]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/hexagon/include/asm/pgtable.h
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / arch / hexagon / include / asm / pgtable.h
1 /*
2 * Page table support for the Hexagon architecture
3 *
4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
19 */
20
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23
24 /*
25 * Page table definitions for Qualcomm Hexagon processor.
26 */
27 #include <linux/swap.h>
28 #include <asm/page.h>
29 #include <asm-generic/pgtable-nopmd.h>
30
31 /* A handy thing to have if one has the RAM. Declared in head.S */
32 extern unsigned long empty_zero_page;
33 extern unsigned long zero_page_mask;
34
35 /*
36 * The PTE model described here is that of the Hexagon Virtual Machine,
37 * which autonomously walks 2-level page tables. At a lower level, we
38 * also describe the RISCish software-loaded TLB entry structure of
39 * the underlying Hexagon processor. A kernel built to run on the
40 * virtual machine has no need to know about the underlying hardware.
41 */
42 #include <asm/vm_mmu.h>
43
44 /*
45 * To maximize the comfort level for the PTE manipulation macros,
46 * define the "well known" architecture-specific bits.
47 */
48 #define _PAGE_READ __HVM_PTE_R
49 #define _PAGE_WRITE __HVM_PTE_W
50 #define _PAGE_EXECUTE __HVM_PTE_X
51 #define _PAGE_USER __HVM_PTE_U
52
53 /*
54 * We have a total of 4 "soft" bits available in the abstract PTE.
55 * The two mandatory software bits are Dirty and Accessed.
56 * To make nonlinear swap work according to the more recent
57 * model, we want a low order "Present" bit to indicate whether
58 * the PTE describes MMU programming or swap space.
59 */
60 #define _PAGE_PRESENT (1<<0)
61 #define _PAGE_DIRTY (1<<1)
62 #define _PAGE_ACCESSED (1<<2)
63
64 /*
65 * For now, let's say that Valid and Present are the same thing.
66 * Alternatively, we could say that it's the "or" of R, W, and X
67 * permissions.
68 */
69 #define _PAGE_VALID _PAGE_PRESENT
70
71 /*
72 * We're not defining _PAGE_GLOBAL here, since there's no concept
73 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
74 * and we want to use the same page table structures and macros in
75 * the native kernel as we do in the virtual machine kernel.
76 * So we'll put up with a bit of inefficiency for now...
77 */
78
79 /*
80 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
81 * only the second from the bottom, pgd and pud both being collapsed.
82 * Each entry represents 4MB of virtual address space, 4K of table
83 * thus maps the full 4GB.
84 */
85 #define PGDIR_SHIFT 22
86 #define PTRS_PER_PGD 1024
87
88 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
89 #define PGDIR_MASK (~(PGDIR_SIZE-1))
90
91 #ifdef CONFIG_PAGE_SIZE_4KB
92 #define PTRS_PER_PTE 1024
93 #endif
94
95 #ifdef CONFIG_PAGE_SIZE_16KB
96 #define PTRS_PER_PTE 256
97 #endif
98
99 #ifdef CONFIG_PAGE_SIZE_64KB
100 #define PTRS_PER_PTE 64
101 #endif
102
103 #ifdef CONFIG_PAGE_SIZE_256KB
104 #define PTRS_PER_PTE 16
105 #endif
106
107 #ifdef CONFIG_PAGE_SIZE_1MB
108 #define PTRS_PER_PTE 4
109 #endif
110
111 /* Any bigger and the PTE disappears. */
112 #define pgd_ERROR(e) \
113 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
114 pgd_val(e))
115
116 /*
117 * Page Protection Constants. Includes (in this variant) cache attributes.
118 */
119 extern unsigned long _dflt_cache_att;
120
121 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
122 _dflt_cache_att)
123 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
124 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
125 #define PAGE_COPY PAGE_READONLY
126 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
127 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
128 #define PAGE_COPY_EXEC PAGE_EXEC
129 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
130 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
131 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
132 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
133
134
135 /*
136 * Aliases for mapping mmap() protection bits to page protections.
137 * These get used for static initialization, so using the _dflt_cache_att
138 * variable for the default cache attribute isn't workable. If the
139 * default gets changed at boot time, the boot option code has to
140 * update data structures like the protaction_map[] array.
