowed for <device>, i.e. no printers or the like; possible values are
39 * machine depedend and are the same as for the usual debug device, the one
40 * for logging kernel messages.) If that option is given and the device can be
41 * initialized, the kernel will connect to the remote gdb in trap_init(). The
42 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
43 * implementation.
44 *
45 * To start a debugging session, start that gdb with the debugging kernel
46 * image (the one with the symbols, vmlinux.debug) named on the command line.
47 * This file will be used by gdb to get symbol and debugging infos about the
48 * kernel. Next, select remote debug mode by
49 * target remote <device>
50 * where <device> is the name of the serial device over which the debugged
51 * machine is connected. Maybe you have to adjust the baud rate by
52 * set remotebaud <rate>
53 * or also other parameters with stty:
54 * shell stty ... </dev/...
55 * If the kernel to debug has already booted, it waited for gdb and now
56 * connects, and you'll see a breakpoint being reported. If the kernel isn't
57 * running yet, start it now. The order of gdb and the kernel doesn't matter.
58 * Another thing worth knowing about in the getting-started phase is how to
59 * debug the remote protocol itself. This is activated with
60 * set remotedebug 1
61 * gdb will then print out each packet sent or received. You'll also get some
62 * messages about the gdb stub on the console of the debugged machine.
63 *
64 * If all that works, you can use lots of the usual debugging techniques on
65 * the kernel, e.g. inspecting and changing variables/memory, setting
66 * breakpoints, single stepping and so on. It's also possible to interrupt the
67 * debugged kernel by pressing C-c in gdb. Have fun! :-)
68 *
69 * The gdb stub is entered (and thus the remote gdb gets control) in the
70 * following situations:
71 *
72 * - If breakpoint() is called. This is just after kgdb initialization, or if
73 * a breakpoint() call has been put somewhere into the kernel source.
74 * (Breakpoints can of course also be set the usual way in gdb.)
75 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
76 *
77 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
78 * are entered. All the CPU exceptions are mapped to (more or less..., see
79 * the hard_trap_info array below) appropriate signal, which are reported
80 * to gdb. die_if_kernel() is usually called after some kind of access
81 * error and thus is reported as SIGSEGV.
82 *
83 * - When panic() is called. This is reported as SIGABRT.
84 *
85 * - If C-c is received over the serial line, which is treated as
86 * SIGINT.
87 *
88 * Of course, all these signals are just faked for gdb, since there is no
89 * signal concept as such for the kernel. It also isn't possible --obviously--
90 * to set signal handlers from inside gdb, or restart the kernel with a
91 * signal.
92 *
93 * Current limitations:
94 *
95 * - While the kernel is stopped, interrupts are disabled for safety reasons
96 * (i.e., variables not changing magically or the like). But this also
97 * means that the clock isn't running anymore, and that interrupts from the
98 * hardware may get lost/not be served in time. This can cause some device
99 * errors...
100 *
101 * - When single-stepping, only one instruction of the current thread is
102 * executed, but interrupts are allowed for that time and will be serviced
103 * if pending. Be prepared for that.
104 *
105 * - All debugging happens in kernel virtual address space. There's no way to
106 * access physical memory not mapped in kernel space, or to access user
107 * space. A way to work around this is using get_user_long & Co. in gdb
108 * expressions, but only for the current process.
109 *
110 * - Interrupting the kernel only works if interrupts are currently allowed,
111 * and the interrupt of the serial line isn't blocked by some other means
112 * (IPL too high, disabled, ...)
113 *
114 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
115 * (e.g. accessing invalid memory) may not be caught correctly. This could
116 * be removed in future by introducing a stack of struct registers.
117 *
118 */
119
120 /*
121 * To enable debugger support, two things need to happen. One, a
122 * call to kgdb_init() is necessary in order to allow any breakpoints
123 * or error conditions to be properly intercepted and reported to gdb.
124 * Two, a breakpoint needs to be generated to begin communication. This
125 * is most easily accomplished by a call to breakpoint().
126 *
127 * The following gdb commands are supported:
128 *
129 * command function Return value
130 *
131 * g return the value of the CPU registers hex data or ENN
132 * G set the value of the CPU registers OK or ENN
133 *
134 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
135 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
136 *
137 * c Resume at current address SNN ( signal NN)
138 * cAA..AA Continue at address AA..AA SNN
139 *
140 * s Step one instruction SNN
141 * sAA..AA Step one instruction from AA..AA SNN
142 *
143 * k kill
144 *
145 * ? What was the last sigval ? SNN (signal NN)
146 *
147 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
148 * baud rate
149 *
150 * All commands and responses are sent with a packet which includes a
151 * checksum. A packet consists of
152 *
153 * $<packet info>#<checksum>.
154 *
155 * where
156 * <packet info> :: <characters representing the command or response>
157 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
158 *
159 * When a packet is received, it is first acknowledged with either '+' or '-'.
160 * '+' indicates a successful transfer. '-' indicates a failed transfer.
