]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/cris/arch-v32/kernel/time.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / arch / cris / arch-v32 / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/cris/arch-v32/kernel/time.c
4 *
5 * Copyright (C) 2003-2010 Axis Communications AB
6 *
7 */
8
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/clocksource.h>
12 #include <linux/clockchips.h>
13 #include <linux/interrupt.h>
14 #include <linux/swap.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <linux/cpufreq.h>
19 #include <linux/sched_clock.h>
20 #include <linux/mm.h>
21 #include <asm/types.h>
22 #include <asm/signal.h>
23 #include <asm/io.h>
24 #include <asm/delay.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27
28 #include <hwregs/reg_map.h>
29 #include <hwregs/reg_rdwr.h>
30 #include <hwregs/timer_defs.h>
31 #include <hwregs/intr_vect_defs.h>
32 #ifdef CONFIG_CRIS_MACH_ARTPEC3
33 #include <hwregs/clkgen_defs.h>
34 #endif
35
36 /* Watchdog defines */
37 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
38 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
39 /* Number of 763 counts before watchdog bites */
40 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
41
42 #define CRISV32_TIMER_FREQ (100000000lu)
43
44 unsigned long timer_regs[NR_CPUS] =
45 {
46 regi_timer0,
47 };
48
49 extern int set_rtc_mmss(unsigned long nowtime);
50
51 #ifdef CONFIG_CPU_FREQ
52 static int cris_time_freq_notifier(struct notifier_block *nb,
53 unsigned long val, void *data);
54
55 static struct notifier_block cris_time_freq_notifier_block = {
56 .notifier_call = cris_time_freq_notifier,
57 };
58 #endif
59
60 unsigned long get_ns_in_jiffie(void)
61 {
62 reg_timer_r_tmr0_data data;
63 unsigned long ns;
64
65 data = REG_RD(timer, regi_timer0, r_tmr0_data);
66 ns = (TIMER0_DIV - data) * 10;
67 return ns;
68 }
69
70 /* From timer MDS describing the hardware watchdog:
71 * 4.3.1 Watchdog Operation
72 * The watchdog timer is an 8-bit timer with a configurable start value.
73 * Once started the watchdog counts downwards with a frequency of 763 Hz
74 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
75 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
76 * chip.
77 */
78 /* This gives us 1.3 ms to do something useful when the NMI comes */
79
80 /* Right now, starting the watchdog is the same as resetting it */
81 #define start_watchdog reset_watchdog
82
83 #if defined(CONFIG_ETRAX_WATCHDOG)
84 static short int watchdog_key = 42; /* arbitrary 7 bit number */
85 #endif
86
87 /* Number of pages to consider "out of memory". It is normal that the memory
88 * is used though, so set this really low. */
89 #define WATCHDOG_MIN_FREE_PAGES 8
90
91 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
92 /* for reliable NICE_DOGGY behaviour */
93 static int bite_in_progress;
94 #endif
95
96 void reset_watchdog(void)
97 {
98 #if defined(CONFIG_ETRAX_WATCHDOG)
99 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
100
101 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
102 if (unlikely(bite_in_progress))
103 return;
104 #endif
105 /* Only keep watchdog happy as long as we have memory left! */
106 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
107 /* Reset the watchdog with the inverse of the old key */
108 /* Invert key, which is 7 bits */
109 watchdog_key ^= ETRAX_WD_KEY_MASK;
110 wd_ctrl.cnt = ETRAX_WD_CNT;
111 wd_ctrl.cmd = regk_timer_start;
112 wd_ctrl.key = watchdog_key;
113 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
114 }
115 #endif
116 }
117
118 /* stop the watchdog - we still need the correct key */
119
120 void stop_watchdog(void)
121 {
122 #if defined(CONFIG_ETRAX_WATCHDOG)
123 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
124 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
125 wd_ctrl.cnt = ETRAX_WD_CNT;
126 wd_ctrl.cmd = regk_timer_stop;
127 wd_ctrl.key = watchdog_key;
128 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
129 #endif
130 }
131
132 extern void show_registers(struct pt_regs *regs);
133
134 void handle_watchdog_bite(struct pt_regs *regs)
135 {
136 #if defined(CONFIG_ETRAX_WATCHDOG)
137 extern int cause_of_death;
138
139 nmi_enter();
140 oops_in_progress = 1;
141 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
142 bite_in_progress = 1;
143 #endif
144 printk(KERN_WARNING "Watchdog bite\n");
145
146 /* Check if forced restart or unexpected watchdog */
147 if (cause_of_death == 0xbedead) {
148 #ifdef CONFIG_CRIS_MACH_ARTPEC3
149 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
150 * us to go to lower frequency for the reset to be reliable
151 */
152 reg_clkgen_rw_clk_ctrl ctrl =
153 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
154 ctrl.pll = 0;
155 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
156 #endif
157 while(1);
158 }
159
160 /* Unexpected watchdog, stop the watchdog and dump registers. */
161 stop_watchdog();
162 printk(KERN_WARNING "Oops: bitten by watchdog\n");
163 show_registers(regs);
164 oops_in_progress = 0;
165 printk("\n"); /* Flush mtdoops. */