141 */
142 #define CACHEDEF (CACHE_DEFAULT << 6)
143
144 /* Private (copy-on-write) page protections. */
145 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
146 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
147 #define __P010 __P000 /* Write-only copy-on-write */
148 #define __P011 __P001 /* Read/Write copy-on-write */
149 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150 _PAGE_EXECUTE | CACHEDEF)
151 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
152 _PAGE_READ | CACHEDEF)
153 #define __P110 __P100 /* Write/execute copy-on-write */
154 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */
155
156 /* Shared page protections. */
157 #define __S000 __P000
158 #define __S001 __P001
159 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
160 _PAGE_WRITE | CACHEDEF)
161 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
162 _PAGE_WRITE | CACHEDEF)
163 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
164 _PAGE_EXECUTE | CACHEDEF)
165 #define __S101 __P101
166 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
167 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
168 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
169 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
170
171 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
172
173 /* Seems to be zero even in architectures where the zero page is firewalled? */
174 #define FIRST_USER_ADDRESS 0UL
175 #define pte_special(pte) 0
176 #define pte_mkspecial(pte) (pte)
177
178 /* HUGETLB not working currently */
179 #ifdef CONFIG_HUGETLB_PAGE
180 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
181 #endif
182
183 /*
184 * For now, assume that higher-level code will do TLB/MMU invalidations
185 * and don't insert that overhead into this low-level function.
186 */
187 extern void sync_icache_dcache(pte_t pte);
188
189 #define pte_present_exec_user(pte) \
190 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
191 (_PAGE_EXECUTE | _PAGE_USER))
192
193 static inline void set_pte(pte_t *ptep, pte_t pteval)
194 {
195 /* should really be using pte_exec, if it weren't declared later. */
196 if (pte_present_exec_user(pteval))
197 sync_icache_dcache(pteval);
198
199 *ptep = pteval;
200 }
201
202 /*
203 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
204 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
205 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
206 * as a universal null entry, but some of those least significant bits
207 * are interpreted by software.
208 */
209 #define _NULL_PMD 0x7
210 #define _NULL_PTE 0x0
211
212 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
213 {
214 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
215 }
216
217 /*
218 * Conveniently, a null PTE value is invalid.
219 */
220 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
221 pte_t *ptep)
222 {
223 pte_val(*ptep) = _NULL_PTE;
224 }
225
226 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
227 /**
228 * pmd_index - returns the index of the entry in the PMD page
229 * which would control the given virtual address
230 */
231 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
232
233 #endif
234
235 /**
236 * pgd_index - returns the index of the entry in the PGD page
237 * which would control the given virtual address
238 *
239 * This returns the *index* for the address in the pgd_t
240 */
241 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
242
243 /*
244 * pgd_offset - find an offset in a page-table-directory
245 */
246 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
247
248 /*
249 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
250 */
251 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
252
253 /**
254 * pmd_none - check if pmd_entry is mapped
255 * @pmd_entry: pmd entry
256 *
257 * MIPS checks it against that "invalid pte table" thing.
258 */
259 static inline int pmd_none(pmd_t pmd)
260 {
261 return pmd_val(pmd) == _NULL_PMD;
262 }
263
264 /**
265 * pmd_present - is there a page table behind this?
266 * Essentially the inverse of pmd_none. We maybe
267 * save an inline instruction by defining it this
268 * way, instead of simply "!pmd_none".
269 */
270 static inline int pmd_present(pmd_t pmd)
271 {
272 return pmd_val(pmd) != (unsigned long)_NULL_PMD;
273 }
274
275 /**
276 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
277 * As we have no known cause of badness, it's null, as it is for many
278 * architectures.
279 */
280 static inline int pmd_bad(pmd_t pmd)
281 {
282 return 0;
283 }
284
285 /*
286 * pmd_page - converts a PMD entry to a page pointer
287 */
288 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
289 #define pmd_pgtable(pmd) pmd_page(pmd)
290
291 /**
292 * pte_none - check if pte is mapped
293 * @pte: pte_t entry
294 */
295 static inline int pte_none(pte_t pte)
296 {
297 return pte_val(pte) == _NULL_PTE;
298 };
299
300 /*
301 * pte_present - check if page is present
302 */
303 static inline int pte_present(pte_t pte)
304 {
305 return pte_val(pte) & _PAGE_PRESENT;
306 }
307
308 /* mk_pte - make a PTE out of a page pointer and protection bits */
309 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
310
311 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
312 #define pte_page(x) pfn_to_page(pte_pfn(x))
313
314 /* pte_mkold - mark PTE as not recently accessed */