161 *
162 * Example:
163 *
164 * Host: Reply:
165 * $m0,10#2a +$00010203040506070809101112131415#42
166 *
167 */
168
169
170 #include <linux/string.h>
171 #include <linux/signal.h>
172 #include <linux/kernel.h>
173 #include <linux/delay.h>
174 #include <linux/linkage.h>
175 #include <linux/reboot.h>
176
177 #include <asm/setup.h>
178 #include <asm/ptrace.h>
179
180 #include <arch/svinto.h>
181 #include <asm/irq.h>
182
183 static int kgdb_started = 0;
184
185 /********************************* Register image ****************************/
186 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
187 Reference", p. 1-1, with the additional register definitions of the
188 ETRAX 100LX in cris-opc.h.
189 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
190 pointer, SP, and R15 is the program counter, PC.
191 There are 16 special registers, P0-P15, where three of the unimplemented
192 registers, P0, P4 and P8, are reserved as zero-registers. A read from
193 any of these registers returns zero and a write has no effect. */
194
195 typedef
196 struct register_image
197 {
198 /* Offset */
199 unsigned int r0; /* 0x00 */
200 unsigned int r1; /* 0x04 */
201 unsigned int r2; /* 0x08 */
202 unsigned int r3; /* 0x0C */
203 unsigned int r4; /* 0x10 */
204 unsigned int r5; /* 0x14 */
205 unsigned int r6; /* 0x18 */
206 unsigned int r7; /* 0x1C */
207 unsigned int r8; /* 0x20 Frame pointer */
208 unsigned int r9; /* 0x24 */
209 unsigned int r10; /* 0x28 */
210 unsigned int r11; /* 0x2C */
211 unsigned int r12; /* 0x30 */
212 unsigned int r13; /* 0x34 */
213 unsigned int sp; /* 0x38 Stack pointer */
214 unsigned int pc; /* 0x3C Program counter */
215
216 unsigned char p0; /* 0x40 8-bit zero-register */
217 unsigned char vr; /* 0x41 Version register */
218
219 unsigned short p4; /* 0x42 16-bit zero-register */
220 unsigned short ccr; /* 0x44 Condition code register */
221
222 unsigned int mof; /* 0x46 Multiply overflow register */
223
224 unsigned int p8; /* 0x4A 32-bit zero-register */
225 unsigned int ibr; /* 0x4E Interrupt base register */
226 unsigned int irp; /* 0x52 Interrupt return pointer */
227 unsigned int srp; /* 0x56 Subroutine return pointer */
228 unsigned int bar; /* 0x5A Breakpoint address register */
229 unsigned int dccr; /* 0x5E Double condition code register */
230 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
231 unsigned int usp; /* 0x66 User mode stack pointer */
232 } registers;
233
234 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
235 int getDebugChar (void);
236
237 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
238 void putDebugChar (int val);
239
240 void enableDebugIRQ (void);
241
242 /******************** Prototypes for global functions. ***********************/
243
244 /* The string str is prepended with the GDB printout token and sent. */
245 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
246
247 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
248 ETRAX 100 specific. */
249 void handle_breakpoint (void); /* used by irq.c */
250
251 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
252 void handle_interrupt (void); /* used by irq.c */
253
254 /* A static breakpoint to be used at startup. */
255 void breakpoint (void); /* called by init/main.c */
256
257 /* From osys_int.c, executing_task contains the number of the current
258 executing task in osys. Does not know of object-oriented threads. */
259 extern unsigned char executing_task;
260
261 /* The number of characters used for a 64 bit thread identifier. */
262 #define HEXCHARS_IN_THREAD_ID 16
263
264 /********************************** Packet I/O ******************************/
265 /* BUFMAX defines the maximum number of characters in
266 inbound/outbound buffers */
267 #define BUFMAX 512
268
269 /* Run-length encoding maximum length. Send 64 at most. */
270 #define RUNLENMAX 64
271
272 /* The inbound/outbound buffers used in packet I/O */
273 static char remcomInBuffer[BUFMAX];
274 static char remcomOutBuffer[BUFMAX];
275
276 /* Error and warning messages. */
277 enum error_type
278 {
279 SUCCESS, E01, E02, E03, E04, E05, E06, E07, E08
280 };
281 static char *error_message[] =
282 {
283 "",
284 "E01 Set current or general thread - H[c,g] - internal error.",
285 "E02 Change register content - P - cannot change read-only register.",
286 "E03 Thread is not alive.", /* T, not used. */
287 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
288 "E05 Change register content - P - the register is not implemented..",
289 "E06 Change memory content - M - internal error.",
290 "E07 Change register content - P - the register is not stored on the stack",
291 "E08 Invalid parameter"
292 };
293 /********************************* Register image ****************************/
294 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
295 Reference", p. 1-1, with the additional register definitions of the
296 ETRAX 100LX in cris-opc.h.
297 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
298 pointer, SP, and R15 is the program counter, PC.
