]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/i386/kernel/cpu/cpufreq/speedstep-centrino.c
Pull bugzilla-5737 into release branch
[mirror_ubuntu-focal-kernel.git] / arch / i386 / kernel / cpu / cpufreq / speedstep-centrino.c
1 /*
2 * cpufreq driver for Enhanced SpeedStep, as found in Intel's Pentium
3 * M (part of the Centrino chipset).
4 *
5 * Despite the "SpeedStep" in the name, this is almost entirely unlike
6 * traditional SpeedStep.
7 *
8 * Modelled on speedstep.c
9 *
10 * Copyright (C) 2003 Jeremy Fitzhardinge <jeremy@goop.org>
11 *
12 * WARNING WARNING WARNING
13 *
14 * This driver manipulates the PERF_CTL MSR, which is only somewhat
15 * documented. While it seems to work on my laptop, it has not been
16 * tested anywhere else, and it may not work for you, do strange
17 * things or simply crash.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/cpufreq.h>
24 #include <linux/config.h>
25 #include <linux/sched.h> /* current */
26 #include <linux/delay.h>
27 #include <linux/compiler.h>
28
29 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
30 #include <linux/acpi.h>
31 #include <acpi/processor.h>
32 #endif
33
34 #include <asm/msr.h>
35 #include <asm/processor.h>
36 #include <asm/cpufeature.h>
37
38 #define PFX "speedstep-centrino: "
39 #define MAINTAINER "Jeremy Fitzhardinge <jeremy@goop.org>"
40
41 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "speedstep-centrino", msg)
42
43
44 struct cpu_id
45 {
46 __u8 x86; /* CPU family */
47 __u8 x86_model; /* model */
48 __u8 x86_mask; /* stepping */
49 };
50
51 enum {
52 CPU_BANIAS,
53 CPU_DOTHAN_A1,
54 CPU_DOTHAN_A2,
55 CPU_DOTHAN_B0,
56 CPU_MP4HT_D0,
57 CPU_MP4HT_E0,
58 };
59
60 static const struct cpu_id cpu_ids[] = {
61 [CPU_BANIAS] = { 6, 9, 5 },
62 [CPU_DOTHAN_A1] = { 6, 13, 1 },
63 [CPU_DOTHAN_A2] = { 6, 13, 2 },
64 [CPU_DOTHAN_B0] = { 6, 13, 6 },
65 [CPU_MP4HT_D0] = {15, 3, 4 },
66 [CPU_MP4HT_E0] = {15, 4, 1 },
67 };
68 #define N_IDS ARRAY_SIZE(cpu_ids)
69
70 struct cpu_model
71 {
72 const struct cpu_id *cpu_id;
73 const char *model_name;
74 unsigned max_freq; /* max clock in kHz */
75
76 struct cpufreq_frequency_table *op_points; /* clock/voltage pairs */
77 };
78 static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x);
79
80 /* Operating points for current CPU */
81 static struct cpu_model *centrino_model[NR_CPUS];
82 static const struct cpu_id *centrino_cpu[NR_CPUS];
83
84 static struct cpufreq_driver centrino_driver;
85
86 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE
87
88 /* Computes the correct form for IA32_PERF_CTL MSR for a particular
89 frequency/voltage operating point; frequency in MHz, volts in mV.
90 This is stored as "index" in the structure. */
91 #define OP(mhz, mv) \
92 { \
93 .frequency = (mhz) * 1000, \
94 .index = (((mhz)/100) << 8) | ((mv - 700) / 16) \
95 }
96
97 /*
98 * These voltage tables were derived from the Intel Pentium M
99 * datasheet, document 25261202.pdf, Table 5. I have verified they
100 * are consistent with my IBM ThinkPad X31, which has a 1.3GHz Pentium
101 * M.