315 static inline pte_t pte_mkold(pte_t pte)
316 {
317 pte_val(pte) &= ~_PAGE_ACCESSED;
318 return pte;
319 }
320
321 /* pte_mkyoung - mark PTE as recently accessed */
322 static inline pte_t pte_mkyoung(pte_t pte)
323 {
324 pte_val(pte) |= _PAGE_ACCESSED;
325 return pte;
326 }
327
328 /* pte_mkclean - mark page as in sync with backing store */
329 static inline pte_t pte_mkclean(pte_t pte)
330 {
331 pte_val(pte) &= ~_PAGE_DIRTY;
332 return pte;
333 }
334
335 /* pte_mkdirty - mark page as modified */
336 static inline pte_t pte_mkdirty(pte_t pte)
337 {
338 pte_val(pte) |= _PAGE_DIRTY;
339 return pte;
340 }
341
342 /* pte_young - "is PTE marked as accessed"? */
343 static inline int pte_young(pte_t pte)
344 {
345 return pte_val(pte) & _PAGE_ACCESSED;
346 }
347
348 /* pte_dirty - "is PTE dirty?" */
349 static inline int pte_dirty(pte_t pte)
350 {
351 return pte_val(pte) & _PAGE_DIRTY;
352 }
353
354 /* pte_modify - set protection bits on PTE */
355 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
356 {
357 pte_val(pte) &= PAGE_MASK;
358 pte_val(pte) |= pgprot_val(prot);
359 return pte;
360 }
361
362 /* pte_wrprotect - mark page as not writable */
363 static inline pte_t pte_wrprotect(pte_t pte)
364 {
365 pte_val(pte) &= ~_PAGE_WRITE;
366 return pte;
367 }
368
369 /* pte_mkwrite - mark page as writable */
370 static inline pte_t pte_mkwrite(pte_t pte)
371 {
372 pte_val(pte) |= _PAGE_WRITE;
373 return pte;
374 }
375
376 /* pte_mkexec - mark PTE as executable */
377 static inline pte_t pte_mkexec(pte_t pte)
378 {
379 pte_val(pte) |= _PAGE_EXECUTE;
380 return pte;
381 }
382
383 /* pte_read - "is PTE marked as readable?" */
384 static inline int pte_read(pte_t pte)
385 {
386 return pte_val(pte) & _PAGE_READ;
387 }
388
389 /* pte_write - "is PTE marked as writable?" */
390 static inline int pte_write(pte_t pte)
391 {
392 return pte_val(pte) & _PAGE_WRITE;
393 }
394
395
396 /* pte_exec - "is PTE marked as executable?" */
397 static inline int pte_exec(pte_t pte)
398 {
399 return pte_val(pte) & _PAGE_EXECUTE;
400 }
401
402 /* __pte_to_swp_entry - extract swap entry from PTE */
403 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
404
405 /* __swp_entry_to_pte - extract PTE from swap entry */
406 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
407
408 /* pfn_pte - convert page number and protection value to page table entry */
409 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
410
411 /* pte_pfn - convert pte to page frame number */
412 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
413 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
414
415 /*
416 * set_pte_at - update page table and do whatever magic may be
417 * necessary to make the underlying hardware/firmware take note.
418 *
419 * VM may require a virtual instruction to alert the MMU.
420 */
421 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
422
423 /*
424 * May need to invoke the virtual machine as well...
425 */
426 #define pte_unmap(pte) do { } while (0)
427 #define pte_unmap_nested(pte) do { } while (0)
428
429 /*
430 * pte_offset_map - returns the linear address of the page table entry
431 * corresponding to an address
432 */
433 #define pte_offset_map(dir, address) \
434 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
435
436 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
437
438 /* pte_offset_kernel - kernel version of pte_offset */
439 #define pte_offset_kernel(dir, address) \
440 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
441 + __pte_offset(address))
442
443 /* ZERO_PAGE - returns the globally shared zero page */
444 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
445
446 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
447
448 /* I think this is in case we have page table caches; needed by init/main.c */
449 #define pgtable_cache_init() do { } while (0)
450
451 /*
452 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
453 * interpreted as swap information. The remaining free bits are interpreted as
454 * swap type/offset tuple. Rather than have the TLB fill handler test
455 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
456 * all zeros for swap entries, which speeds up the miss handler at the cost of
457 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
458 * processor architecture and target applications suggest a lot of TLB misses
459 * and not much swap space.
460 *
461 * Format of swap PTE:
462 * bit 0: Present (zero)
463 * bits 1-5: swap type (arch independent layer uses 5 bits max)
464 * bits 6-9: bits 3:0 of offset
465 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
466 * bits 13-31: bits 22:4 of swap offset
467 *
468 * The split offset makes some of the following macros a little gnarly,
469 * but there's plenty of precedent for this sort of thing.
470 */
471
472 /* Used for swap PTEs */
473 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
474
475 #define __swp_offset(swp_pte) \
476 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
477
478 #define __swp_entry(type, offset) \
479 ((swp_entry_t) { \
480 ((type << 1) | \
481 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
482
483 /* Oh boy. There are a lot of possible arch overrides found in this file. */
484 #include <asm-generic/pgtable.h>
485
486 #endif