]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/cris/arch-v32/kernel/smp.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-bionic-kernel.git] / arch / cris / arch-v32 / kernel / smp.c
1 #include <linux/types.h>
2 #include <asm/delay.h>
3 #include <irq.h>
4 #include <hwregs/intr_vect.h>
5 #include <hwregs/intr_vect_defs.h>
6 #include <asm/tlbflush.h>
7 #include <asm/mmu_context.h>
8 #include <hwregs/asm/mmu_defs_asm.h>
9 #include <hwregs/supp_reg.h>
10 #include <asm/atomic.h>
11
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/timex.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/cpumask.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20
21 #define IPI_SCHEDULE 1
22 #define IPI_CALL 2
23 #define IPI_FLUSH_TLB 4
24 #define IPI_BOOT 8
25
26 #define FLUSH_ALL (void*)0xffffffff
27
28 /* Vector of locks used for various atomic operations */
29 spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED};
30
31 /* CPU masks */
32 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
33 EXPORT_SYMBOL(phys_cpu_present_map);
34
35 /* Variables used during SMP boot */
36 volatile int cpu_now_booting = 0;
37 volatile struct thread_info *smp_init_current_idle_thread;
38
39 /* Variables used during IPI */
40 static DEFINE_SPINLOCK(call_lock);
41 static DEFINE_SPINLOCK(tlbstate_lock);
42
43 struct call_data_struct {
44 void (*func) (void *info);
45 void *info;
46 int wait;
47 };
48
49 static struct call_data_struct * call_data;
50
51 static struct mm_struct* flush_mm;
52 static struct vm_area_struct* flush_vma;
53 static unsigned long flush_addr;
54
55 /* Mode registers */
56 static unsigned long irq_regs[NR_CPUS] = {
57 regi_irq,
58 regi_irq2
59 };
60
61 static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
62 static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
63 static struct irqaction irq_ipi = {
64 .handler = crisv32_ipi_interrupt,
65 .flags = IRQF_DISABLED,
66 .name = "ipi",
67 };
68
69 extern void cris_mmu_init(void);
70 extern void cris_timer_init(void);
71
72 /* SMP initialization */
73 void __init smp_prepare_cpus(unsigned int max_cpus)
74 {
75 int i;
76
77 /* From now on we can expect IPIs so set them up */
78 setup_irq(IPI_INTR_VECT, &irq_ipi);
79
80 /* Mark all possible CPUs as present */
81 for (i = 0; i < max_cpus; i++)
82 cpu_set(i, phys_cpu_present_map);
83 }
84
85 void __devinit smp_prepare_boot_cpu(void)
86 {
87 /* PGD pointer has moved after per_cpu initialization so
88 * update the MMU.
89 */
90 pgd_t **pgd;
91 pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
92
93 SUPP_BANK_SEL(1);
94 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
95 SUPP_BANK_SEL(2);
96 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
97
98 set_cpu_online(0, true);
99 cpu_set(0, phys_cpu_present_map);
100 set_cpu_possible(0, true);
101 }
102
103 void __init smp_cpus_done(unsigned int max_cpus)
104 {
105 }
106
107 /* Bring one cpu online.*/
108 static int __init
109 smp_boot_one_cpu(int cpuid)
110 {
111 unsigned timeout;
112 struct task_struct *idle;
113 cpumask_t cpu_mask = CPU_MASK_NONE;
114
115 idle = fork_idle(cpuid);
116 if (IS_ERR(idle))
117 panic("SMP: fork failed for CPU:%d", cpuid);
118
119 task_thread_info(idle)->cpu = cpuid;
120
121 /* Information to the CPU that is about to boot */
122 smp_init_current_idle_thread = task_thread_info(idle);
123 cpu_now_booting = cpuid;
124
125 /* Kick it */
126 cpu_set(cpuid, cpu_online_map);
127 cpu_set(cpuid, cpu_mask);
128 send_ipi(IPI_BOOT, 0, cpu_mask);
129 cpu_clear(cpuid, cpu_online_map);
130
131 /* Wait for CPU to come online */
132 for (timeout = 0; timeout < 10000; timeout++) {
133 if(cpu_online(cpuid)) {
134 cpu_now_booting = 0;
135 smp_init_current_idle_thread = NULL;
136 return 0; /* CPU online */
137 }
138 udelay(100);
139 barrier();
140 }
141
142 put_task_struct(idle);
143 idle = NULL;
144
145 printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
146 return -1;
147 }
148
149 /* Secondary CPUs starts using C here. Here we need to setup CPU
150 * specific stuff such as the local timer and the MMU. */
151 void __init smp_callin(void)
152 {
153 extern void cpu_idle(void);
154
155 int cpu = cpu_now_booting;
156 reg_intr_vect_rw_mask vect_mask = {0};
157
158 /* Initialise the idle task for this CPU */
159 atomic_inc(&init_mm.mm_count);
160 current->active_mm = &init_mm;
161
162 /* Set up MMU */
163 cris_mmu_init();
164 __flush_tlb_all();
165
166 /* Setup local timer. */
167 cris_timer_init();
168
169 /* Enable IRQ and idle */
170 REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
171 crisv32_unmask_irq(IPI_INTR_VECT);
172 crisv32_unmask_irq(TIMER0_INTR_VECT);
173 preempt_disable();
174 notify_cpu_starting(cpu);
175 local_irq_enable();
176
177 cpu_set(cpu, cpu_online_map);
178 cpu_idle();
179 }
180
181 /* Stop execution on this CPU.*/
182 void stop_this_cpu(void* dummy)
183 {
184 local_irq_disable();
185 asm volatile("halt");
186 }
187
188 /* Other calls */
189 void smp_send_stop(void)
190 {
191 smp_call_function(stop_this_cpu, NULL, 0);
192 }
193
194 int setup_profiling_timer(unsigned int multiplier)
195 {
196 return -EINVAL;
197 }
198
199
200 /* cache_decay_ticks is used by the scheduler to decide if a process
201 * is "hot" on one CPU. A higher value means a higher penalty to move
202 * a process to another CPU. Our cache is rather small so we report
203 * 1 tick.