102 */
103
104 /* Ultra Low Voltage Intel Pentium M processor 900MHz (Banias) */
105 static struct cpufreq_frequency_table banias_900[] =
106 {
107 OP(600, 844),
108 OP(800, 988),
109 OP(900, 1004),
110 { .frequency = CPUFREQ_TABLE_END }
111 };
112
113 /* Ultra Low Voltage Intel Pentium M processor 1000MHz (Banias) */
114 static struct cpufreq_frequency_table banias_1000[] =
115 {
116 OP(600, 844),
117 OP(800, 972),
118 OP(900, 988),
119 OP(1000, 1004),
120 { .frequency = CPUFREQ_TABLE_END }
121 };
122
123 /* Low Voltage Intel Pentium M processor 1.10GHz (Banias) */
124 static struct cpufreq_frequency_table banias_1100[] =
125 {
126 OP( 600, 956),
127 OP( 800, 1020),
128 OP( 900, 1100),
129 OP(1000, 1164),
130 OP(1100, 1180),
131 { .frequency = CPUFREQ_TABLE_END }
132 };
133
134
135 /* Low Voltage Intel Pentium M processor 1.20GHz (Banias) */
136 static struct cpufreq_frequency_table banias_1200[] =
137 {
138 OP( 600, 956),
139 OP( 800, 1004),
140 OP( 900, 1020),
141 OP(1000, 1100),
142 OP(1100, 1164),
143 OP(1200, 1180),
144 { .frequency = CPUFREQ_TABLE_END }
145 };
146
147 /* Intel Pentium M processor 1.30GHz (Banias) */
148 static struct cpufreq_frequency_table banias_1300[] =
149 {
150 OP( 600, 956),
151 OP( 800, 1260),
152 OP(1000, 1292),
153 OP(1200, 1356),
154 OP(1300, 1388),
155 { .frequency = CPUFREQ_TABLE_END }
156 };
157
158 /* Intel Pentium M processor 1.40GHz (Banias) */
159 static struct cpufreq_frequency_table banias_1400[] =
160 {
161 OP( 600, 956),
162 OP( 800, 1180),
163 OP(1000, 1308),
164 OP(1200, 1436),
165 OP(1400, 1484),
166 { .frequency = CPUFREQ_TABLE_END }
167 };
168
169 /* Intel Pentium M processor 1.50GHz (Banias) */
170 static struct cpufreq_frequency_table banias_1500[] =
171 {
172 OP( 600, 956),
173 OP( 800, 1116),
174 OP(1000, 1228),
175 OP(1200, 1356),
176 OP(1400, 1452),
177 OP(1500, 1484),
178 { .frequency = CPUFREQ_TABLE_END }
179 };
180
181 /* Intel Pentium M processor 1.60GHz (Banias) */
182 static struct cpufreq_frequency_table banias_1600[] =
183 {
184 OP( 600, 956),
185 OP( 800, 1036),
186 OP(1000, 1164),
187 OP(1200, 1276),
188 OP(1400, 1420),
189 OP(1600, 1484),
190 { .frequency = CPUFREQ_TABLE_END }
191 };
192
193 /* Intel Pentium M processor 1.70GHz (Banias) */
194 static struct cpufreq_frequency_table banias_1700[] =
195 {
196 OP( 600, 956),
197 OP( 800, 1004),
198 OP(1000, 1116),
199 OP(1200, 1228),
200 OP(1400, 1308),
201 OP(1700, 1484),
202 { .frequency = CPUFREQ_TABLE_END }
203 };
204 #undef OP
205
206 #define _BANIAS(cpuid, max, name) \
207 { .cpu_id = cpuid, \
208 .model_name = "Intel(R) Pentium(R) M processor " name "MHz", \
209 .max_freq = (max)*1000, \
210 .op_points = banias_##max, \
211 }
212 #define BANIAS(max) _BANIAS(&cpu_ids[CPU_BANIAS], max, #max)
213
214 /* CPU models, their operating frequency range, and freq/voltage
215 operating points */
216 static struct cpu_model models[] =
217 {
218 _BANIAS(&cpu_ids[CPU_BANIAS], 900, " 900"),
219 BANIAS(1000),
220 BANIAS(1100),
221 BANIAS(1200),
222 BANIAS(1300),
223 BANIAS(1400),
224 BANIAS(1500),
225 BANIAS(1600),
226 BANIAS(1700),
227
228 /* NULL model_name is a wildcard */
229 { &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL },
230 { &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL },
231 { &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL },
232 { &cpu_ids[CPU_MP4HT_D0], NULL, 0, NULL },
