]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
[CPUFREQ][5/8] acpi-cpufreq: lindent acpi-cpufreq.c
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h> /* current */
36 #include <linux/dmi.h>
37
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
40
41 #include <asm/io.h>
42 #include <asm/msr.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58 };
59
60 #define INTEL_MSR_RANGE (0xffff)
61
62 struct acpi_cpufreq_data {
63 struct acpi_processor_performance *acpi_data;
64 struct cpufreq_frequency_table *freq_table;
65 unsigned int resume;
66 unsigned int cpu_feature;
67 };
68
69 static struct acpi_cpufreq_data *drv_data[NR_CPUS];
70 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
71
72 static struct cpufreq_driver acpi_cpufreq_driver;
73
74 static unsigned int acpi_pstate_strict;
75
76 static int check_est_cpu(unsigned int cpuid)
77 {
78 struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
79
80 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
81 !cpu_has(cpu, X86_FEATURE_EST))
82 return 0;
83
84 return 1;
85 }
86
87 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
88 {
89 struct acpi_processor_performance *perf;
90 int i;
91
92 perf = data->acpi_data;
93
94 for (i = 0; i < perf->state_count; i++) {
95 if (value == perf->states[i].status)
96 return data->freq_table[i].frequency;
97 }
98 return 0;
99 }
100
101 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
102 {
103 int i;
104
105 msr &= INTEL_MSR_RANGE;
106 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
107 if (msr == data->freq_table[i].index)
108 return data->freq_table[i].frequency;
109 }
110 return data->freq_table[0].frequency;
111 }
112
113 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
114 {
115 switch (data->cpu_feature) {
116 case SYSTEM_INTEL_MSR_CAPABLE:
117 return extract_msr(val, data);
118 case SYSTEM_IO_CAPABLE:
119 return extract_io(val, data);
120 default:
121 return 0;
122 }
123 }
124
125 static void wrport(u16 port, u8 bit_width, u32 value)
126 {
127 if (bit_width <= 8) {
128 outb(value, port);
129 } else if (bit_width <= 16) {
130 outw(value, port);
131 } else if (bit_width <= 32) {
132 outl(value, port);
133 }
134 }
135
136 static void rdport(u16 port, u8 bit_width, u32 * ret)
137 {
138 *ret = 0;
139 if (bit_width <= 8) {
140 *ret = inb(port);
141 } else if (bit_width <= 16) {
142 *ret = inw(port);
143 } else if (bit_width <= 32) {
144 *ret = inl(port);
145 }
146 }
147
148 struct msr_addr {
149 u32 reg;
150 };
151
152 struct io_addr {
153 u16 port;
154 u8 bit_width;
155 };
156
157 typedef union {
158 struct msr_addr msr;
159 struct io_addr io;
160 } drv_addr_union;
161
162 struct drv_cmd {
163 unsigned int type;
164 cpumask_t mask;
165 drv_addr_union addr;
166 u32 val;
167 };
168
169 static void do_drv_read(struct drv_cmd *cmd)
170 {
171 u32 h;
172
173 switch (cmd->type) {
174 case SYSTEM_INTEL_MSR_CAPABLE:
175 rdmsr(cmd->addr.msr.reg, cmd->val, h);
176 break;
177 case SYSTEM_IO_CAPABLE:
178 rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
179 break;
180 default:
181 break;
182 }
183 }
184
185 static void do_drv_write(struct drv_cmd *cmd)
186 {
187 u32 h = 0;
188
189 switch (cmd->type) {
190 case SYSTEM_INTEL_MSR_CAPABLE:
191 wrmsr(cmd->addr.msr.reg, cmd->val, h);
192 break;
193 case SYSTEM_IO_CAPABLE:
194 wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
195 break;
196 default:
197 break;
198 }
199 }
200
201 static inline void drv_read(struct drv_cmd *cmd)
202 {
203 cpumask_t saved_mask = current->cpus_allowed;
204 cmd->val = 0;
205
206 set_cpus_allowed(current, cmd->mask);
207 do_drv_read(cmd);
208 set_cpus_allowed(current, saved_mask);
209
210 }
211
212 static void drv_write(struct drv_cmd *cmd)
213 {
214 cpumask_t saved_mask = current->cpus_allowed;
215 unsigned int i;
216
217 for_each_cpu_mask(i, cmd->mask) {
218 set_cpus_allowed(current, cpumask_of_cpu(i));
219 do_drv_write(cmd);
220 }
221
222 set_cpus_allowed(current, saved_mask);
223 return;
224 }
225
226 static u32 get_cur_val(cpumask_t mask)
227 {
228 struct acpi_processor_performance *perf;
229 struct drv_cmd cmd;
230
231 if (unlikely(cpus_empty(mask)))
232 return 0;
233
234 switch (drv_data[first_cpu(mask)]->cpu_feature) {
235 case SYSTEM_INTEL_MSR_CAPABLE:
236 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
237 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
238 break;
239 case SYSTEM_IO_CAPABLE:
240 cmd.type = SYSTEM_IO_CAPABLE;
241 perf = drv_data[first_cpu(mask)]->acpi_data;
242 cmd.addr.io.port = perf->control_register.address;
243 cmd.addr.io.bit_width = perf->control_register.bit_width;
244 break;
245 default:
246 return 0;
247 }
248
249 cmd.mask = mask;
250
251 drv_read(&cmd);
252
253 dprintk("get_cur_val = %u\n", cmd.val);
254
255 return cmd.val;
256 }
257
258 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
259 {
260 struct acpi_cpufreq_data *data = drv_data[cpu];
