]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/i386/kernel/kprobes.c
[PATCH] kprobe: fix resume execution on i386
[mirror_ubuntu-zesty-kernel.git] / arch / i386 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
29 */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38 #include <asm/uaccess.h>
39
40 void jprobe_return_end(void);
41
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44
45 /* insert a jmp code */
46 static __always_inline void set_jmp_op(void *from, void *to)
47 {
48 struct __arch_jmp_op {
49 char op;
50 long raddr;
51 } __attribute__((packed)) *jop;
52 jop = (struct __arch_jmp_op *)from;
53 jop->raddr = (long)(to) - ((long)(from) + 5);
54 jop->op = RELATIVEJUMP_INSTRUCTION;
55 }
56
57 /*
58 * returns non-zero if opcodes can be boosted.
59 */
60 static __always_inline int can_boost(kprobe_opcode_t opcode)
61 {
62 switch (opcode & 0xf0 ) {
63 case 0x70:
64 return 0; /* can't boost conditional jump */
65 case 0x90:
66 /* can't boost call and pushf */
67 return opcode != 0x9a && opcode != 0x9c;
68 case 0xc0:
69 /* can't boost undefined opcodes and soft-interruptions */
70 return (0xc1 < opcode && opcode < 0xc6) ||
71 (0xc7 < opcode && opcode < 0xcc) || opcode == 0xcf;
72 case 0xd0:
73 /* can boost AA* and XLAT */
74 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
75 case 0xe0:
76 /* can boost in/out and (may be) jmps */
77 return (0xe3 < opcode && opcode != 0xe8);
78 case 0xf0:
79 /* clear and set flags can be boost */
80 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
81 default:
82 /* currently, can't boost 2 bytes opcodes */
83 return opcode != 0x0f;
84 }
85 }
86
87
88 /*
89 * returns non-zero if opcode modifies the interrupt flag.
90 */
91 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
92 {
93 switch (opcode) {
94 case 0xfa: /* cli */
95 case 0xfb: /* sti */
96 case 0xcf: /* iret/iretd */
97 case 0x9d: /* popf/popfd */
98 return 1;
99 }
100 return 0;
101 }
102
103 int __kprobes arch_prepare_kprobe(struct kprobe *p)
104 {
105 /* insn: must be on special executable page on i386. */
106 p->ainsn.insn = get_insn_slot();
107 if (!p->ainsn.insn)
108 return -ENOMEM;
109
110 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
111 p->opcode = *p->addr;
112 if (can_boost(p->opcode)) {
113 p->ainsn.boostable = 0;
114 } else {
115 p->ainsn.boostable = -1;
116 }
117 return 0;
118 }
119
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122 *p->addr = BREAKPOINT_INSTRUCTION;
123 flush_icache_range((unsigned long) p->addr,
124 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
125 }
126
127 void __kprobes arch_disarm_kprobe(struct kprobe *p)
128 {
129 *p->addr = p->opcode;
130 flush_icache_range((unsigned long) p->addr,
131 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
132 }
133
134 void __kprobes arch_remove_kprobe(struct kprobe *p)
135 {
136 mutex_lock(&kprobe_mutex);
137 free_insn_slot(p->ainsn.insn);
138 mutex_unlock(&kprobe_mutex);
139 }
140
141 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
142 {
143 kcb->prev_kprobe.kp = kprobe_running();
144 kcb->prev_kprobe.status = kcb->kprobe_status;
145 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
146 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
147 }
148
149 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
150 {
151 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
152 kcb->kprobe_status = kcb->prev_kprobe.status;
153 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
154 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
155 }
156
157 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
158 struct kprobe_ctlblk *kcb)
159 {
160 __get_cpu_var(current_kprobe) = p;
161 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
162 = (regs->eflags & (TF_MASK | IF_MASK));
163 if (is_IF_modifier(p->opcode))
164 kcb->kprobe_saved_eflags &= ~IF_MASK;
165 }
166
167 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
168 {
169 regs->eflags |= TF_MASK;
170 regs->eflags &= ~IF_MASK;
171 /*single step inline if the instruction is an int3*/
172 if (p->opcode == BREAKPOINT_INSTRUCTION)
173 regs->eip = (unsigned long)p->addr;
174 else
175 regs->eip = (unsigned long)p->ainsn.insn;
176 }
177
178 /* Called with kretprobe_lock held */
179 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
180 struct pt_regs *regs)
181 {
182 unsigned long *sara = (unsigned long *)&regs->esp;
183 struct kretprobe_instance *ri;
184
185 if ((ri = get_free_rp_inst(rp)) != NULL) {
186 ri->rp = rp;
187 ri->task = current;
188 ri->ret_addr = (kprobe_opcode_t *) *sara;
189
190 /* Replace the return addr with trampoline addr */
191 *sara = (unsigned long) &kretprobe_trampoline;
192
193 add_rp_inst(ri);
194 } else {
195 rp->nmissed++;
196 }
197 }
198
199 /*
200 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
201 * remain disabled thorough out this function.
