]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/cpufreq.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/compiler.h>
34 #include <linux/sched.h> /* current */
35 #include <linux/dmi.h>
36 #include <asm/io.h>
37 #include <asm/delay.h>
38 #include <asm/uaccess.h>
39
40 #include <linux/acpi.h>
41 #include <acpi/processor.h>
42
43 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
44
45 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
46 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
47 MODULE_LICENSE("GPL");
48
49
50 struct cpufreq_acpi_io {
51 struct acpi_processor_performance *acpi_data;
52 struct cpufreq_frequency_table *freq_table;
53 unsigned int resume;
54 };
55
56 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
57 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
58
59 static struct cpufreq_driver acpi_cpufreq_driver;
60
61 static unsigned int acpi_pstate_strict;
62
63 static int
64 acpi_processor_write_port(
65 u16 port,
66 u8 bit_width,
67 u32 value)
68 {
69 if (bit_width <= 8) {
70 outb(value, port);
71 } else if (bit_width <= 16) {
72 outw(value, port);
73 } else if (bit_width <= 32) {
74 outl(value, port);
75 } else {
76 return -ENODEV;
77 }
78 return 0;
79 }
80
81 static int
82 acpi_processor_read_port(
83 u16 port,
84 u8 bit_width,
85 u32 *ret)
86 {
87 *ret = 0;
88 if (bit_width <= 8) {
89 *ret = inb(port);
90 } else if (bit_width <= 16) {
91 *ret = inw(port);
92 } else if (bit_width <= 32) {
93 *ret = inl(port);
94 } else {
95 return -ENODEV;
96 }
97 return 0;
98 }
99
100 static int
101 acpi_processor_set_performance (
102 struct cpufreq_acpi_io *data,
103 unsigned int cpu,
104 int state)
105 {
106 u16 port = 0;
107 u8 bit_width = 0;
108 int i = 0;
109 int ret = 0;
110 u32 value = 0;
111 int retval;
112 struct acpi_processor_performance *perf;
113
114 dprintk("acpi_processor_set_performance\n");
115
116 retval = 0;
117 perf = data->acpi_data;
118 if (state == perf->state) {
119 if (unlikely(data->resume)) {
120 dprintk("Called after resume, resetting to P%d\n", state);
121 data->resume = 0;
122 } else {
123 dprintk("Already at target state (P%d)\n", state);
124 return (retval);
125 }
126 }
127
128 dprintk("Transitioning from P%d to P%d\n", perf->state, state);
129
130 /*
131 * First we write the target state's 'control' value to the
132 * control_register.
133 */
134
135 port = perf->control_register.address;
136 bit_width = perf->control_register.bit_width;
137 value = (u32) perf->states[state].control;
138
139 dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
140
141 ret = acpi_processor_write_port(port, bit_width, value);
142 if (ret) {
143 dprintk("Invalid port width 0x%04x\n", bit_width);
144 return (ret);
145 }
146
147 /*
148 * Assume the write went through when acpi_pstate_strict is not used.
149 * As read status_register is an expensive operation and there
150 * are no specific error cases where an IO port write will fail.
151 */
152 if (acpi_pstate_strict) {
153 /* Then we read the 'status_register' and compare the value
154 * with the target state's 'status' to make sure the
155 * transition was successful.
156 * Note that we'll poll for up to 1ms (100 cycles of 10us)
157 * before giving up.