261 unsigned int freq;
262
263 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
264
265 if (unlikely(data == NULL ||
266 data->acpi_data == NULL || data->freq_table == NULL)) {
267 return 0;
268 }
269
270 freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
271 dprintk("cur freq = %u\n", freq);
272
273 return freq;
274 }
275
276 static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
277 struct acpi_cpufreq_data *data)
278 {
279 unsigned int cur_freq;
280 unsigned int i;
281
282 for (i = 0; i < 100; i++) {
283 cur_freq = extract_freq(get_cur_val(mask), data);
284 if (cur_freq == freq)
285 return 1;
286 udelay(10);
287 }
288 return 0;
289 }
290
291 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
292 unsigned int target_freq, unsigned int relation)
293 {
294 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
295 struct acpi_processor_performance *perf;
296 struct cpufreq_freqs freqs;
297 cpumask_t online_policy_cpus;
298 struct drv_cmd cmd;
299 unsigned int msr;
300 unsigned int next_state = 0;
301 unsigned int next_perf_state = 0;
302 unsigned int i;
303 int result = 0;
304
305 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
306
307 if (unlikely(data == NULL ||
308 data->acpi_data == NULL || data->freq_table == NULL)) {
309 return -ENODEV;
310 }
311
312 perf = data->acpi_data;
313 result = cpufreq_frequency_table_target(policy,
314 data->freq_table,
315 target_freq,
316 relation, &next_state);
317 if (unlikely(result))
318 return -ENODEV;
319
320 #ifdef CONFIG_HOTPLUG_CPU
321 /* cpufreq holds the hotplug lock, so we are safe from here on */
322 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
323 #else
324 online_policy_cpus = policy->cpus;
325 #endif
326
327 cmd.val = get_cur_val(online_policy_cpus);
328 freqs.old = extract_freq(cmd.val, data);
329 freqs.new = data->freq_table[next_state].frequency;
330 next_perf_state = data->freq_table[next_state].index;
331 if (freqs.new == freqs.old) {
332 if (unlikely(data->resume)) {
333 dprintk("Called after resume, resetting to P%d\n",
334 next_perf_state);
335 data->resume = 0;
336 } else {
337 dprintk("Already at target state (P%d)\n",
338 next_perf_state);
339 return 0;
340 }
341 }
342
343 switch (data->cpu_feature) {
344 case SYSTEM_INTEL_MSR_CAPABLE:
345 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
346 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
347 msr =
348 (u32) perf->states[next_perf_state].
349 control & INTEL_MSR_RANGE;
350 cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
351 break;
352 case SYSTEM_IO_CAPABLE:
353 cmd.type = SYSTEM_IO_CAPABLE;
354 cmd.addr.io.port = perf->control_register.address;
355 cmd.addr.io.bit_width = perf->control_register.bit_width;
356 cmd.val = (u32) perf->states[next_perf_state].control;
357 break;
358 default:
359 return -ENODEV;
360 }
361
362 cpus_clear(cmd.mask);
363
364 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
365 cmd.mask = online_policy_cpus;
366 else
367 cpu_set(policy->cpu, cmd.mask);
368
369 for_each_cpu_mask(i, cmd.mask) {
370 freqs.cpu = i;
371 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
372 }
373
374 drv_write(&cmd);
375
376 if (acpi_pstate_strict) {
377 if (!check_freqs(cmd.mask, freqs.new, data)) {
378 dprintk("acpi_cpufreq_target failed (%d)\n",
379 policy->cpu);
380 return -EAGAIN;
381 }
382 }
383
384 for_each_cpu_mask(i, cmd.mask) {
385 freqs.cpu = i;
386 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
387 }
388 perf->state = next_perf_state;
389
390 return result;
391 }
392
393 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
394 {
395 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
396
397 dprintk("acpi_cpufreq_verify\n");
398
399 return cpufreq_frequency_table_verify(policy, data->freq_table);
400 }
401
402 static unsigned long
403 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
404 {
405 struct acpi_processor_performance *perf = data->acpi_data;
406
407 if (cpu_khz) {
408 /* search the closest match to cpu_khz */
409 unsigned int i;
410 unsigned long freq;
411 unsigned long freqn = perf->states[0].core_frequency * 1000;
412
413 for (i = 0; i < (perf->state_count - 1); i++) {
414 freq = freqn;
415 freqn = perf->states[i + 1].core_frequency * 1000;
416 if ((2 * cpu_khz) > (freqn + freq)) {
417 perf->state = i;
418 return freq;
419 }
420 }
421 perf->state = perf->state_count - 1;
422 return freqn;
423 } else {
424 /* assume CPU is at P0... */
425 perf->state = 0;
426 return perf->states[0].core_frequency * 1000;
427 }
428 }
429
430 /*
431 * acpi_cpufreq_early_init - initialize ACPI P-States library
432 *
433 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
434 * in order to determine correct frequency and voltage pairings. We can
435 * do _PDC and _PSD and find out the processor dependency for the
436 * actual init that will happen later...