202 */
203 static int __kprobes kprobe_handler(struct pt_regs *regs)
204 {
205 struct kprobe *p;
206 int ret = 0;
207 kprobe_opcode_t *addr;
208 struct kprobe_ctlblk *kcb;
209 #ifdef CONFIG_PREEMPT
210 unsigned pre_preempt_count = preempt_count();
211 #endif /* CONFIG_PREEMPT */
212
213 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
214
215 /*
216 * We don't want to be preempted for the entire
217 * duration of kprobe processing
218 */
219 preempt_disable();
220 kcb = get_kprobe_ctlblk();
221
222 /* Check we're not actually recursing */
223 if (kprobe_running()) {
224 p = get_kprobe(addr);
225 if (p) {
226 if (kcb->kprobe_status == KPROBE_HIT_SS &&
227 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
228 regs->eflags &= ~TF_MASK;
229 regs->eflags |= kcb->kprobe_saved_eflags;
230 goto no_kprobe;
231 }
232 /* We have reentered the kprobe_handler(), since
233 * another probe was hit while within the handler.
234 * We here save the original kprobes variables and
235 * just single step on the instruction of the new probe
236 * without calling any user handlers.
237 */
238 save_previous_kprobe(kcb);
239 set_current_kprobe(p, regs, kcb);
240 kprobes_inc_nmissed_count(p);
241 prepare_singlestep(p, regs);
242 kcb->kprobe_status = KPROBE_REENTER;
243 return 1;
244 } else {
245 if (*addr != BREAKPOINT_INSTRUCTION) {
246 /* The breakpoint instruction was removed by
247 * another cpu right after we hit, no further
248 * handling of this interrupt is appropriate
249 */
250 regs->eip -= sizeof(kprobe_opcode_t);
251 ret = 1;
252 goto no_kprobe;
253 }
254 p = __get_cpu_var(current_kprobe);
255 if (p->break_handler && p->break_handler(p, regs)) {
256 goto ss_probe;
257 }
258 }
259 goto no_kprobe;
260 }
261
262 p = get_kprobe(addr);
263 if (!p) {
264 if (*addr != BREAKPOINT_INSTRUCTION) {
265 /*
266 * The breakpoint instruction was removed right
267 * after we hit it. Another cpu has removed
268 * either a probepoint or a debugger breakpoint
269 * at this address. In either case, no further
270 * handling of this interrupt is appropriate.
271 * Back up over the (now missing) int3 and run
272 * the original instruction.
273 */
274 regs->eip -= sizeof(kprobe_opcode_t);
275 ret = 1;
276 }
277 /* Not one of ours: let kernel handle it */
278 goto no_kprobe;
279 }
280
281 set_current_kprobe(p, regs, kcb);
282 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
283
284 if (p->pre_handler && p->pre_handler(p, regs))
285 /* handler has already set things up, so skip ss setup */
286 return 1;
287
288 if (p->ainsn.boostable == 1 &&
289 #ifdef CONFIG_PREEMPT
290 !(pre_preempt_count) && /*
291 * This enables booster when the direct
292 * execution path aren't preempted.
