]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/i386/kernel/kprobes.c
PCI: quirk to disable e100 interrupt if RESET failed to
[mirror_ubuntu-hirsute-kernel.git] / arch / i386 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
29 */
30
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/preempt.h>
34 #include <asm/cacheflush.h>
35 #include <asm/kdebug.h>
36 #include <asm/desc.h>
37 #include <asm/uaccess.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 /* insert a jmp code */
45 static __always_inline void set_jmp_op(void *from, void *to)
46 {
47 struct __arch_jmp_op {
48 char op;
49 long raddr;
50 } __attribute__((packed)) *jop;
51 jop = (struct __arch_jmp_op *)from;
52 jop->raddr = (long)(to) - ((long)(from) + 5);
53 jop->op = RELATIVEJUMP_INSTRUCTION;
54 }
55
56 /*
57 * returns non-zero if opcodes can be boosted.
58 */
59 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
60 {
61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 << (row % 32))
67 /*
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not be boost.
70 */
71 static const unsigned long twobyte_is_boostable[256 / 32] = {
72 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
73 /* ------------------------------- */
74 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
90 /* ------------------------------- */
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 };
93 #undef W
94 kprobe_opcode_t opcode;
95 kprobe_opcode_t *orig_opcodes = opcodes;
96 retry:
97 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
98 return 0;
99 opcode = *(opcodes++);
100
101 /* 2nd-byte opcode */
102 if (opcode == 0x0f) {
103 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
104 return 0;
105 return test_bit(*opcodes, twobyte_is_boostable);
106 }
107
108 switch (opcode & 0xf0) {
109 case 0x60:
110 if (0x63 < opcode && opcode < 0x67)
111 goto retry; /* prefixes */
112 /* can't boost Address-size override and bound */
113 return (opcode != 0x62 && opcode != 0x67);
114 case 0x70:
115 return 0; /* can't boost conditional jump */
116 case 0xc0:
117 /* can't boost software-interruptions */
118 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
119 case 0xd0:
120 /* can boost AA* and XLAT */
121 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
122 case 0xe0:
123 /* can boost in/out and absolute jmps */
124 return ((opcode & 0x04) || opcode == 0xea);
125 case 0xf0:
126 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
127 goto retry; /* lock/rep(ne) prefix */
128 /* clear and set flags can be boost */
129 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
130 default:
131 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
132 goto retry; /* prefixes */
133 /* can't boost CS override and call */
134 return (opcode != 0x2e && opcode != 0x9a);
135 }
136 }
137
138 /*
139 * returns non-zero if opcode modifies the interrupt flag.
140 */
141 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
142 {
143 switch (opcode) {
144 case 0xfa: /* cli */
145 case 0xfb: /* sti */
146 case 0xcf: /* iret/iretd */
147 case 0x9d: /* popf/popfd */
148 return 1;
149 }
150 return 0;
151 }
152
153 int __kprobes arch_prepare_kprobe(struct kprobe *p)
154 {
155 /* insn: must be on special executable page on i386. */
156 p->ainsn.insn = get_insn_slot();
157 if (!p->ainsn.insn)
158 return -ENOMEM;
159
160 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
161 p->opcode = *p->addr;
162 if (can_boost(p->addr)) {
163 p->ainsn.boostable = 0;
164 } else {
165 p->ainsn.boostable = -1;
166 }
167 return 0;
168 }
169
170 void __kprobes arch_arm_kprobe(struct kprobe *p)
171 {
172 *p->addr = BREAKPOINT_INSTRUCTION;
173 flush_icache_range((unsigned long) p->addr,
174 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
175 }
176
177 void __kprobes arch_disarm_kprobe(struct kprobe *p)
178 {
179 *p->addr = p->opcode;
180 flush_icache_range((unsigned long) p->addr,
181 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
182 }
183
184 void __kprobes arch_remove_kprobe(struct kprobe *p)
185 {
186 mutex_lock(&kprobe_mutex);
187 free_insn_slot(p->ainsn.insn);
188 mutex_unlock(&kprobe_mutex);
189 }
190
191 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
192 {
193 kcb->prev_kprobe.kp = kprobe_running();
194 kcb->prev_kprobe.status = kcb->kprobe_status;
195 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
196 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
197 }
198
199 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
200 {
201 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
202 kcb->kprobe_status = kcb->prev_kprobe.status;
203 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
204 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
205 }
206
207 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
208 struct kprobe_ctlblk *kcb)
209 {
210 __get_cpu_var(current_kprobe) = p;
211 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
212 = (regs->eflags & (TF_MASK | IF_MASK));
213 if (is_IF_modifier(p->opcode))
214 kcb->kprobe_saved_eflags &= ~IF_MASK;
215 }
216
217 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
218 {
219 regs->eflags |= TF_MASK;
220 regs->eflags &= ~IF_MASK;
221 /*single step inline if the instruction is an int3*/
222 if (p->opcode == BREAKPOINT_INSTRUCTION)
223 regs->eip = (unsigned long)p->addr;
224 else
225 regs->eip = (unsigned long)p->ainsn.insn;
226 }
227
228 /* Called with kretprobe_lock held */
229 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
230 struct pt_regs *regs)
231 {
232 unsigned long *sara = (unsigned long *)&regs->esp;
233 struct kretprobe_instance *ri;
234
235 if ((ri = get_free_rp_inst(rp)) != NULL) {
236 ri->rp = rp;
237 ri->task = current;
238 ri->ret_addr = (kprobe_opcode_t *) *sara;
239
240 /* Replace the return addr with trampoline addr */
241 *sara = (unsigned long) &kretprobe_trampoline;
242
243 add_rp_inst(ri);
244 } else {
245 rp->nmissed++;
246 }
247 }
248
249 /*
250 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
251 * remain disabled thorough out this function.