233 { &cpu_ids[CPU_MP4HT_E0], NULL, 0, NULL },
234
235 { NULL, }
236 };
237 #undef _BANIAS
238 #undef BANIAS
239
240 static int centrino_cpu_init_table(struct cpufreq_policy *policy)
241 {
242 struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu];
243 struct cpu_model *model;
244
245 for(model = models; model->cpu_id != NULL; model++)
246 if (centrino_verify_cpu_id(cpu, model->cpu_id) &&
247 (model->model_name == NULL ||
248 strcmp(cpu->x86_model_id, model->model_name) == 0))
249 break;
250
251 if (model->cpu_id == NULL) {
252 /* No match at all */
253 dprintk(KERN_INFO PFX "no support for CPU model \"%s\": "
254 "send /proc/cpuinfo to " MAINTAINER "\n",
255 cpu->x86_model_id);
256 return -ENOENT;
257 }
258
259 if (model->op_points == NULL) {
260 /* Matched a non-match */
261 dprintk(KERN_INFO PFX "no table support for CPU model \"%s\"\n",
262 cpu->x86_model_id);
263 #ifndef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
264 dprintk(KERN_INFO PFX "try compiling with CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI enabled\n");
265 #endif
266 return -ENOENT;
267 }
268
269 centrino_model[policy->cpu] = model;
270
271 dprintk("found \"%s\": max frequency: %dkHz\n",
272 model->model_name, model->max_freq);
273
274 return 0;
275 }
276
277 #else
278 static inline int centrino_cpu_init_table(struct cpufreq_policy *policy) { return -ENODEV; }
279 #endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE */
280
281 static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, const struct cpu_id *x)
282 {
283 if ((c->x86 == x->x86) &&
284 (c->x86_model == x->x86_model) &&
285 (c->x86_mask == x->x86_mask))
286 return 1;
287 return 0;
288 }
289
290 /* To be called only after centrino_model is initialized */
291 static unsigned extract_clock(unsigned msr, unsigned int cpu, int failsafe)
292 {
293 int i;
294
295 /*
296 * Extract clock in kHz from PERF_CTL value
297 * for centrino, as some DSDTs are buggy.
298 * Ideally, this can be done using the acpi_data structure.
299 */
300 if ((centrino_cpu[cpu] == &cpu_ids[CPU_BANIAS]) ||
301 (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_A1]) ||
302 (centrino_cpu[cpu] == &cpu_ids[CPU_DOTHAN_B0])) {
303 msr = (msr >> 8) & 0xff;
304 return msr * 100000;
305 }
306
307 if ((!centrino_model[cpu]) || (!centrino_model[cpu]->op_points))
308 return 0;
309
310 msr &= 0xffff;
311 for (i=0;centrino_model[cpu]->op_points[i].frequency != CPUFREQ_TABLE_END; i++) {
312 if (msr == centrino_model[cpu]->op_points[i].index)
313 return centrino_model[cpu]->op_points[i].frequency;
314 }
315 if (failsafe)
316 return centrino_model[cpu]->op_points[i-1].frequency;
317 else
318 return 0;
319 }
320
321 /* Return the current CPU frequency in kHz */
322 static unsigned int get_cur_freq(unsigned int cpu)
323 {
324 unsigned l, h;
325 unsigned clock_freq;
326 cpumask_t saved_mask;
327
328 saved_mask = current->cpus_allowed;
329 set_cpus_allowed(current, cpumask_of_cpu(cpu));
330 if (smp_processor_id() != cpu)
331 return 0;
332
333 rdmsr(MSR_IA32_PERF_STATUS, l, h);
334 clock_freq = extract_clock(l, cpu, 0);
335
336 if (unlikely(clock_freq == 0)) {
337 /*
338 * On some CPUs, we can see transient MSR values (which are
339 * not present in _PSS), while CPU is doing some automatic
340 * P-state transition (like TM2). Get the last freq set
341 * in PERF_CTL.