293 */
294 #endif /* CONFIG_PREEMPT */
295 !p->post_handler && !p->break_handler ) {
296 /* Boost up -- we can execute copied instructions directly */
297 reset_current_kprobe();
298 regs->eip = (unsigned long)p->ainsn.insn;
299 preempt_enable_no_resched();
300 return 1;
301 }
302
303 ss_probe:
304 prepare_singlestep(p, regs);
305 kcb->kprobe_status = KPROBE_HIT_SS;
306 return 1;
307
308 no_kprobe:
309 preempt_enable_no_resched();
310 return ret;
311 }
312
313 /*
314 * For function-return probes, init_kprobes() establishes a probepoint
315 * here. When a retprobed function returns, this probe is hit and
316 * trampoline_probe_handler() runs, calling the kretprobe's handler.
317 */
318 void __kprobes kretprobe_trampoline_holder(void)
319 {
320 asm volatile ( ".global kretprobe_trampoline\n"
321 "kretprobe_trampoline: \n"
322 " pushf\n"
323 /* skip cs, eip, orig_eax, es, ds */
324 " subl $20, %esp\n"
325 " pushl %eax\n"
326 " pushl %ebp\n"
327 " pushl %edi\n"
328 " pushl %esi\n"
329 " pushl %edx\n"
330 " pushl %ecx\n"
331 " pushl %ebx\n"
332 " movl %esp, %eax\n"
333 " call trampoline_handler\n"
334 /* move eflags to cs */
335 " movl 48(%esp), %edx\n"
336 " movl %edx, 44(%esp)\n"
337 /* save true return address on eflags */
338 " movl %eax, 48(%esp)\n"
339 " popl %ebx\n"
340 " popl %ecx\n"
341 " popl %edx\n"
342 " popl %esi\n"
343 " popl %edi\n"
344 " popl %ebp\n"
345 " popl %eax\n"
346 /* skip eip, orig_eax, es, ds */
347 " addl $16, %esp\n"
348 " popf\n"
349 " ret\n");
350 }
351
352 /*
353 * Called from kretprobe_trampoline
354 */
355 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
356 {
357 struct kretprobe_instance *ri = NULL;
358 struct hlist_head *head;
359 struct hlist_node *node, *tmp;
360 unsigned long flags, orig_ret_address = 0;
361 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
362
363 spin_lock_irqsave(&kretprobe_lock, flags);
364 head = kretprobe_inst_table_head(current);
365
366 /*
367 * It is possible to have multiple instances associated with a given
368 * task either because an multiple functions in the call path
369 * have a return probe installed on them, and/or more then one return
370 * return probe was registered for a target function.
371 *
372 * We can handle this because:
373 * - instances are always inserted at the head of the list
374 * - when multiple return probes are registered for the same
375 * function, the first instance's ret_addr will point to the
376 * real return address, and all the rest will point to
377 * kretprobe_trampoline
378 */
379 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
380 if (ri->task != current)
381 /* another task is sharing our hash bucket */
382 continue;
383
384 if (ri->rp && ri->rp->handler){
385 __get_cpu_var(current_kprobe) = &ri->rp->kp;
386 ri->rp->handler(ri, regs);
387 __get_cpu_var(current_kprobe) = NULL;
388 }
389
390 orig_ret_address = (unsigned long)ri->ret_addr;
391 recycle_rp_inst(ri);
392
393 if (orig_ret_address != trampoline_address)
394 /*
395 * This is the real return address. Any other
396 * instances associated with this task are for
397 * other calls deeper on the call stack
398 */
399 break;
400 }
401
402 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
403
404 spin_unlock_irqrestore(&kretprobe_lock, flags);
405
406 return (void*)orig_ret_address;
407 }
408
409 /*
410 * Called after single-stepping. p->addr is the address of the
411 * instruction whose first byte has been replaced by the "int 3"
412 * instruction. To avoid the SMP problems that can occur when we
413 * temporarily put back the original opcode to single-step, we
414 * single-stepped a copy of the instruction. The address of this
415 * copy is p->ainsn.insn.
416 *
417 * This function prepares to return from the post-single-step
418 * interrupt. We have to fix up the stack as follows:
419 *
420 * 0) Except in the case of absolute or indirect jump or call instructions,
421 * the new eip is relative to the copied instruction. We need to make
422 * it relative to the original instruction.
423 *
424 * 1) If the single-stepped instruction was pushfl, then the TF and IF
425 * flags are set in the just-pushed eflags, and may need to be cleared.
