]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/cris/arch-v32/kernel/smp.c
atomic: use <linux/atomic.h>
[mirror_ubuntu-focal-kernel.git] / arch / cris / arch-v32 / kernel / smp.c
1 #include <linux/types.h>
2 #include <asm/delay.h>
3 #include <irq.h>
4 #include <hwregs/intr_vect.h>
5 #include <hwregs/intr_vect_defs.h>
6 #include <asm/tlbflush.h>
7 #include <asm/mmu_context.h>
8 #include <hwregs/asm/mmu_defs_asm.h>
9 #include <hwregs/supp_reg.h>
10 #include <linux/atomic.h>
11
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/timex.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/cpumask.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20
21 #define IPI_SCHEDULE 1
22 #define IPI_CALL 2
23 #define IPI_FLUSH_TLB 4
24 #define IPI_BOOT 8
25
26 #define FLUSH_ALL (void*)0xffffffff
27
28 /* Vector of locks used for various atomic operations */
29 spinlock_t cris_atomic_locks[] = {
30 [0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
31 };
32
33 /* CPU masks */
34 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
35 EXPORT_SYMBOL(phys_cpu_present_map);
36
37 /* Variables used during SMP boot */
38 volatile int cpu_now_booting = 0;
39 volatile struct thread_info *smp_init_current_idle_thread;
40
41 /* Variables used during IPI */
42 static DEFINE_SPINLOCK(call_lock);
43 static DEFINE_SPINLOCK(tlbstate_lock);
44
45 struct call_data_struct {
46 void (*func) (void *info);
47 void *info;
48 int wait;
49 };
50
51 static struct call_data_struct * call_data;
52
53 static struct mm_struct* flush_mm;
54 static struct vm_area_struct* flush_vma;
55 static unsigned long flush_addr;
56
57 /* Mode registers */
58 static unsigned long irq_regs[NR_CPUS] = {
59 regi_irq,
60 regi_irq2
61 };
62
63 static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
64 static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
65 static struct irqaction irq_ipi = {
66 .handler = crisv32_ipi_interrupt,
67 .flags = IRQF_DISABLED,
68 .name = "ipi",
69 };
70
71 extern void cris_mmu_init(void);
72 extern void cris_timer_init(void);
73
74 /* SMP initialization */
75 void __init smp_prepare_cpus(unsigned int max_cpus)
76 {
77 int i;
78
79 /* From now on we can expect IPIs so set them up */
80 setup_irq(IPI_INTR_VECT, &irq_ipi);
81
82 /* Mark all possible CPUs as present */
83 for (i = 0; i < max_cpus; i++)
84 cpumask_set_cpu(i, &phys_cpu_present_map);
85 }
86
87 void __devinit smp_prepare_boot_cpu(void)
88 {
89 /* PGD pointer has moved after per_cpu initialization so
90 * update the MMU.
91 */
92 pgd_t **pgd;
93 pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
94
95 SUPP_BANK_SEL(1);
96 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
97 SUPP_BANK_SEL(2);
98 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
99
100 set_cpu_online(0, true);
101 cpumask_set_cpu(0, &phys_cpu_present_map);
102 set_cpu_possible(0, true);
103 }
104
105 void __init smp_cpus_done(unsigned int max_cpus)
106 {
107 }
108
109 /* Bring one cpu online.*/
110 static int __init
111 smp_boot_one_cpu(int cpuid)
112 {
113 unsigned timeout;
114 struct task_struct *idle;
115 cpumask_t cpu_mask;
116
117 cpumask_clear(&cpu_mask);
118 idle = fork_idle(cpuid);
119 if (IS_ERR(idle))
120 panic("SMP: fork failed for CPU:%d", cpuid);
121
122 task_thread_info(idle)->cpu = cpuid;
123
124 /* Information to the CPU that is about to boot */
125 smp_init_current_idle_thread = task_thread_info(idle);
126 cpu_now_booting = cpuid;
127
128 /* Kick it */
129 set_cpu_online(cpuid, true);
130 cpumask_set_cpu(cpuid, &cpu_mask);
131 send_ipi(IPI_BOOT, 0, cpu_mask);
132 set_cpu_online(cpuid, false);
133
134 /* Wait for CPU to come online */
135 for (timeout = 0; timeout < 10000; timeout++) {
136 if(cpu_online(cpuid)) {
137 cpu_now_booting = 0;
138 smp_init_current_idle_thread = NULL;
139 return 0; /* CPU online */
140 }
141 udelay(100);
142 barrier();
143 }
144
145 put_task_struct(idle);
146 idle = NULL;
147
148 printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
149 return -1;
150 }
151
152 /* Secondary CPUs starts using C here. Here we need to setup CPU
153 * specific stuff such as the local timer and the MMU. */
154 void __init smp_callin(void)
155 {
156 extern void cpu_idle(void);
157
158 int cpu = cpu_now_booting;
159 reg_intr_vect_rw_mask vect_mask = {0};
160
161 /* Initialise the idle task for this CPU */
162 atomic_inc(&init_mm.mm_count);
163 current->active_mm = &init_mm;
164
165 /* Set up MMU */
166 cris_mmu_init();
167 __flush_tlb_all();
168
169 /* Setup local timer. */
170 cris_timer_init();
171
172 /* Enable IRQ and idle */
173 REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
174 crisv32_unmask_irq(IPI_INTR_VECT);
175 crisv32_unmask_irq(TIMER0_INTR_VECT);
176 preempt_disable();
177 notify_cpu_starting(cpu);
178 local_irq_enable();
179
180 set_cpu_online(cpu, true);
181 cpu_idle();
182 }
183
184 /* Stop execution on this CPU.*/
185 void stop_this_cpu(void* dummy)
186 {
187 local_irq_disable();
188 asm volatile("halt");
189 }
190
191 /* Other calls */
192 void smp_send_stop(void)
193 {
194 smp_call_function(stop_this_cpu, NULL, 0);
195 }
196
197 int setup_profiling_timer(unsigned int multiplier)
198 {
199 return -EINVAL;
200 }
201
202
203 /* cache_decay_ticks is used by the scheduler to decide if a process
204 * is "hot" on one CPU. A higher value means a higher penalty to move
205 * a process to another CPU. Our cache is rather small so we report
206 * 1 tick.