158 */
159
160 port = perf->status_register.address;
161 bit_width = perf->status_register.bit_width;
162
163 dprintk("Looking for 0x%08x from port 0x%04x\n",
164 (u32) perf->states[state].status, port);
165
166 for (i = 0; i < 100; i++) {
167 ret = acpi_processor_read_port(port, bit_width, &value);
168 if (ret) {
169 dprintk("Invalid port width 0x%04x\n", bit_width);
170 return (ret);
171 }
172 if (value == (u32) perf->states[state].status)
173 break;
174 udelay(10);
175 }
176 } else {
177 value = (u32) perf->states[state].status;
178 }
179
180 if (unlikely(value != (u32) perf->states[state].status)) {
181 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
182 retval = -ENODEV;
183 return (retval);
184 }
185
186 dprintk("Transition successful after %d microseconds\n", i * 10);
187
188 perf->state = state;
189 return (retval);
190 }
191
192
193 static int
194 acpi_cpufreq_target (
195 struct cpufreq_policy *policy,
196 unsigned int target_freq,
197 unsigned int relation)
198 {
199 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
200 struct acpi_processor_performance *perf;
201 struct cpufreq_freqs freqs;
202 cpumask_t online_policy_cpus;
203 cpumask_t saved_mask;
204 cpumask_t set_mask;
205 cpumask_t covered_cpus;
206 unsigned int cur_state = 0;
207 unsigned int next_state = 0;
208 unsigned int result = 0;
209 unsigned int j;
210 unsigned int tmp;
211
212 dprintk("acpi_cpufreq_setpolicy\n");
213
214 result = cpufreq_frequency_table_target(policy,
215 data->freq_table,
216 target_freq,
217 relation,
218 &next_state);
219 if (unlikely(result))
220 return (result);
221
222 perf = data->acpi_data;
223 cur_state = perf->state;
224 freqs.old = data->freq_table[cur_state].frequency;
225 freqs.new = data->freq_table[next_state].frequency;
226
227 #ifdef CONFIG_HOTPLUG_CPU
228 /* cpufreq holds the hotplug lock, so we are safe from here on */
229 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
230 #else
231 online_policy_cpus = policy->cpus;
232 #endif
233
234 for_each_cpu_mask(j, online_policy_cpus) {
235 freqs.cpu = j;
236 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
237 }
238
239 /*
240 * We need to call driver->target() on all or any CPU in
241 * policy->cpus, depending on policy->shared_type.
242 */
243 saved_mask = current->cpus_allowed;
244 cpus_clear(covered_cpus);
245 for_each_cpu_mask(j, online_policy_cpus) {
246 /*
247 * Support for SMP systems.
248 * Make sure we are running on CPU that wants to change freq
249 */
250 cpus_clear(set_mask);
251 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
252 cpus_or(set_mask, set_mask, online_policy_cpus);
253 else
254 cpu_set(j, set_mask);
255
256 set_cpus_allowed(current, set_mask);
257 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
258 dprintk("couldn't limit to CPUs in this domain\n");
259 result = -EAGAIN;
260 break;
261 }
262
263 result = acpi_processor_set_performance (data, j, next_state);
264 if (result) {
265 result = -EAGAIN;
266 break;
267 }
268
269 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
270 break;
271
272 cpu_set(j, covered_cpus);
273 }
274
275 for_each_cpu_mask(j, online_policy_cpus) {
276 freqs.cpu = j;
277 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
278 }
279
280 if (unlikely(result)) {
281 /*
282 * We have failed halfway through the frequency change.
283 * We have sent callbacks to online_policy_cpus and
284 * acpi_processor_set_performance() has been called on
285 * coverd_cpus. Best effort undo..
286 */
287
288 if (!cpus_empty(covered_cpus)) {
289 for_each_cpu_mask(j, covered_cpus) {
290 policy->cpu = j;
291 acpi_processor_set_performance (data,
292 j,
293 cur_state);
294 }
295 }
296
297 tmp = freqs.new;
298 freqs.new = freqs.old;
299 freqs.old = tmp;
300 for_each_cpu_mask(j, online_policy_cpus) {
301 freqs.cpu = j;
302 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
303 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
304 }
305 }
306
307 set_cpus_allowed(current, saved_mask);
308 return (result);
309 }
310
311
312 static int
313 acpi_cpufreq_verify (
314 struct cpufreq_policy *policy)
315 {
316 unsigned int result = 0;
317 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
318
319 dprintk("acpi_cpufreq_verify\n");
320
321 result = cpufreq_frequency_table_verify(policy,
322 data->freq_table);
323
324 return (result);
325 }
326
327
328 static unsigned long
329 acpi_cpufreq_guess_freq (
330 struct cpufreq_acpi_io *data,
331 unsigned int cpu)
332 {
333 struct acpi_processor_performance *perf = data->acpi_data;
334
335 if (cpu_khz) {
336 /* search the closest match to cpu_khz */
337 unsigned int i;
338 unsigned long freq;
339 unsigned long freqn = perf->states[0].core_frequency * 1000;
340
341 for (i = 0; i < (perf->state_count - 1); i++) {
342 freq = freqn;
343 freqn = perf->states[i+1].core_frequency * 1000;
344 if ((2 * cpu_khz) > (freqn + freq)) {
345 perf->state = i;
346 return (freq);
347 }
348 }
349 perf->state = perf->state_count - 1;
350 return (freqn);
351 } else {
352 /* assume CPU is at P0... */
353 perf->state = 0;
354 return perf->states[0].core_frequency * 1000;
355 }
356 }
357
358
359 /*
360 * acpi_cpufreq_early_init - initialize ACPI P-States library
361 *
362 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
363 * in order to determine correct frequency and voltage pairings. We can
364 * do _PDC and _PSD and find out the processor dependency for the
365 * actual init that will happen later...