299 There are 16 special registers, P0-P15, where three of the unimplemented
300 registers, P0, P4 and P8, are reserved as zero-registers. A read from
301 any of these registers returns zero and a write has no effect. */
302 enum register_name
303 {
304 R0, R1, R2, R3,
305 R4, R5, R6, R7,
306 R8, R9, R10, R11,
307 R12, R13, SP, PC,
308 P0, VR, P2, P3,
309 P4, CCR, P6, MOF,
310 P8, IBR, IRP, SRP,
311 BAR, DCCR, BRP, USP
312 };
313
314 /* The register sizes of the registers in register_name. An unimplemented register
315 is designated by size 0 in this array. */
316 static int register_size[] =
317 {
318 4, 4, 4, 4,
319 4, 4, 4, 4,
320 4, 4, 4, 4,
321 4, 4, 4, 4,
322 1, 1, 0, 0,
323 2, 2, 0, 4,
324 4, 4, 4, 4,
325 4, 4, 4, 4
326 };
327
328 /* Contains the register image of the executing thread in the assembler
329 part of the code in order to avoid horrible addressing modes. */
330 registers cris_reg;
331
332 /* FIXME: Should this be used? Delete otherwise. */
333 /* Contains the assumed consistency state of the register image. Uses the
334 enum error_type for state information. */
335 static int consistency_status = SUCCESS;
336
337 /********************************** Handle exceptions ************************/
338 /* The variable cris_reg contains the register image associated with the
339 current_thread_c variable. It is a complete register image created at
340 entry. The reg_g contains a register image of a task where the general
341 registers are taken from the stack and all special registers are taken
342 from the executing task. It is associated with current_thread_g and used
343 in order to provide access mainly for 'g', 'G' and 'P'.
344 */
345
346 /********************************** Breakpoint *******************************/
347 /* Use an internal stack in the breakpoint and interrupt response routines */
348 #define INTERNAL_STACK_SIZE 1024
349 char internal_stack[INTERNAL_STACK_SIZE];
350
351 /* Due to the breakpoint return pointer, a state variable is needed to keep
352 track of whether it is a static (compiled) or dynamic (gdb-invoked)
353 breakpoint to be handled. A static breakpoint uses the content of register
354 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
355 in order to execute the instruction. The first breakpoint is static. */
356 static unsigned char __used is_dyn_brkp;
357
358 /********************************* String library ****************************/
359 /* Single-step over library functions creates trap loops. */
360
361 /* Copy char s2[] to s1[]. */
362 static char*
363 gdb_cris_strcpy (char *s1, const char *s2)
364 {
365 char *s = s1;
366
367 for (s = s1; (*s++ = *s2++) != '\0'; )
368 ;
369 return (s1);
370 }
371
372 /* Find length of s[]. */
373 static int
374 gdb_cris_strlen (const char *s)
375 {
376 const char *sc;
377
378 for (sc = s; *sc != '\0'; sc++)
379 ;
380 return (sc - s);
381 }
382
383 /* Find first occurrence of c in s[n]. */
384 static void*
385 gdb_cris_memchr (const void *s, int c, int n)
386 {
387 const unsigned char uc = c;
388 const unsigned char *su;
389
390 for (su = s; 0 < n; ++su, --n)
391 if (*su == uc)
392 return ((void *)su);
393 return (NULL);
394 }
395 /******************************* Standard library ****************************/
396 /* Single-step over library functions creates trap loops. */
397 /* Convert string to long. */
398 static int
399 gdb_cris_strtol (const char *s, char **endptr, int base)
400 {
401 char *s1;
402 char *sd;
403 int x = 0;
404
405 for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
406 x = x * base + (sd - hex_asc);
407
408 if (endptr)
409 {
410 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
411 *endptr = s1;
412 }
413
414 return x;
415 }
416
417 /********************************** Packet I/O ******************************/
418
419 /* Convert the memory, pointed to by mem into hexadecimal representation.
420 Put the result in buf, and return a pointer to the last character
421 in buf (null). */
422
423 static char *
424 mem2hex(char *buf, unsigned char *mem, int count)
425 {
426 int i;
427 int ch;
428
429 if (mem == NULL) {
430 /* Bogus read from m0. FIXME: What constitutes a valid address? */
431 for (i = 0; i < count; i++) {
432 *buf++ = '0';
433 *buf++ = '0';
434 }
435 } else {
436 /* Valid mem address. */
437 for (i = 0; i < count; i++) {
438 ch = *mem++;
439 buf = hex_byte_pack(buf, ch);
440 }
441 }
442
443 /* Terminate properly. */
444 *buf = '\0';
445 return (buf);
446 }
447
448 /* Put the content of the array, in binary representation, pointed to by buf
449 into memory pointed to by mem, and return a pointer to the character after
450 the last byte written.