207 */
208 unsigned long cache_decay_ticks = 1;
209
210 int __cpuinit __cpu_up(unsigned int cpu)
211 {
212 smp_boot_one_cpu(cpu);
213 return cpu_online(cpu) ? 0 : -ENOSYS;
214 }
215
216 void smp_send_reschedule(int cpu)
217 {
218 cpumask_t cpu_mask;
219 cpumask_clear(&cpu_mask);
220 cpumask_set_cpu(cpu, &cpu_mask);
221 send_ipi(IPI_SCHEDULE, 0, cpu_mask);
222 }
223
224 /* TLB flushing
225 *
226 * Flush needs to be done on the local CPU and on any other CPU that
227 * may have the same mapping. The mm->cpu_vm_mask is used to keep track
228 * of which CPUs that a specific process has been executed on.
229 */
230 void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
231 {
232 unsigned long flags;
233 cpumask_t cpu_mask;
234
235 spin_lock_irqsave(&tlbstate_lock, flags);
236 cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
237 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
238 flush_mm = mm;
239 flush_vma = vma;
240 flush_addr = addr;
241 send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
242 spin_unlock_irqrestore(&tlbstate_lock, flags);
243 }
244
245 void flush_tlb_all(void)
246 {
247 __flush_tlb_all();
248 flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
249 }
250
251 void flush_tlb_mm(struct mm_struct *mm)
252 {
253 __flush_tlb_mm(mm);
254 flush_tlb_common(mm, FLUSH_ALL, 0);
255 /* No more mappings in other CPUs */
256 cpumask_clear(mm_cpumask(mm));
257 cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
258 }
259
260 void flush_tlb_page(struct vm_area_struct *vma,
261 unsigned long addr)
262 {
263 __flush_tlb_page(vma, addr);
264 flush_tlb_common(vma->vm_mm, vma, addr);
265 }
266
267 /* Inter processor interrupts
268 *
269 * The IPIs are used for:
270 * * Force a schedule on a CPU
271 * * FLush TLB on other CPUs
272 * * Call a function on other CPUs
273 */
274
275 int send_ipi(int vector, int wait, cpumask_t cpu_mask)
276 {
277 int i = 0;
278 reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
279 int ret = 0;
280
281 /* Calculate CPUs to send to. */
282 cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
283
284 /* Send the IPI. */
285 for_each_cpu(i, &cpu_mask)
286 {
287 ipi.vector |= vector;
288 REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
289 }
290
291 /* Wait for IPI to finish on other CPUS */
292 if (wait) {
293 for_each_cpu(i, &cpu_mask) {
294 int j;
295 for (j = 0 ; j < 1000; j++) {
296 ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
297 if (!ipi.vector)
298 break;
299 udelay(100);
300 }
301
302 /* Timeout? */
303 if (ipi.vector) {
304 printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
305 ret = -ETIMEDOUT;
306 dump_stack();
307 }
308 }
309 }
310 return ret;
311 }
312
313 /*
314 * You must not call this function with disabled interrupts or from a
315 * hardware interrupt handler or from a bottom half handler.
316 */
317 int smp_call_function(void (*func)(void *info), void *info, int wait)
318 {
319 cpumask_t cpu_mask;
320 struct call_data_struct data;
321 int ret;
322
323 cpumask_setall(&cpu_mask);
324 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
325
326 WARN_ON(irqs_disabled());
327
328 data.func = func;
329 data.info = info;
330 data.wait = wait;
331
332 spin_lock(&call_lock);
333 call_data = &data;
334 ret = send_ipi(IPI_CALL, wait, cpu_mask);
335 spin_unlock(&call_lock);
336
337 return ret;
338 }
339
340 irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
341 {
342 void (*func) (void *info) = call_data->func;
343 void *info = call_data->info;
344 reg_intr_vect_rw_ipi ipi;
345
346 ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
347
348 if (ipi.vector & IPI_SCHEDULE) {
349 scheduler_ipi();
350 }
351 if (ipi.vector & IPI_CALL) {
352 func(info);
353 }
354 if (ipi.vector & IPI_FLUSH_TLB) {
355 if (flush_mm == FLUSH_ALL)
356 __flush_tlb_all();
357 else if (flush_vma == FLUSH_ALL)
358 __flush_tlb_mm(flush_mm);
359 else
360 __flush_tlb_page(flush_vma, flush_addr);
361 }
362
363 ipi.vector = 0;
364 REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
365
366 return IRQ_HANDLED;
367 }
368