366 */
367 static int acpi_cpufreq_early_init_acpi(void)
368 {
369 struct acpi_processor_performance *data;
370 unsigned int i, j;
371
372 dprintk("acpi_cpufreq_early_init\n");
373
374 for_each_possible_cpu(i) {
375 data = kzalloc(sizeof(struct acpi_processor_performance),
376 GFP_KERNEL);
377 if (!data) {
378 for_each_possible_cpu(j) {
379 kfree(acpi_perf_data[j]);
380 acpi_perf_data[j] = NULL;
381 }
382 return (-ENOMEM);
383 }
384 acpi_perf_data[i] = data;
385 }
386
387 /* Do initialization in ACPI core */
388 return acpi_processor_preregister_performance(acpi_perf_data);
389 }
390
391 /*
392 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
393 * or do it in BIOS firmware and won't inform about it to OS. If not
394 * detected, this has a side effect of making CPU run at a different speed
395 * than OS intended it to run at. Detect it and handle it cleanly.
396 */
397 static int bios_with_sw_any_bug;
398
399 static int sw_any_bug_found(struct dmi_system_id *d)
400 {
401 bios_with_sw_any_bug = 1;
402 return 0;
403 }
404
405 static struct dmi_system_id sw_any_bug_dmi_table[] = {
406 {
407 .callback = sw_any_bug_found,
408 .ident = "Supermicro Server X6DLP",
409 .matches = {
410 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
411 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
412 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
413 },
414 },
415 { }
416 };
417
418 static int
419 acpi_cpufreq_cpu_init (
420 struct cpufreq_policy *policy)
421 {
422 unsigned int i;
423 unsigned int cpu = policy->cpu;
424 struct cpufreq_acpi_io *data;
425 unsigned int result = 0;
426 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
427 struct acpi_processor_performance *perf;
428
429 dprintk("acpi_cpufreq_cpu_init\n");
430
431 if (!acpi_perf_data[cpu])
432 return (-ENODEV);
433
434 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
435 if (!data)
436 return (-ENOMEM);
437
438 data->acpi_data = acpi_perf_data[cpu];
439 acpi_io_data[cpu] = data;
440
441 result = acpi_processor_register_performance(data->acpi_data, cpu);
442
443 if (result)
444 goto err_free;
445
446 perf = data->acpi_data;
447 policy->shared_type = perf->shared_type;
448 /*
449 * Will let policy->cpus know about dependency only when software
450 * coordination is required.