451 Gdb will escape $, #, and the escape char (0x7d). */
452 static unsigned char*
453 bin2mem (unsigned char *mem, unsigned char *buf, int count)
454 {
455 int i;
456 unsigned char *next;
457 for (i = 0; i < count; i++) {
458 /* Check for any escaped characters. Be paranoid and
459 only unescape chars that should be escaped. */
460 if (*buf == 0x7d) {
461 next = buf + 1;
462 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
463 {
464 buf++;
465 *buf += 0x20;
466 }
467 }
468 *mem++ = *buf++;
469 }
470 return (mem);
471 }
472
473 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
474 returned. */
475 static void
476 getpacket (char *buffer)
477 {
478 unsigned char checksum;
479 unsigned char xmitcsum;
480 int i;
481 int count;
482 char ch;
483 do {
484 while ((ch = getDebugChar ()) != '$')
485 /* Wait for the start character $ and ignore all other characters */;
486 checksum = 0;
487 xmitcsum = -1;
488 count = 0;
489 /* Read until a # or the end of the buffer is reached */
490 while (count < BUFMAX - 1) {
491 ch = getDebugChar ();
492 if (ch == '#')
493 break;
494 checksum = checksum + ch;
495 buffer[count] = ch;
496 count = count + 1;
497 }
498 buffer[count] = '\0';
499
500 if (ch == '#') {
501 xmitcsum = hex_to_bin(getDebugChar()) << 4;
502 xmitcsum += hex_to_bin(getDebugChar());
503 if (checksum != xmitcsum) {
504 /* Wrong checksum */
505 putDebugChar ('-');
506 }
507 else {
508 /* Correct checksum */
509 putDebugChar ('+');
510 /* If sequence characters are received, reply with them */
511 if (buffer[2] == ':') {
512 putDebugChar (buffer[0]);
513 putDebugChar (buffer[1]);
514 /* Remove the sequence characters from the buffer */
515 count = gdb_cris_strlen (buffer);
516 for (i = 3; i <= count; i++)
517 buffer[i - 3] = buffer[i];
518 }
519 }
520 }
521 } while (checksum != xmitcsum);
522 }
523
524 /* Send $<data>#<checksum> from the <data> in the array buffer. */
525
526 static void
527 putpacket(char *buffer)
528 {
529 int checksum;
530 int runlen;
531 int encode;
532
533 do {
534 char *src = buffer;
535 putDebugChar ('$');
536 checksum = 0;
537 while (*src) {
538 /* Do run length encoding */
539 putDebugChar (*src);
540 checksum += *src;
541 runlen = 0;
542 while (runlen < RUNLENMAX && *src == src[runlen]) {
543 runlen++;
544 }
545 if (runlen > 3) {
546 /* Got a useful amount */
547 putDebugChar ('*');
548 checksum += '*';
549 encode = runlen + ' ' - 4;
550 putDebugChar (encode);
551 checksum += encode;
552 src += runlen;
553 }
554 else {
555 src++;
556 }
557 }
558 putDebugChar('#');
559 putDebugChar(hex_asc_hi(checksum));
560 putDebugChar(hex_asc_lo(checksum));
561 } while(kgdb_started && (getDebugChar() != '+'));
562 }
563
564 /* The string str is prepended with the GDB printout token and sent. Required
565 in traditional implementations. */
566 void
567 putDebugString (const unsigned char *str, int length)
568 {
569 remcomOutBuffer[0] = 'O';
570 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
571 putpacket(remcomOutBuffer);
572 }
573
574 /********************************* Register image ****************************/
575 /* Write a value to a specified register in the register image of the current
576 thread. Returns status code SUCCESS, E02, E05 or E08. */
577 static int
578 write_register (int regno, char *val)
579 {
580 int status = SUCCESS;
581 registers *current_reg = &cris_reg;
582
583 if (regno >= R0 && regno <= PC) {
584 /* 32-bit register with simple offset. */
585 if (hex2bin((unsigned char *)current_reg + regno * sizeof(unsigned int),
586 val, sizeof(unsigned int)))
587 status = E08;
588 }
589 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
590 /* Do not support read-only registers. */
591 status = E02;
592 }
593 else if (regno == CCR) {
594 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
595 and P7 (MOF) is 32 bits in ETRAX 100LX. */
596 if (hex2bin((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
597 val, sizeof(unsigned short)))
598 status = E08;
599 }
600 else if (regno >= MOF && regno <= USP) {
601 /* 32 bit register with complex offset. (P8 has been taken care of.) */
602 if (hex2bin((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
603 val, sizeof(unsigned int)))
604 status = E08;
605 }
606 else {
607 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
608 status = E05;
609 }
610 return status;
611 }
612
613 /* Read a value from a specified register in the register image. Returns the
614 value in the register or -1 for non-implemented registers.
615 Should check consistency_status after a call which may be E05 after changes
616 in the implementation. */
617 static int
618 read_register (char regno, unsigned int *valptr)
619 {
620 registers *current_reg = &cris_reg;
621
622 if (regno >= R0 && regno <= PC) {
623 /* 32-bit register with simple offset. */
624 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
625 return SUCCESS;
626 }
627 else if (regno == P0 || regno == VR) {
628 /* 8 bit register with complex offset. */
629 *valptr = (unsigned int)(*(unsigned char *)
630 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
631 return SUCCESS;
632 }
633 else if (regno == P4 || regno == CCR) {
634 /* 16 bit register with complex offset. */
635 *valptr = (unsigned int)(*(unsigned short *)
636 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
637 return SUCCESS;
638 }
639 else if (regno >= MOF && regno <= USP) {
640 /* 32 bit register with complex offset. */
641 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
642 + (regno-P8) * sizeof(unsigned int));
643 return SUCCESS;
644 }
645 else {
646 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
647 consistency_status = E05;
648 return E05;
649 }
650 }
651
652 /********************************** Handle exceptions ************************/
653 /* Build and send a response packet in order to inform the host the
654 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
655 AA = signal number
656 n... = register number (hex)
657 r... = register contents
658 n... = `thread'
659 r... = thread process ID. This is a hex integer.