437 */
438 static int acpi_cpufreq_early_init(void)
439 {
440 struct acpi_processor_performance *data;
441 cpumask_t covered;
442 unsigned int i, j;
443
444 dprintk("acpi_cpufreq_early_init\n");
445
446 for_each_possible_cpu(i) {
447 data = kzalloc(sizeof(struct acpi_processor_performance),
448 GFP_KERNEL);
449 if (!data) {
450 for_each_cpu_mask(j, covered) {
451 kfree(acpi_perf_data[j]);
452 acpi_perf_data[j] = NULL;
453 }
454 return -ENOMEM;
455 }
456 acpi_perf_data[i] = data;
457 cpu_set(i, covered);
458 }
459
460 /* Do initialization in ACPI core */
461 acpi_processor_preregister_performance(acpi_perf_data);
462 return 0;
463 }
464
465 /*
466 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
467 * or do it in BIOS firmware and won't inform about it to OS. If not
468 * detected, this has a side effect of making CPU run at a different speed
469 * than OS intended it to run at. Detect it and handle it cleanly.
470 */
471 static int bios_with_sw_any_bug;
472
473 static int sw_any_bug_found(struct dmi_system_id *d)
474 {
475 bios_with_sw_any_bug = 1;
476 return 0;
477 }
478
479 static struct dmi_system_id sw_any_bug_dmi_table[] = {
480 {
481 .callback = sw_any_bug_found,
482 .ident = "Supermicro Server X6DLP",
483 .matches = {
484 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
485 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
486 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
487 },
488 },
489 { }
490 };
491
492 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
493 {
494 unsigned int i;
495 unsigned int valid_states = 0;
496 unsigned int cpu = policy->cpu;
497 struct acpi_cpufreq_data *data;
498 unsigned int l, h;
499 unsigned int result = 0;
500 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
501 struct acpi_processor_performance *perf;
502
503 dprintk("acpi_cpufreq_cpu_init\n");
504
505 if (!acpi_perf_data[cpu])
506 return -ENODEV;
507
508 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
509 if (!data)
510 return -ENOMEM;
511
512 data->acpi_data = acpi_perf_data[cpu];
513 drv_data[cpu] = data;
514
515 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
516 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
517 }
518
519 result = acpi_processor_register_performance(data->acpi_data, cpu);
520 if (result)
521 goto err_free;
522
523 perf = data->acpi_data;
524 policy->shared_type = perf->shared_type;
525 /*
526 * Will let policy->cpus know about dependency only when software
527 * coordination is required.