451 */
452 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
453 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
454 policy->cpus = perf->shared_cpu_map;
455 }
456
457 #ifdef CONFIG_SMP
458 dmi_check_system(sw_any_bug_dmi_table);
459 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
460 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
461 policy->cpus = cpu_core_map[cpu];
462 }
463 #endif
464
465 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
466 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
467 }
468
469 /* capability check */
470 if (perf->state_count <= 1) {
471 dprintk("No P-States\n");
472 result = -ENODEV;
473 goto err_unreg;
474 }
475
476 if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
477 (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
478 dprintk("Unsupported address space [%d, %d]\n",
479 (u32) (perf->control_register.space_id),
480 (u32) (perf->status_register.space_id));
481 result = -ENODEV;
482 goto err_unreg;
483 }
484
485 /* alloc freq_table */
486 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
487 if (!data->freq_table) {
488 result = -ENOMEM;
489 goto err_unreg;
490 }
491
492 /* detect transition latency */
493 policy->cpuinfo.transition_latency = 0;
494 for (i=0; i<perf->state_count; i++) {
495 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
496 policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
497 }
498 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
499
500 /* The current speed is unknown and not detectable by ACPI... */
501 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
502
503 /* table init */
504 for (i=0; i<=perf->state_count; i++)
505 {
506 data->freq_table[i].index = i;
507 if (i<perf->state_count)
508 data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
509 else
510 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
511 }
512
513 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
514 if (result) {
515 goto err_freqfree;
516 }
517
518 /* notify BIOS that we exist */
519 acpi_processor_notify_smm(THIS_MODULE);
520
521 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
522 cpu);
523 for (i = 0; i < perf->state_count; i++)
524 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
525 (i == perf->state?'*':' '), i,
526 (u32) perf->states[i].core_frequency,
527 (u32) perf->states[i].power,
528 (u32) perf->states[i].transition_latency);
529
530 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
531
532 /*
533 * the first call to ->target() should result in us actually
534 * writing something to the appropriate registers.
535 */
536 data->resume = 1;
537
538 return (result);
539
540 err_freqfree:
541 kfree(data->freq_table);
542 err_unreg:
543 acpi_processor_unregister_performance(perf, cpu);
544 err_free:
545 kfree(data);
546 acpi_io_data[cpu] = NULL;
547
548 return (result);
549 }
550
551
552 static int
553 acpi_cpufreq_cpu_exit (
554 struct cpufreq_policy *policy)
555 {
556 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
557
558
559 dprintk("acpi_cpufreq_cpu_exit\n");
560
561 if (data) {
562 cpufreq_frequency_table_put_attr(policy->cpu);
563 acpi_io_data[policy->cpu] = NULL;
564 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
565 kfree(data);
566 }
567
568 return (0);
569 }
570
571 static int
572 acpi_cpufreq_resume (
573 struct cpufreq_policy *policy)
574 {
575 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
576
577
578 dprintk("acpi_cpufreq_resume\n");
579
580 data->resume = 1;
581
582 return (0);
583 }
584
585
586 static struct freq_attr* acpi_cpufreq_attr[] = {
587 &cpufreq_freq_attr_scaling_available_freqs,
588 NULL,
589 };
590
591 static struct cpufreq_driver acpi_cpufreq_driver = {
592 .verify = acpi_cpufreq_verify,
593 .target = acpi_cpufreq_target,
594 .init = acpi_cpufreq_cpu_init,
595 .exit = acpi_cpufreq_cpu_exit,
596 .resume = acpi_cpufreq_resume,
597 .name = "acpi-cpufreq",
598 .owner = THIS_MODULE,
599 .attr = acpi_cpufreq_attr,
600 };
601
602
603 static int __init
604 acpi_cpufreq_init (void)
605 {
606 dprintk("acpi_cpufreq_init\n");
607
608 acpi_cpufreq_early_init_acpi();
609
610 return cpufreq_register_driver(&acpi_cpufreq_driver);
611 }
612
613
614 static void __exit
615 acpi_cpufreq_exit (void)
616 {
617 unsigned int i;
618 dprintk("acpi_cpufreq_exit\n");
619
620 cpufreq_unregister_driver(&acpi_cpufreq_driver);
621
622 for_each_possible_cpu(i) {
623 kfree(acpi_perf_data[i]);
624 acpi_perf_data[i] = NULL;
625 }
626 return;
627 }
628
629 module_param(acpi_pstate_strict, uint, 0644);
630 MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
631
632 late_initcall(acpi_cpufreq_init);
633 module_exit(acpi_cpufreq_exit);
634
635 MODULE_ALIAS("acpi");