342 */
343 rdmsr(MSR_IA32_PERF_CTL, l, h);
344 clock_freq = extract_clock(l, cpu, 1);
345 }
346
347 set_cpus_allowed(current, saved_mask);
348 return clock_freq;
349 }
350
351
352 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
353
354 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
355
356 /*
357 * centrino_cpu_early_init_acpi - Do the preregistering with ACPI P-States
358 * library
359 *
360 * Before doing the actual init, we need to do _PSD related setup whenever
361 * supported by the BIOS. These are handled by this early_init routine.
362 */
363 static int centrino_cpu_early_init_acpi(void)
364 {
365 unsigned int i, j;
366 struct acpi_processor_performance *data;
367
368 for_each_cpu(i) {
369 data = kzalloc(sizeof(struct acpi_processor_performance),
370 GFP_KERNEL);
371 if (!data) {
372 for_each_cpu(j) {
373 kfree(acpi_perf_data[j]);
374 acpi_perf_data[j] = NULL;
375 }
376 return (-ENOMEM);
377 }
378 acpi_perf_data[i] = data;
379 }
380
381 acpi_processor_preregister_performance(acpi_perf_data);
382 return 0;
383 }
384
385 /*
386 * centrino_cpu_init_acpi - register with ACPI P-States library
387 *
388 * Register with the ACPI P-States library (part of drivers/acpi/processor.c)
389 * in order to determine correct frequency and voltage pairings by reading
390 * the _PSS of the ACPI DSDT or SSDT tables.
391 */
392 static int centrino_cpu_init_acpi(struct cpufreq_policy *policy)
393 {
394 unsigned long cur_freq;
395 int result = 0, i;
396 unsigned int cpu = policy->cpu;
397 struct acpi_processor_performance *p;
398
399 p = acpi_perf_data[cpu];
400
401 /* register with ACPI core */
402 if (acpi_processor_register_performance(p, cpu)) {
403 dprintk(KERN_INFO PFX "obtaining ACPI data failed\n");
404 return -EIO;
405 }
406 policy->cpus = p->shared_cpu_map;
407 policy->shared_type = p->shared_type;
408
409 /* verify the acpi_data */
410 if (p->state_count <= 1) {
411 dprintk("No P-States\n");
412 result = -ENODEV;
413 goto err_unreg;
414 }
415
416 if ((p->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
417 (p->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
418 dprintk("Invalid control/status registers (%x - %x)\n",
419 p->control_register.space_id, p->status_register.space_id);
420 result = -EIO;
421 goto err_unreg;
422 }
423
424 for (i=0; i<p->state_count; i++) {
425 if (p->states[i].control != p->states[i].status) {
426 dprintk("Different control (%llu) and status values (%llu)\n",
427 p->states[i].control, p->states[i].status);
428 result = -EINVAL;
429 goto err_unreg;
430 }
431
432 if (!p->states[i].core_frequency) {
433 dprintk("Zero core frequency for state %u\n", i);
434 result = -EINVAL;
435 goto err_unreg;
436 }
437
438 if (p->states[i].core_frequency > p->states[0].core_frequency) {
439 dprintk("P%u has larger frequency (%llu) than P0 (%llu), skipping\n", i,
440 p->states[i].core_frequency, p->states[0].core_frequency);
441 p->states[i].core_frequency = 0;
442 continue;
443 }
444 }
445
446 centrino_model[cpu] = kzalloc(sizeof(struct cpu_model), GFP_KERNEL);
447 if (!centrino_model[cpu]) {
448 result = -ENOMEM;
449 goto err_unreg;
450 }
451
452 centrino_model[cpu]->model_name=NULL;