252 */
253 static int __kprobes kprobe_handler(struct pt_regs *regs)
254 {
255 struct kprobe *p;
256 int ret = 0;
257 kprobe_opcode_t *addr;
258 struct kprobe_ctlblk *kcb;
259 #ifdef CONFIG_PREEMPT
260 unsigned pre_preempt_count = preempt_count();
261 #else
262 unsigned pre_preempt_count = 1;
263 #endif
264
265 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
266
267 /*
268 * We don't want to be preempted for the entire
269 * duration of kprobe processing
270 */
271 preempt_disable();
272 kcb = get_kprobe_ctlblk();
273
274 /* Check we're not actually recursing */
275 if (kprobe_running()) {
276 p = get_kprobe(addr);
277 if (p) {
278 if (kcb->kprobe_status == KPROBE_HIT_SS &&
279 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
280 regs->eflags &= ~TF_MASK;
281 regs->eflags |= kcb->kprobe_saved_eflags;
282 goto no_kprobe;
283 }
284 /* We have reentered the kprobe_handler(), since
285 * another probe was hit while within the handler.
286 * We here save the original kprobes variables and
287 * just single step on the instruction of the new probe
288 * without calling any user handlers.
289 */
290 save_previous_kprobe(kcb);
291 set_current_kprobe(p, regs, kcb);
292 kprobes_inc_nmissed_count(p);
293 prepare_singlestep(p, regs);
294 kcb->kprobe_status = KPROBE_REENTER;
295 return 1;
296 } else {
297 if (*addr != BREAKPOINT_INSTRUCTION) {
298 /* The breakpoint instruction was removed by
299 * another cpu right after we hit, no further
300 * handling of this interrupt is appropriate
301 */
302 regs->eip -= sizeof(kprobe_opcode_t);
303 ret = 1;
304 goto no_kprobe;
305 }
306 p = __get_cpu_var(current_kprobe);
307 if (p->break_handler && p->break_handler(p, regs)) {
308 goto ss_probe;
309 }
310 }
311 goto no_kprobe;
312 }
313
314 p = get_kprobe(addr);
315 if (!p) {
316 if (*addr != BREAKPOINT_INSTRUCTION) {
317 /*
318 * The breakpoint instruction was removed right
319 * after we hit it. Another cpu has removed
320 * either a probepoint or a debugger breakpoint
321 * at this address. In either case, no further
322 * handling of this interrupt is appropriate.
323 * Back up over the (now missing) int3 and run
324 * the original instruction.
325 */
326 regs->eip -= sizeof(kprobe_opcode_t);
327 ret = 1;
328 }
329 /* Not one of ours: let kernel handle it */
330 goto no_kprobe;
331 }
332
333 set_current_kprobe(p, regs, kcb);
334 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
335
336 if (p->pre_handler && p->pre_handler(p, regs))
337 /* handler has already set things up, so skip ss setup */
338 return 1;
339
340 ss_probe:
341 if (pre_preempt_count && p->ainsn.boostable == 1 && !p->post_handler){
342 /* Boost up -- we can execute copied instructions directly */
343 reset_current_kprobe();
344 regs->eip = (unsigned long)p->ainsn.insn;
345 preempt_enable_no_resched();
346 return 1;
347 }
348 prepare_singlestep(p, regs);
349 kcb->kprobe_status = KPROBE_HIT_SS;
350 return 1;
351
352 no_kprobe:
353 preempt_enable_no_resched();
354 return ret;
355 }
356
357 /*
358 * For function-return probes, init_kprobes() establishes a probepoint
359 * here. When a retprobed function returns, this probe is hit and
360 * trampoline_probe_handler() runs, calling the kretprobe's handler.