204 */
205 unsigned long cache_decay_ticks = 1;
206
207 int __cpuinit __cpu_up(unsigned int cpu)
208 {
209 smp_boot_one_cpu(cpu);
210 return cpu_online(cpu) ? 0 : -ENOSYS;
211 }
212
213 void smp_send_reschedule(int cpu)
214 {
215 cpumask_t cpu_mask = CPU_MASK_NONE;
216 cpu_set(cpu, cpu_mask);
217 send_ipi(IPI_SCHEDULE, 0, cpu_mask);
218 }
219
220 /* TLB flushing
221 *
222 * Flush needs to be done on the local CPU and on any other CPU that
223 * may have the same mapping. The mm->cpu_vm_mask is used to keep track
224 * of which CPUs that a specific process has been executed on.
225 */
226 void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
227 {
228 unsigned long flags;
229 cpumask_t cpu_mask;
230
231 spin_lock_irqsave(&tlbstate_lock, flags);
232 cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
233 cpu_clear(smp_processor_id(), cpu_mask);
234 flush_mm = mm;
235 flush_vma = vma;
236 flush_addr = addr;
237 send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
238 spin_unlock_irqrestore(&tlbstate_lock, flags);
239 }
240
241 void flush_tlb_all(void)
242 {
243 __flush_tlb_all();
244 flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
245 }
246
247 void flush_tlb_mm(struct mm_struct *mm)
248 {
249 __flush_tlb_mm(mm);
250 flush_tlb_common(mm, FLUSH_ALL, 0);
251 /* No more mappings in other CPUs */
252 cpumask_clear(mm_cpumask(mm));
253 cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
254 }
255
256 void flush_tlb_page(struct vm_area_struct *vma,
257 unsigned long addr)
258 {
259 __flush_tlb_page(vma, addr);
260 flush_tlb_common(vma->vm_mm, vma, addr);
261 }
262
263 /* Inter processor interrupts
264 *
265 * The IPIs are used for:
266 * * Force a schedule on a CPU
267 * * FLush TLB on other CPUs
268 * * Call a function on other CPUs
269 */
270
271 int send_ipi(int vector, int wait, cpumask_t cpu_mask)
272 {
273 int i = 0;
274 reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
275 int ret = 0;
276
277 /* Calculate CPUs to send to. */
278 cpus_and(cpu_mask, cpu_mask, cpu_online_map);
279
280 /* Send the IPI. */
281 for_each_cpu_mask(i, cpu_mask)
282 {
283 ipi.vector |= vector;
284 REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
285 }
286
287 /* Wait for IPI to finish on other CPUS */
288 if (wait) {
289 for_each_cpu_mask(i, cpu_mask) {
290 int j;
291 for (j = 0 ; j < 1000; j++) {
292 ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
293 if (!ipi.vector)
294 break;
295 udelay(100);
296 }
297
298 /* Timeout? */
299 if (ipi.vector) {
300 printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
301 ret = -ETIMEDOUT;
302 dump_stack();
303 }
304 }
305 }
306 return ret;
307 }
308
309 /*
310 * You must not call this function with disabled interrupts or from a
311 * hardware interrupt handler or from a bottom half handler.
312 */
313 int smp_call_function(void (*func)(void *info), void *info, int wait)
314 {
315 cpumask_t cpu_mask = CPU_MASK_ALL;
316 struct call_data_struct data;
317 int ret;
318
319 cpu_clear(smp_processor_id(), cpu_mask);
320
321 WARN_ON(irqs_disabled());
322
323 data.func = func;
324 data.info = info;
325 data.wait = wait;
326
327 spin_lock(&call_lock);
328 call_data = &data;
329 ret = send_ipi(IPI_CALL, wait, cpu_mask);
330 spin_unlock(&call_lock);
331
332 return ret;
333 }
334
335 irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
336 {
337 void (*func) (void *info) = call_data->func;
338 void *info = call_data->info;
339 reg_intr_vect_rw_ipi ipi;
340
341 ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
342
343 if (ipi.vector & IPI_CALL) {
344 func(info);
345 }
346 if (ipi.vector & IPI_FLUSH_TLB) {
347 if (flush_mm == FLUSH_ALL)
348 __flush_tlb_all();
349 else if (flush_vma == FLUSH_ALL)
350 __flush_tlb_mm(flush_mm);
351 else
352 __flush_tlb_page(flush_vma, flush_addr);
353 }
354
355 ipi.vector = 0;
356 REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
357
358 return IRQ_HANDLED;
359 }
360