426 *
427 * 2) If the single-stepped instruction was a call, the return address
428 * that is atop the stack is the address following the copied instruction.
429 * We need to make it the address following the original instruction.
430 *
431 * This function also checks instruction size for preparing direct execution.
432 */
433 static void __kprobes resume_execution(struct kprobe *p,
434 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
435 {
436 unsigned long *tos = (unsigned long *)&regs->esp;
437 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
438 unsigned long orig_eip = (unsigned long)p->addr;
439
440 regs->eflags &= ~TF_MASK;
441 switch (p->ainsn.insn[0]) {
442 case 0x9c: /* pushfl */
443 *tos &= ~(TF_MASK | IF_MASK);
444 *tos |= kcb->kprobe_old_eflags;
445 break;
446 case 0xc2: /* iret/ret/lret */
447 case 0xc3:
448 case 0xca:
449 case 0xcb:
450 case 0xcf:
451 case 0xea: /* jmp absolute -- eip is correct */
452 /* eip is already adjusted, no more changes required */
453 p->ainsn.boostable = 1;
454 goto no_change;
455 case 0xe8: /* call relative - Fix return addr */
456 *tos = orig_eip + (*tos - copy_eip);
457 break;
458 case 0x9a: /* call absolute -- same as call absolute, indirect */
459 *tos = orig_eip + (*tos - copy_eip);
460 goto no_change;
461 case 0xff:
462 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
463 /*
464 * call absolute, indirect
465 * Fix return addr; eip is correct.
466 * But this is not boostable
467 */
468 *tos = orig_eip + (*tos - copy_eip);
469 goto no_change;
470 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
471 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
472 /* eip is correct. And this is boostable */
473 p->ainsn.boostable = 1;
474 goto no_change;
475 }
476 default:
477 break;
478 }
479
480 if (p->ainsn.boostable == 0) {
481 if ((regs->eip > copy_eip) &&
482 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
483 /*
484 * These instructions can be executed directly if it
485 * jumps back to correct address.
486 */
487 set_jmp_op((void *)regs->eip,
488 (void *)orig_eip + (regs->eip - copy_eip));
489 p->ainsn.boostable = 1;
490 } else {
491 p->ainsn.boostable = -1;
492 }
493 }
494
495 regs->eip = orig_eip + (regs->eip - copy_eip);
496
497 no_change:
498 return;
499 }
500
501 /*
502 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
503 * remain disabled thoroughout this function.
504 */
505 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
506 {
507 struct kprobe *cur = kprobe_running();
508 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
509
510 if (!cur)
511 return 0;
512
513 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
514 kcb->kprobe_status = KPROBE_HIT_SSDONE;
515 cur->post_handler(cur, regs, 0);
516 }
517
518 resume_execution(cur, regs, kcb);
519 regs->eflags |= kcb->kprobe_saved_eflags;
520
521 /*Restore back the original saved kprobes variables and continue. */
522 if (kcb->kprobe_status == KPROBE_REENTER) {
523 restore_previous_kprobe(kcb);
524 goto out;
525 }
526 reset_current_kprobe();
527 out:
528 preempt_enable_no_resched();
529
530 /*
531 * if somebody else is singlestepping across a probe point, eflags
532 * will have TF set, in which case, continue the remaining processing
533 * of do_debug, as if this is not a probe hit.
534 */
535 if (regs->eflags & TF_MASK)
536 return 0;
537
538 return 1;
539 }
540
541 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542 {
543 struct kprobe *cur = kprobe_running();
544 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
545
546 switch(kcb->kprobe_status) {
547 case KPROBE_HIT_SS:
548 case KPROBE_REENTER:
549 /*
550 * We are here because the instruction being single
551 * stepped caused a page fault. We reset the current
552 * kprobe and the eip points back to the probe address
553 * and allow the page fault handler to continue as a
554 * normal page fault.