166 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
167 reset_watchdog();
168 #endif
169 while(1) /* nothing */;
170 #endif
171 }
172
173 extern void cris_profile_sample(struct pt_regs *regs);
174 static void __iomem *timer_base;
175
176 static int crisv32_clkevt_switch_state(struct clock_event_device *dev)
177 {
178 reg_timer_rw_tmr0_ctrl ctrl = {
179 .op = regk_timer_hold,
180 .freq = regk_timer_f100,
181 };
182
183 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
184 return 0;
185 }
186
187 static int crisv32_clkevt_next_event(unsigned long evt,
188 struct clock_event_device *dev)
189 {
190 reg_timer_rw_tmr0_ctrl ctrl = {
191 .op = regk_timer_ld,
192 .freq = regk_timer_f100,
193 };
194
195 REG_WR(timer, timer_base, rw_tmr0_div, evt);
196 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
197
198 ctrl.op = regk_timer_run;
199 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
200
201 return 0;
202 }
203
204 static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id)
205 {
206 struct clock_event_device *evt = dev_id;
207 reg_timer_rw_tmr0_ctrl ctrl = {
208 .op = regk_timer_hold,
209 .freq = regk_timer_f100,
210 };
211 reg_timer_rw_ack_intr ack = { .tmr0 = 1 };
212 reg_timer_r_masked_intr intr;
213
214 intr = REG_RD(timer, timer_base, r_masked_intr);
215 if (!intr.tmr0)
216 return IRQ_NONE;
217
218 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
219 REG_WR(timer, timer_base, rw_ack_intr, ack);
220
221 reset_watchdog();
222 #ifdef CONFIG_SYSTEM_PROFILER
223 cris_profile_sample(get_irq_regs());
224 #endif
225
226 evt->event_handler(evt);
227
228 return IRQ_HANDLED;
229 }
230
231 static struct clock_event_device crisv32_clockevent = {
232 .name = "crisv32-timer",
233 .rating = 300,
234 .features = CLOCK_EVT_FEAT_ONESHOT,
235 .set_state_oneshot = crisv32_clkevt_switch_state,
236 .set_state_shutdown = crisv32_clkevt_switch_state,
237 .tick_resume = crisv32_clkevt_switch_state,
238 .set_next_event = crisv32_clkevt_next_event,
239 };
240
241 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
242 static struct irqaction irq_timer = {
243 .handler = crisv32_timer_interrupt,
244 .flags = IRQF_TIMER | IRQF_SHARED,
245 .name = "crisv32-timer",
246 .dev_id = &crisv32_clockevent,
247 };
248
249 static u64 notrace crisv32_timer_sched_clock(void)
250 {
251 return REG_RD(timer, timer_base, r_time);
252 }
253
254 static void __init crisv32_timer_init(void)
255 {
256 reg_timer_rw_intr_mask timer_intr_mask;
257 reg_timer_rw_tmr0_ctrl ctrl = {
258 .op = regk_timer_hold,
259 .freq = regk_timer_f100,
260 };
261
262 REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
263
264 timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask);
265 timer_intr_mask.tmr0 = 1;
266 REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask);
267 }
268
269 void __init time_init(void)
270 {
271 int irq;
272 int ret;
273
274 /* Probe for the RTC and read it if it exists.
275 * Before the RTC can be probed the loops_per_usec variable needs
276 * to be initialized to make usleep work. A better value for
277 * loops_per_usec is calculated by the kernel later once the
278 * clock has started.
279 */
280 loops_per_usec = 50;
281
282 irq = TIMER0_INTR_VECT;
283 timer_base = (void __iomem *) regi_timer0;
284
285 crisv32_timer_init();
286
287 sched_clock_register(crisv32_timer_sched_clock, 32,
288 CRISV32_TIMER_FREQ);
289
290 clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time,
291 "crisv32-timer", CRISV32_TIMER_FREQ,
292 300, 32, clocksource_mmio_readl_up);
293
294 crisv32_clockevent.cpumask = cpu_possible_mask;
295 crisv32_clockevent.irq = irq;
296
297 ret = setup_irq(irq, &irq_timer);
298 if (ret)
299 pr_warn("failed to setup irq %d\n", irq);
300
301 clockevents_config_and_register(&crisv32_clockevent,
302 CRISV32_TIMER_FREQ,
303 2, 0xffffffff);
304
305 /* Enable watchdog if we should use one. */
306
307 #if defined(CONFIG_ETRAX_WATCHDOG)
308 printk(KERN_INFO "Enabling watchdog...\n");
309 start_watchdog();
310
311 /* If we use the hardware watchdog, we want to trap it as an NMI
312 * and dump registers before it resets us. For this to happen, we
313 * must set the "m" NMI enable flag (which once set, is unset only
314 * when an NMI is taken). */
315 {
316 unsigned long flags;
317 local_save_flags(flags);
318 flags |= (1<<30); /* NMI M flag is at bit 30 */
319 local_irq_restore(flags);
320 }
321 #endif
322
323 #ifdef CONFIG_CPU_FREQ
324 cpufreq_register_notifier(&cris_time_freq_notifier_block,
325 CPUFREQ_TRANSITION_NOTIFIER);
326 #endif
327 }
328
329 #ifdef CONFIG_CPU_FREQ
330 static int cris_time_freq_notifier(struct notifier_block *nb,
331 unsigned long val, void *data)
332 {
333 struct cpufreq_freqs *freqs = data;
334 if (val == CPUFREQ_POSTCHANGE) {
335 reg_timer_r_tmr0_data data;
336 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
337 do {
338 data = REG_RD(timer, timer_regs[freqs->cpu],
339 r_tmr0_data);
340 } while (data > 20);
341 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
342 }
343 return 0;
344 }
345 #endif