528 */
529 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
530 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
531 policy->cpus = perf->shared_cpu_map;
532 }
533
534 #ifdef CONFIG_SMP
535 dmi_check_system(sw_any_bug_dmi_table);
536 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
537 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
538 policy->cpus = cpu_core_map[cpu];
539 }
540 #endif
541
542 /* capability check */
543 if (perf->state_count <= 1) {
544 dprintk("No P-States\n");
545 result = -ENODEV;
546 goto err_unreg;
547 }
548
549 if (perf->control_register.space_id != perf->status_register.space_id) {
550 result = -ENODEV;
551 goto err_unreg;
552 }
553
554 switch (perf->control_register.space_id) {
555 case ACPI_ADR_SPACE_SYSTEM_IO:
556 dprintk("SYSTEM IO addr space\n");
557 data->cpu_feature = SYSTEM_IO_CAPABLE;
558 break;
559 case ACPI_ADR_SPACE_FIXED_HARDWARE:
560 dprintk("HARDWARE addr space\n");
561 if (!check_est_cpu(cpu)) {
562 result = -ENODEV;
563 goto err_unreg;
564 }
565 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
566 break;
567 default:
568 dprintk("Unknown addr space %d\n",
569 (u32) (perf->control_register.space_id));
570 result = -ENODEV;
571 goto err_unreg;
572 }
573
574 data->freq_table =
575 kmalloc(sizeof(struct cpufreq_frequency_table) *
576 (perf->state_count + 1), GFP_KERNEL);
577 if (!data->freq_table) {
578 result = -ENOMEM;
579 goto err_unreg;
580 }
581
582 /* detect transition latency */
583 policy->cpuinfo.transition_latency = 0;
584 for (i = 0; i < perf->state_count; i++) {
585 if ((perf->states[i].transition_latency * 1000) >
586 policy->cpuinfo.transition_latency)
587 policy->cpuinfo.transition_latency =
588 perf->states[i].transition_latency * 1000;
589 }
590 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
591
592 /* table init */
593 for (i = 0; i < perf->state_count; i++) {
594 if (i > 0 && perf->states[i].core_frequency ==
595 perf->states[i - 1].core_frequency)
596 continue;
597
598 data->freq_table[valid_states].index = i;
599 data->freq_table[valid_states].frequency =
600 perf->states[i].core_frequency * 1000;
601 valid_states++;
602 }
603 data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
604
605 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
606 if (result) {
607 goto err_freqfree;
608 }
609
610 switch (data->cpu_feature) {
611 case ACPI_ADR_SPACE_SYSTEM_IO:
612 /* Current speed is unknown and not detectable by IO port */
613 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
614 break;
615 case ACPI_ADR_SPACE_FIXED_HARDWARE:
616 get_cur_freq_on_cpu(cpu);
617 break;
618 default:
619 break;
620 }
621
622 /* notify BIOS that we exist */
623 acpi_processor_notify_smm(THIS_MODULE);
624
625 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
626 for (i = 0; i < perf->state_count; i++)
627 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
628 (i == perf->state ? '*' : ' '), i,
629 (u32) perf->states[i].core_frequency,
630 (u32) perf->states[i].power,
631 (u32) perf->states[i].transition_latency);
632
633 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
634
635 /*
636 * the first call to ->target() should result in us actually
637 * writing something to the appropriate registers.
638 */
639 data->resume = 1;
640
641 return result;
642
643 err_freqfree:
644 kfree(data->freq_table);
645 err_unreg:
646 acpi_processor_unregister_performance(perf, cpu);
647 err_free:
648 kfree(data);
649 drv_data[cpu] = NULL;
650
651 return result;
652 }
653
654 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
655 {
656 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
657
658 dprintk("acpi_cpufreq_cpu_exit\n");
659
660 if (data) {
661 cpufreq_frequency_table_put_attr(policy->cpu);
662 drv_data[policy->cpu] = NULL;
663 acpi_processor_unregister_performance(data->acpi_data,
664 policy->cpu);
665 kfree(data);
666 }
667
668 return 0;
669 }
670
671 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
672 {
673 struct acpi_cpufreq_data *data = drv_data[policy->cpu];
674
675 dprintk("acpi_cpufreq_resume\n");
676
677 data->resume = 1;
678
679 return 0;
680 }
681
682 static struct freq_attr *acpi_cpufreq_attr[] = {
683 &cpufreq_freq_attr_scaling_available_freqs,
684 NULL,
685 };
686
687 static struct cpufreq_driver acpi_cpufreq_driver = {
688 .verify = acpi_cpufreq_verify,
689 .target = acpi_cpufreq_target,
690 .get = get_cur_freq_on_cpu,
691 .init = acpi_cpufreq_cpu_init,
692 .exit = acpi_cpufreq_cpu_exit,
693 .resume = acpi_cpufreq_resume,
694 .name = "acpi-cpufreq",
695 .owner = THIS_MODULE,
696 .attr = acpi_cpufreq_attr,
697 };
698
699 static int __init acpi_cpufreq_init(void)
700 {
701 dprintk("acpi_cpufreq_init\n");
702
703 acpi_cpufreq_early_init();
704
705 return cpufreq_register_driver(&acpi_cpufreq_driver);
706 }
707
708 static void __exit acpi_cpufreq_exit(void)
709 {
710 unsigned int i;
711 dprintk("acpi_cpufreq_exit\n");
712
713 cpufreq_unregister_driver(&acpi_cpufreq_driver);
714
715 for_each_possible_cpu(i) {
716 kfree(acpi_perf_data[i]);
717 acpi_perf_data[i] = NULL;
718 }
719 return;
720 }
721
722 module_param(acpi_pstate_strict, uint, 0644);
723 MODULE_PARM_DESC(acpi_pstate_strict,
724 "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
725
726 late_initcall(acpi_cpufreq_init);
727 module_exit(acpi_cpufreq_exit);
728
729 MODULE_ALIAS("acpi");