453 centrino_model[cpu]->max_freq = p->states[0].core_frequency * 1000;
454 centrino_model[cpu]->op_points = kmalloc(sizeof(struct cpufreq_frequency_table) *
455 (p->state_count + 1), GFP_KERNEL);
456 if (!centrino_model[cpu]->op_points) {
457 result = -ENOMEM;
458 goto err_kfree;
459 }
460
461 for (i=0; i<p->state_count; i++) {
462 centrino_model[cpu]->op_points[i].index = p->states[i].control;
463 centrino_model[cpu]->op_points[i].frequency = p->states[i].core_frequency * 1000;
464 dprintk("adding state %i with frequency %u and control value %04x\n",
465 i, centrino_model[cpu]->op_points[i].frequency, centrino_model[cpu]->op_points[i].index);
466 }
467 centrino_model[cpu]->op_points[p->state_count].frequency = CPUFREQ_TABLE_END;
468
469 cur_freq = get_cur_freq(cpu);
470
471 for (i=0; i<p->state_count; i++) {
472 if (!p->states[i].core_frequency) {
473 dprintk("skipping state %u\n", i);
474 centrino_model[cpu]->op_points[i].frequency = CPUFREQ_ENTRY_INVALID;
475 continue;
476 }
477
478 if (extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0) !=
479 (centrino_model[cpu]->op_points[i].frequency)) {
480 dprintk("Invalid encoded frequency (%u vs. %u)\n",
481 extract_clock(centrino_model[cpu]->op_points[i].index, cpu, 0),
482 centrino_model[cpu]->op_points[i].frequency);
483 result = -EINVAL;
484 goto err_kfree_all;
485 }
486
487 if (cur_freq == centrino_model[cpu]->op_points[i].frequency)
488 p->state = i;
489 }
490
491 /* notify BIOS that we exist */
492 acpi_processor_notify_smm(THIS_MODULE);
493
494 return 0;
495
496 err_kfree_all:
497 kfree(centrino_model[cpu]->op_points);
498 err_kfree:
499 kfree(centrino_model[cpu]);
500 err_unreg:
501 acpi_processor_unregister_performance(p, cpu);
502 dprintk(KERN_INFO PFX "invalid ACPI data\n");
503 return (result);
504 }
505 #else
506 static inline int centrino_cpu_init_acpi(struct cpufreq_policy *policy) { return -ENODEV; }
507 static inline int centrino_cpu_early_init_acpi(void) { return 0; }
508 #endif
509
510 static int centrino_cpu_init(struct cpufreq_policy *policy)
511 {
512 struct cpuinfo_x86 *cpu = &cpu_data[policy->cpu];
513 unsigned freq;
514 unsigned l, h;
515 int ret;
516 int i;
517
518 /* Only Intel makes Enhanced Speedstep-capable CPUs */
519 if (cpu->x86_vendor != X86_VENDOR_INTEL || !cpu_has(cpu, X86_FEATURE_EST))
520 return -ENODEV;
521
522 if (cpu_has(cpu, X86_FEATURE_CONSTANT_TSC))
523 centrino_driver.flags |= CPUFREQ_CONST_LOOPS;
524
525 if (centrino_cpu_init_acpi(policy)) {
526 if (policy->cpu != 0)
527 return -ENODEV;
528
529 for (i = 0; i < N_IDS; i++)
530 if (centrino_verify_cpu_id(cpu, &cpu_ids[i]))
531 break;
532
533 if (i != N_IDS)
534 centrino_cpu[policy->cpu] = &cpu_ids[i];
535
536 if (!centrino_cpu[policy->cpu]) {
537 dprintk(KERN_INFO PFX "found unsupported CPU with "
538 "Enhanced SpeedStep: send /proc/cpuinfo to "
539 MAINTAINER "\n");
540 return -ENODEV;
541 }
542
543 if (centrino_cpu_init_table(policy)) {
544 return -ENODEV;
545 }
546 }
547
548 /* Check to see if Enhanced SpeedStep is enabled, and try to
549 enable it if not. */
550 rdmsr(MSR_IA32_MISC_ENABLE, l, h);
551
552 if (!(l & (1<<16))) {
553 l |= (1<<16);
554 dprintk("trying to enable Enhanced SpeedStep (%x)\n", l);