555 */
556 regs->eip = (unsigned long)cur->addr;
557 regs->eflags |= kcb->kprobe_old_eflags;
558 if (kcb->kprobe_status == KPROBE_REENTER)
559 restore_previous_kprobe(kcb);
560 else
561 reset_current_kprobe();
562 preempt_enable_no_resched();
563 break;
564 case KPROBE_HIT_ACTIVE:
565 case KPROBE_HIT_SSDONE:
566 /*
567 * We increment the nmissed count for accounting,
568 * we can also use npre/npostfault count for accouting
569 * these specific fault cases.
570 */
571 kprobes_inc_nmissed_count(cur);
572
573 /*
574 * We come here because instructions in the pre/post
575 * handler caused the page_fault, this could happen
576 * if handler tries to access user space by
577 * copy_from_user(), get_user() etc. Let the
578 * user-specified handler try to fix it first.
579 */
580 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
581 return 1;
582
583 /*
584 * In case the user-specified fault handler returned
585 * zero, try to fix up.
586 */
587 if (fixup_exception(regs))
588 return 1;
589
590 /*
591 * fixup_exception() could not handle it,
592 * Let do_page_fault() fix it.
593 */
594 break;
595 default:
596 break;
597 }
598 return 0;
599 }
600
601 /*
602 * Wrapper routine to for handling exceptions.
603 */
604 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
605 unsigned long val, void *data)
606 {
607 struct die_args *args = (struct die_args *)data;
608 int ret = NOTIFY_DONE;
609
610 if (args->regs && user_mode(args->regs))
611 return ret;
612
613 switch (val) {
614 case DIE_INT3:
615 if (kprobe_handler(args->regs))
616 ret = NOTIFY_STOP;
617 break;
618 case DIE_DEBUG:
619 if (post_kprobe_handler(args->regs))
620 ret = NOTIFY_STOP;
621 break;
622 case DIE_GPF:
623 case DIE_PAGE_FAULT:
624 /* kprobe_running() needs smp_processor_id() */
625 preempt_disable();
626 if (kprobe_running() &&
627 kprobe_fault_handler(args->regs, args->trapnr))
628 ret = NOTIFY_STOP;
629 preempt_enable();
630 break;
631 default:
632 break;
633 }
634 return ret;
635 }
636
637 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
638 {
639 struct jprobe *jp = container_of(p, struct jprobe, kp);
640 unsigned long addr;
641 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
642
643 kcb->jprobe_saved_regs = *regs;
644 kcb->jprobe_saved_esp = &regs->esp;
645 addr = (unsigned long)(kcb->jprobe_saved_esp);
646
647 /*
648 * TBD: As Linus pointed out, gcc assumes that the callee
649 * owns the argument space and could overwrite it, e.g.
650 * tailcall optimization. So, to be absolutely safe
651 * we also save and restore enough stack bytes to cover
652 * the argument area.
653 */
654 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
655 MIN_STACK_SIZE(addr));
656 regs->eflags &= ~IF_MASK;
657 regs->eip = (unsigned long)(jp->entry);
658 return 1;
659 }
660
661 void __kprobes jprobe_return(void)
662 {
663 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
664
665 asm volatile (" xchgl %%ebx,%%esp \n"
666 " int3 \n"
667 " .globl jprobe_return_end \n"
668 " jprobe_return_end: \n"
669 " nop \n"::"b"
670 (kcb->jprobe_saved_esp):"memory");
671 }
672
673 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
674 {
675 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
676 u8 *addr = (u8 *) (regs->eip - 1);
677 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
678 struct jprobe *jp = container_of(p, struct jprobe, kp);
679
680 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
681 if (&regs->esp != kcb->jprobe_saved_esp) {
682 struct pt_regs *saved_regs =
683 container_of(kcb->jprobe_saved_esp,
684 struct pt_regs, esp);
685 printk("current esp %p does not match saved esp %p\n",
686 &regs->esp, kcb->jprobe_saved_esp);
687 printk("Saved registers for jprobe %p\n", jp);
688 show_registers(saved_regs);
689 printk("Current registers\n");
690 show_registers(regs);
691 BUG();
692 }
693 *regs = kcb->jprobe_saved_regs;
694 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
695 MIN_STACK_SIZE(stack_addr));
696 preempt_enable_no_resched();
697 return 1;
698 }
699 return 0;
700 }
701
702 int __init arch_init_kprobes(void)
703 {
704 return 0;
705 }