660 n... = other string not starting with valid hex digit.
661 gdb should ignore this n,r pair and go on to the next.
662 This way we can extend the protocol. */
663 static void
664 stub_is_stopped(int sigval)
665 {
666 char *ptr = remcomOutBuffer;
667 int regno;
668
669 unsigned int reg_cont;
670 int status;
671
672 /* Send trap type (converted to signal) */
673
674 *ptr++ = 'T';
675 ptr = hex_byte_pack(ptr, sigval);
676
677 /* Send register contents. We probably only need to send the
678 * PC, frame pointer and stack pointer here. Other registers will be
679 * explicitly asked for. But for now, send all.
680 */
681
682 for (regno = R0; regno <= USP; regno++) {
683 /* Store n...:r...; for the registers in the buffer. */
684
685 status = read_register (regno, &reg_cont);
686
687 if (status == SUCCESS) {
688 ptr = hex_byte_pack(ptr, regno);
689 *ptr++ = ':';
690
691 ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
692 register_size[regno]);
693 *ptr++ = ';';
694 }
695
696 }
697
698 /* null-terminate and send it off */
699
700 *ptr = 0;
701
702 putpacket (remcomOutBuffer);
703 }
704
705 /* Performs a complete re-start from scratch. */
706 static void
707 kill_restart (void)
708 {
709 machine_restart("");
710 }
711
712 /* All expected commands are sent from remote.c. Send a response according
713 to the description in remote.c. */
714 void
715 handle_exception (int sigval)
716 {
717 /* Send response. */
718
719 stub_is_stopped (sigval);
720
721 for (;;) {
722 remcomOutBuffer[0] = '\0';
723 getpacket (remcomInBuffer);
724 switch (remcomInBuffer[0]) {
725 case 'g':
726 /* Read registers: g
727 Success: Each byte of register data is described by two hex digits.
728 Registers are in the internal order for GDB, and the bytes
729 in a register are in the same order the machine uses.
730 Failure: void. */
731
732 mem2hex(remcomOutBuffer, (char *)&cris_reg, sizeof(registers));
733 break;
734
735 case 'G':
736 /* Write registers. GXX..XX
737 Each byte of register data is described by two hex digits.
738 Success: OK
739 Failure: E08. */
740 if (hex2bin((char *)&cris_reg, &remcomInBuffer[1], sizeof(registers)))
741 gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
742 else
743 gdb_cris_strcpy (remcomOutBuffer, "OK");
744 break;
745
746 case 'P':
747 /* Write register. Pn...=r...
748 Write register n..., hex value without 0x, with value r...,
749 which contains a hex value without 0x and two hex digits
750 for each byte in the register (target byte order). P1f=11223344 means
751 set register 31 to 44332211.
752 Success: OK
753 Failure: E02, E05, E08 */
754 {
755 char *suffix;
756 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
757 int status;
758 status = write_register (regno, suffix+1);
759
760 switch (status) {
761 case E02:
762 /* Do not support read-only registers. */
763 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
764 break;
765 case E05:
766 /* Do not support non-existing registers. */
767 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
768 break;
769 case E07:
770 /* Do not support non-existing registers on the stack. */
771 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
772 break;
773 case E08:
774 /* Invalid parameter. */
775 gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
776 break;
777 default:
778 /* Valid register number. */
779 gdb_cris_strcpy (remcomOutBuffer, "OK");
780 break;
781 }
782 }
783 break;
784
785 case 'm':
786 /* Read from memory. mAA..AA,LLLL
787 AA..AA is the address and LLLL is the length.
788 Success: XX..XX is the memory content. Can be fewer bytes than
789 requested if only part of the data may be read. m6000120a,6c means
790 retrieve 108 byte from base address 6000120a.