555 wrmsr(MSR_IA32_MISC_ENABLE, l, h);
556
557 /* check to see if it stuck */
558 rdmsr(MSR_IA32_MISC_ENABLE, l, h);
559 if (!(l & (1<<16))) {
560 printk(KERN_INFO PFX "couldn't enable Enhanced SpeedStep\n");
561 return -ENODEV;
562 }
563 }
564
565 freq = get_cur_freq(policy->cpu);
566
567 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
568 policy->cpuinfo.transition_latency = 10000; /* 10uS transition latency */
569 policy->cur = freq;
570
571 dprintk("centrino_cpu_init: cur=%dkHz\n", policy->cur);
572
573 ret = cpufreq_frequency_table_cpuinfo(policy, centrino_model[policy->cpu]->op_points);
574 if (ret)
575 return (ret);
576
577 cpufreq_frequency_table_get_attr(centrino_model[policy->cpu]->op_points, policy->cpu);
578
579 return 0;
580 }
581
582 static int centrino_cpu_exit(struct cpufreq_policy *policy)
583 {
584 unsigned int cpu = policy->cpu;
585
586 if (!centrino_model[cpu])
587 return -ENODEV;
588
589 cpufreq_frequency_table_put_attr(cpu);
590
591 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
592 if (!centrino_model[cpu]->model_name) {
593 static struct acpi_processor_performance *p;
594
595 if (acpi_perf_data[cpu]) {
596 p = acpi_perf_data[cpu];
597 dprintk("unregistering and freeing ACPI data\n");
598 acpi_processor_unregister_performance(p, cpu);
599 kfree(centrino_model[cpu]->op_points);
600 kfree(centrino_model[cpu]);
601 }
602 }
603 #endif
604
605 centrino_model[cpu] = NULL;
606
607 return 0;
608 }
609
610 /**
611 * centrino_verify - verifies a new CPUFreq policy
612 * @policy: new policy
613 *
614 * Limit must be within this model's frequency range at least one
615 * border included.
616 */
617 static int centrino_verify (struct cpufreq_policy *policy)
618 {
619 return cpufreq_frequency_table_verify(policy, centrino_model[policy->cpu]->op_points);
620 }
621
622 /**
623 * centrino_setpolicy - set a new CPUFreq policy
624 * @policy: new policy
625 * @target_freq: the target frequency
626 * @relation: how that frequency relates to achieved frequency (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H)
627 *
628 * Sets a new CPUFreq policy.
629 */
630 static int centrino_target (struct cpufreq_policy *policy,
631 unsigned int target_freq,
632 unsigned int relation)
633 {
634 unsigned int newstate = 0;
635 unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu;
636 struct cpufreq_freqs freqs;
637 cpumask_t online_policy_cpus;
638 cpumask_t saved_mask;
639 cpumask_t set_mask;
640 cpumask_t covered_cpus;
641 int retval = 0;
642 unsigned int j, k, first_cpu, tmp;
643
644 if (unlikely(centrino_model[cpu] == NULL))
645 return -ENODEV;
646
647 if (unlikely(cpufreq_frequency_table_target(policy,
648 centrino_model[cpu]->op_points,
649 target_freq,
650 relation,
651 &newstate))) {
652 return -EINVAL;
653 }
654
655 #ifdef CONFIG_HOTPLUG_CPU
656 /* cpufreq holds the hotplug lock, so we are safe from here on */
657 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
658 #else
659 online_policy_cpus = policy->cpus;
660 #endif
661
662 saved_mask = current->cpus_allowed;
663 first_cpu = 1;
664 cpus_clear(covered_cpus);
665 for_each_cpu_mask(j, online_policy_cpus) {
666 /*
667 * Support for SMP systems.