791 Failure: void. */
792 {
793 char *suffix;
794 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
795 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
796
797 mem2hex(remcomOutBuffer, addr, length);
798 }
799 break;
800
801 case 'X':
802 /* Write to memory. XAA..AA,LLLL:XX..XX
803 AA..AA is the start address, LLLL is the number of bytes, and
804 XX..XX is the binary data.
805 Success: OK
806 Failure: void. */
807 case 'M':
808 /* Write to memory. MAA..AA,LLLL:XX..XX
809 AA..AA is the start address, LLLL is the number of bytes, and
810 XX..XX is the hexadecimal data.
811 Success: OK
812 Failure: E08. */
813 {
814 char *lenptr;
815 char *dataptr;
816 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
817 &lenptr, 16);
818 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
819 if (*lenptr == ',' && *dataptr == ':') {
820 if (remcomInBuffer[0] == 'M') {
821 if (hex2bin(addr, dataptr + 1, length))
822 gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
823 else
824 gdb_cris_strcpy (remcomOutBuffer, "OK");
825 } else /* X */ {
826 bin2mem(addr, dataptr + 1, length);
827 gdb_cris_strcpy (remcomOutBuffer, "OK");
828 }
829 } else {
830 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
831 }
832 }
833 break;
834
835 case 'c':
836 /* Continue execution. cAA..AA
837 AA..AA is the address where execution is resumed. If AA..AA is
838 omitted, resume at the present address.
839 Success: return to the executing thread.
840 Failure: will never know. */
841 if (remcomInBuffer[1] != '\0') {
842 cris_reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
843 }
844 enableDebugIRQ();
845 return;
846
847 case 's':
848 /* Step. sAA..AA
849 AA..AA is the address where execution is resumed. If AA..AA is
850 omitted, resume at the present address. Success: return to the
851 executing thread. Failure: will never know.
852
853 Should never be invoked. The single-step is implemented on
854 the host side. If ever invoked, it is an internal error E04. */
855 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
856 putpacket (remcomOutBuffer);
857 return;
858
859 case '?':
860 /* The last signal which caused a stop. ?
861 Success: SAA, where AA is the signal number.
862 Failure: void. */
863 remcomOutBuffer[0] = 'S';
864 remcomOutBuffer[1] = hex_asc_hi(sigval);
865 remcomOutBuffer[2] = hex_asc_lo(sigval);
866 remcomOutBuffer[3] = 0;
867 break;
868
869 case 'D':
870 /* Detach from host. D
871 Success: OK, and return to the executing thread.
872 Failure: will never know */
873 putpacket ("OK");
874 return;
875
876 case 'k':
877 case 'r':
878 /* kill request or reset request.
879 Success: restart of target.
880 Failure: will never know. */
881 kill_restart ();
882 break;
883
884 case 'C':
885 case 'S':
886 case '!':
887 case 'R':
888 case 'd':
889 /* Continue with signal sig. Csig;AA..AA
890 Step with signal sig. Ssig;AA..AA
891 Use the extended remote protocol. !
892 Restart the target system. R0
893 Toggle debug flag. d
894 Search backwards. tAA:PP,MM
895 Not supported: E04 */
896 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
897 break;
898
899 default:
900 /* The stub should ignore other request and send an empty
901 response ($#<checksum>). This way we can extend the protocol and GDB
902 can tell whether the stub it is talking to uses the old or the new. */
903 remcomOutBuffer[0] = 0;
904 break;
905 }
906 putpacket(remcomOutBuffer);
907 }
908 }
909
910 /********************************** Breakpoint *******************************/
911 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
912 An internal stack is used by the stub. The register image of the caller is
913 stored in the structure register_image.
914 Interactive communication with the host is handled by handle_exception and
915 finally the register image is restored. */
916
917 void kgdb_handle_breakpoint(void);
918
919 asm ("\n"
920 " .global kgdb_handle_breakpoint\n"
921 "kgdb_handle_breakpoint:\n"
922 ";;\n"
923 ";; Response to the break-instruction\n"
924 ";;\n"
925 ";; Create a register image of the caller\n"
926 ";;\n"
927 " move $dccr,[cris_reg+0x5E] ; Save the flags in DCCR before disable interrupts\n"
928 " di ; Disable interrupts\n"
929 " move.d $r0,[cris_reg] ; Save R0\n"
930 " move.d $r1,[cris_reg+0x04] ; Save R1\n"
931 " move.d $r2,[cris_reg+0x08] ; Save R2\n"
932 " move.d $r3,[cris_reg+0x0C] ; Save R3\n"
933 " move.d $r4,[cris_reg+0x10] ; Save R4\n"
934 " move.d $r5,[cris_reg+0x14] ; Save R5\n"
935 " move.d $r6,[cris_reg+0x18] ; Save R6\n"
936 " move.d $r7,[cris_reg+0x1C] ; Save R7\n"
937 " move.d $r8,[cris_reg+0x20] ; Save R8\n"
938 " move.d $r9,[cris_reg+0x24] ; Save R9\n"
939 " move.d $r10,[cris_reg+0x28] ; Save R10\n"
940 " move.d $r11,[cris_reg+0x2C] ; Save R11\n"
941 " move.d $r12,[cris_reg+0x30] ; Save R12\n"
942 " move.d $r13,[cris_reg+0x34] ; Save R13\n"
943 " move.d $sp,[cris_reg+0x38] ; Save SP (R14)\n"
944 ";; Due to the old assembler-versions BRP might not be recognized\n"
945 " .word 0xE670 ; move brp,$r0\n"
946 " subq 2,$r0 ; Set to address of previous instruction.\n"
947 " move.d $r0,[cris_reg+0x3c] ; Save the address in PC (R15)\n"
948 " clear.b [cris_reg+0x40] ; Clear P0\n"
949 " move $vr,[cris_reg+0x41] ; Save special register P1\n"
950 " clear.w [cris_reg+0x42] ; Clear P4\n"
951 " move $ccr,[cris_reg+0x44] ; Save special register CCR\n"
952 " move $mof,[cris_reg+0x46] ; P7\n"
953 " clear.d [cris_reg+0x4A] ; Clear P8\n"
954 " move $ibr,[cris_reg+0x4E] ; P9,\n"
955 " move $irp,[cris_reg+0x52] ; P10,\n"
956 " move $srp,[cris_reg+0x56] ; P11,\n"
957 " move $bar,[cris_reg+0x5A] ; P12,\n"
958 " ; P13, register DCCR already saved\n"
959 ";; Due to the old assembler-versions BRP might not be recognized\n"
960 " .word 0xE670 ; move brp,r0\n"
961 ";; Static (compiled) breakpoints must return to the next instruction in order\n"
962 ";; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction\n"
963 ";; in order to execute it when execution is continued.\n"
964 " test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?\n"
965 " beq is_static ; No, a static breakpoint\n"
966 " nop\n"
967 " subq 2,$r0 ; rerun the instruction the break replaced\n"
968 "is_static:\n"
969 " moveq 1,$r1\n"
970 " move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint\n"
971 " move.d $r0,[cris_reg+0x62] ; Save the return address in BRP\n"
972 " move $usp,[cris_reg+0x66] ; USP\n"
973 ";;\n"
974 ";; Handle the communication\n"
975 ";;\n"
976 " move.d internal_stack+1020,$sp ; Use the internal stack which grows upward\n"
977 " moveq 5,$r10 ; SIGTRAP\n"
978 " jsr handle_exception ; Interactive routine\n"
979 ";;\n"
980 ";; Return to the caller\n"
981 ";;\n"
982 " move.d [cris_reg],$r0 ; Restore R0\n"
983 " move.d [cris_reg+0x04],$r1 ; Restore R1\n"
984 " move.d [cris_reg+0x08],$r2 ; Restore R2\n"
985 " move.d [cris_reg+0x0C],$r3 ; Restore R3\n"
986 " move.d [cris_reg+0x10],$r4 ; Restore R4\n"
987 " move.d [cris_reg+0x14],$r5 ; Restore R5\n"
988 " move.d [cris_reg+0x18],$r6 ; Restore R6\n"
989 " move.d [cris_reg+0x1C],$r7 ; Restore R7\n"
990 " move.d [cris_reg+0x20],$r8 ; Restore R8\n"
991 " move.d [cris_reg+0x24],$r9 ; Restore R9\n"
992 " move.d [cris_reg+0x28],$r10 ; Restore R10\n"
993 " move.d [cris_reg+0x2C],$r11 ; Restore R11\n"
994 " move.d [cris_reg+0x30],$r12 ; Restore R12\n"
995 " move.d [cris_reg+0x34],$r13 ; Restore R13\n"
996 ";;\n"
997 ";; FIXME: Which registers should be restored?\n"
998 ";;\n"
999 " move.d [cris_reg+0x38],$sp ; Restore SP (R14)\n"
1000 " move [cris_reg+0x56],$srp ; Restore the subroutine return pointer.\n"
1001 " move [cris_reg+0x5E],$dccr ; Restore DCCR\n"
1002 " move [cris_reg+0x66],$usp ; Restore USP\n"
1003 " jump [cris_reg+0x62] ; A jump to the content in register BRP works.\n"
1004 " nop ;\n"
1005 "\n");
1006
1007 /* The hook for an interrupt generated by GDB. An internal stack is used
1008 by the stub. The register image of the caller is stored in the structure
1009 register_image. Interactive communication with the host is handled by
1010 handle_exception and finally the register image is restored. Due to the
1011 old assembler which does not recognise the break instruction and the
1012 breakpoint return pointer hex-code is used. */
1013
1014 void kgdb_handle_serial(void);
1015
1016 asm ("\n"
1017 " .global kgdb_handle_serial\n"