668 * Make sure we are running on CPU that wants to change freq
669 */
670 cpus_clear(set_mask);
671 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
672 cpus_or(set_mask, set_mask, online_policy_cpus);
673 else
674 cpu_set(j, set_mask);
675
676 set_cpus_allowed(current, set_mask);
677 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
678 dprintk("couldn't limit to CPUs in this domain\n");
679 retval = -EAGAIN;
680 if (first_cpu) {
681 /* We haven't started the transition yet. */
682 goto migrate_end;
683 }
684 break;
685 }
686
687 msr = centrino_model[cpu]->op_points[newstate].index;
688
689 if (first_cpu) {
690 rdmsr(MSR_IA32_PERF_CTL, oldmsr, h);
691 if (msr == (oldmsr & 0xffff)) {
692 dprintk("no change needed - msr was and needs "
693 "to be %x\n", oldmsr);
694 retval = 0;
695 goto migrate_end;
696 }
697
698 freqs.old = extract_clock(oldmsr, cpu, 0);
699 freqs.new = extract_clock(msr, cpu, 0);
700
701 dprintk("target=%dkHz old=%d new=%d msr=%04x\n",
702 target_freq, freqs.old, freqs.new, msr);
703
704 for_each_cpu_mask(k, online_policy_cpus) {
705 freqs.cpu = k;
706 cpufreq_notify_transition(&freqs,
707 CPUFREQ_PRECHANGE);
708 }
709
710 first_cpu = 0;
711 /* all but 16 LSB are reserved, treat them with care */
712 oldmsr &= ~0xffff;
713 msr &= 0xffff;
714 oldmsr |= msr;
715 }
716
717 wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
718 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
719 break;
720
721 cpu_set(j, covered_cpus);
722 }
723
724 for_each_cpu_mask(k, online_policy_cpus) {
725 freqs.cpu = k;
726 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
727 }
728
729 if (unlikely(retval)) {
730 /*
731 * We have failed halfway through the frequency change.
732 * We have sent callbacks to policy->cpus and
733 * MSRs have already been written on coverd_cpus.
734 * Best effort undo..
735 */
736
737 if (!cpus_empty(covered_cpus)) {
738 for_each_cpu_mask(j, covered_cpus) {
739 set_cpus_allowed(current, cpumask_of_cpu(j));
740 wrmsr(MSR_IA32_PERF_CTL, oldmsr, h);
741 }
742 }
743
744 tmp = freqs.new;
745 freqs.new = freqs.old;
746 freqs.old = tmp;
747 for_each_cpu_mask(j, online_policy_cpus) {
748 freqs.cpu = j;
749 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
750 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
751 }
752 }
753
754 migrate_end:
755 set_cpus_allowed(current, saved_mask);
756 return 0;
757 }
758
759 static struct freq_attr* centrino_attr[] = {
760 &cpufreq_freq_attr_scaling_available_freqs,
761 NULL,
762 };
763
764 static struct cpufreq_driver centrino_driver = {
765 .name = "centrino", /* should be speedstep-centrino,
766 but there's a 16 char limit */
767 .init = centrino_cpu_init,
768 .exit = centrino_cpu_exit,
769 .verify = centrino_verify,
770 .target = centrino_target,
771 .get = get_cur_freq,
772 .attr = centrino_attr,
773 .owner = THIS_MODULE,
774 };
775
776
777 /**
778 * centrino_init - initializes the Enhanced SpeedStep CPUFreq driver
779 *
780 * Initializes the Enhanced SpeedStep support. Returns -ENODEV on
781 * unsupported devices, -ENOENT if there's no voltage table for this
782 * particular CPU model, -EINVAL on problems during initiatization,
783 * and zero on success.
784 *
785 * This is quite picky. Not only does the CPU have to advertise the
786 * "est" flag in the cpuid capability flags, we look for a specific
787 * CPU model and stepping, and we need to have the exact model name in
788 * our voltage tables. That is, be paranoid about not releasing
789 * someone's valuable magic smoke.
790 */
791 static int __init centrino_init(void)
792 {
793 struct cpuinfo_x86 *cpu = cpu_data;
794
795 if (!cpu_has(cpu, X86_FEATURE_EST))
796 return -ENODEV;
797
798 centrino_cpu_early_init_acpi();
799
800 return cpufreq_register_driver(&centrino_driver);
801 }
802
803 static void __exit centrino_exit(void)
804 {
805 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
806 unsigned int j;
807 #endif
808
809 cpufreq_unregister_driver(&centrino_driver);
810
811 #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_ACPI
812 for_each_cpu(j) {
813 kfree(acpi_perf_data[j]);
814 acpi_perf_data[j] = NULL;
815 }
816 #endif
817 }
818
819 MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>");
820 MODULE_DESCRIPTION ("Enhanced SpeedStep driver for Intel Pentium M processors.");
821 MODULE_LICENSE ("GPL");
822
823 late_initcall(centrino_init);
824 module_exit(centrino_exit);