1018 "kgdb_handle_serial:\n"
1019 ";;\n"
1020 ";; Response to a serial interrupt\n"
1021 ";;\n"
1022 "\n"
1023 " move $dccr,[cris_reg+0x5E] ; Save the flags in DCCR\n"
1024 " di ; Disable interrupts\n"
1025 " move.d $r0,[cris_reg] ; Save R0\n"
1026 " move.d $r1,[cris_reg+0x04] ; Save R1\n"
1027 " move.d $r2,[cris_reg+0x08] ; Save R2\n"
1028 " move.d $r3,[cris_reg+0x0C] ; Save R3\n"
1029 " move.d $r4,[cris_reg+0x10] ; Save R4\n"
1030 " move.d $r5,[cris_reg+0x14] ; Save R5\n"
1031 " move.d $r6,[cris_reg+0x18] ; Save R6\n"
1032 " move.d $r7,[cris_reg+0x1C] ; Save R7\n"
1033 " move.d $r8,[cris_reg+0x20] ; Save R8\n"
1034 " move.d $r9,[cris_reg+0x24] ; Save R9\n"
1035 " move.d $r10,[cris_reg+0x28] ; Save R10\n"
1036 " move.d $r11,[cris_reg+0x2C] ; Save R11\n"
1037 " move.d $r12,[cris_reg+0x30] ; Save R12\n"
1038 " move.d $r13,[cris_reg+0x34] ; Save R13\n"
1039 " move.d $sp,[cris_reg+0x38] ; Save SP (R14)\n"
1040 " move $irp,[cris_reg+0x3c] ; Save the address in PC (R15)\n"
1041 " clear.b [cris_reg+0x40] ; Clear P0\n"
1042 " move $vr,[cris_reg+0x41] ; Save special register P1,\n"
1043 " clear.w [cris_reg+0x42] ; Clear P4\n"
1044 " move $ccr,[cris_reg+0x44] ; Save special register CCR\n"
1045 " move $mof,[cris_reg+0x46] ; P7\n"
1046 " clear.d [cris_reg+0x4A] ; Clear P8\n"
1047 " move $ibr,[cris_reg+0x4E] ; P9,\n"
1048 " move $irp,[cris_reg+0x52] ; P10,\n"
1049 " move $srp,[cris_reg+0x56] ; P11,\n"
1050 " move $bar,[cris_reg+0x5A] ; P12,\n"
1051 " ; P13, register DCCR already saved\n"
1052 ";; Due to the old assembler-versions BRP might not be recognized\n"
1053 " .word 0xE670 ; move brp,r0\n"
1054 " move.d $r0,[cris_reg+0x62] ; Save the return address in BRP\n"
1055 " move $usp,[cris_reg+0x66] ; USP\n"
1056 "\n"
1057 ";; get the serial character (from debugport.c) and check if it is a ctrl-c\n"
1058 "\n"
1059 " jsr getDebugChar\n"
1060 " cmp.b 3, $r10\n"
1061 " bne goback\n"
1062 " nop\n"
1063 "\n"
1064 " move.d [cris_reg+0x5E], $r10 ; Get DCCR\n"
1065 " btstq 8, $r10 ; Test the U-flag.\n"
1066 " bmi goback\n"
1067 " nop\n"
1068 "\n"
1069 ";;\n"
1070 ";; Handle the communication\n"
1071 ";;\n"
1072 " move.d internal_stack+1020,$sp ; Use the internal stack\n"
1073 " moveq 2,$r10 ; SIGINT\n"
1074 " jsr handle_exception ; Interactive routine\n"
1075 "\n"
1076 "goback:\n"
1077 ";;\n"
1078 ";; Return to the caller\n"
1079 ";;\n"
1080 " move.d [cris_reg],$r0 ; Restore R0\n"
1081 " move.d [cris_reg+0x04],$r1 ; Restore R1\n"
1082 " move.d [cris_reg+0x08],$r2 ; Restore R2\n"
1083 " move.d [cris_reg+0x0C],$r3 ; Restore R3\n"
1084 " move.d [cris_reg+0x10],$r4 ; Restore R4\n"
1085 " move.d [cris_reg+0x14],$r5 ; Restore R5\n"
1086 " move.d [cris_reg+0x18],$r6 ; Restore R6\n"
1087 " move.d [cris_reg+0x1C],$r7 ; Restore R7\n"
1088 " move.d [cris_reg+0x20],$r8 ; Restore R8\n"
1089 " move.d [cris_reg+0x24],$r9 ; Restore R9\n"
1090 " move.d [cris_reg+0x28],$r10 ; Restore R10\n"
1091 " move.d [cris_reg+0x2C],$r11 ; Restore R11\n"
1092 " move.d [cris_reg+0x30],$r12 ; Restore R12\n"
1093 " move.d [cris_reg+0x34],$r13 ; Restore R13\n"
1094 ";;\n"
1095 ";; FIXME: Which registers should be restored?\n"
1096 ";;\n"
1097 " move.d [cris_reg+0x38],$sp ; Restore SP (R14)\n"
1098 " move [cris_reg+0x56],$srp ; Restore the subroutine return pointer.\n"
1099 " move [cris_reg+0x5E],$dccr ; Restore DCCR\n"
1100 " move [cris_reg+0x66],$usp ; Restore USP\n"
1101 " reti ; Return from the interrupt routine\n"
1102 " nop\n"
1103 "\n");
1104
1105 /* Use this static breakpoint in the start-up only. */
1106
1107 void
1108 breakpoint(void)
1109 {
1110 kgdb_started = 1;
1111 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1112 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1113 }
1114
1115 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1116
1117 void
1118 kgdb_init(void)
1119 {
1120 /* could initialize debug port as well but it's done in head.S already... */
1121
1122 /* breakpoint handler is now set in irq.c */
1123 set_int_vector(8, kgdb_handle_serial);
1124
1125 enableDebugIRQ();
1126 }
1127
1128 /****************************** End of file **********************************/