361 */
362 void __kprobes kretprobe_trampoline_holder(void)
363 {
364 asm volatile ( ".global kretprobe_trampoline\n"
365 "kretprobe_trampoline: \n"
366 " pushf\n"
367 /* skip cs, eip, orig_eax, es, ds */
368 " subl $20, %esp\n"
369 " pushl %eax\n"
370 " pushl %ebp\n"
371 " pushl %edi\n"
372 " pushl %esi\n"
373 " pushl %edx\n"
374 " pushl %ecx\n"
375 " pushl %ebx\n"
376 " movl %esp, %eax\n"
377 " call trampoline_handler\n"
378 /* move eflags to cs */
379 " movl 48(%esp), %edx\n"
380 " movl %edx, 44(%esp)\n"
381 /* save true return address on eflags */
382 " movl %eax, 48(%esp)\n"
383 " popl %ebx\n"
384 " popl %ecx\n"
385 " popl %edx\n"
386 " popl %esi\n"
387 " popl %edi\n"
388 " popl %ebp\n"
389 " popl %eax\n"
390 /* skip eip, orig_eax, es, ds */
391 " addl $16, %esp\n"
392 " popf\n"
393 " ret\n");
394 }
395
396 /*
397 * Called from kretprobe_trampoline
398 */
399 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
400 {
401 struct kretprobe_instance *ri = NULL;
402 struct hlist_head *head;
403 struct hlist_node *node, *tmp;
404 unsigned long flags, orig_ret_address = 0;
405 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
406
407 spin_lock_irqsave(&kretprobe_lock, flags);
408 head = kretprobe_inst_table_head(current);
409
410 /*
411 * It is possible to have multiple instances associated with a given
412 * task either because an multiple functions in the call path
413 * have a return probe installed on them, and/or more then one return
414 * return probe was registered for a target function.
415 *
416 * We can handle this because:
417 * - instances are always inserted at the head of the list
418 * - when multiple return probes are registered for the same
419 * function, the first instance's ret_addr will point to the
420 * real return address, and all the rest will point to
421 * kretprobe_trampoline
422 */
423 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
424 if (ri->task != current)
425 /* another task is sharing our hash bucket */
426 continue;
427
428 if (ri->rp && ri->rp->handler){
429 __get_cpu_var(current_kprobe) = &ri->rp->kp;
430 ri->rp->handler(ri, regs);
431 __get_cpu_var(current_kprobe) = NULL;
432 }
433
434 orig_ret_address = (unsigned long)ri->ret_addr;
435 recycle_rp_inst(ri);
436
437 if (orig_ret_address != trampoline_address)
438 /*
439 * This is the real return address. Any other
440 * instances associated with this task are for
441 * other calls deeper on the call stack
442 */
443 break;
444 }
445
446 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
447
448 spin_unlock_irqrestore(&kretprobe_lock, flags);
449
450 return (void*)orig_ret_address;
451 }
452
453 /*
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "int 3"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
460 *
461 * This function prepares to return from the post-single-step
462 * interrupt. We have to fix up the stack as follows:
463 *
464 * 0) Except in the case of absolute or indirect jump or call instructions,
465 * the new eip is relative to the copied instruction. We need to make
466 * it relative to the original instruction.
467 *
468 * 1) If the single-stepped instruction was pushfl, then the TF and IF
469 * flags are set in the just-pushed eflags, and may need to be cleared.
470 *
471 * 2) If the single-stepped instruction was a call, the return address
472 * that is atop the stack is the address following the copied instruction.
473 * We need to make it the address following the original instruction.
474 *
475 * This function also checks instruction size for preparing direct execution.
476 */
477 static void __kprobes resume_execution(struct kprobe *p,
478 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
479 {
480 unsigned long *tos = (unsigned long *)&regs->esp;
481 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
482 unsigned long orig_eip = (unsigned long)p->addr;
483
484 regs->eflags &= ~TF_MASK;
485 switch (p->ainsn.insn[0]) {
486 case 0x9c: /* pushfl */
487 *tos &= ~(TF_MASK | IF_MASK);
488 *tos |= kcb->kprobe_old_eflags;
489 break;
490 case 0xc2: /* iret/ret/lret */
491 case 0xc3:
492 case 0xca:
493 case 0xcb:
494 case 0xcf:
495 case 0xea: /* jmp absolute -- eip is correct */
496 /* eip is already adjusted, no more changes required */
497 p->ainsn.boostable = 1;
498 goto no_change;
499 case 0xe8: /* call relative - Fix return addr */
500 *tos = orig_eip + (*tos - copy_eip);
501 break;
502 case 0x9a: /* call absolute -- same as call absolute, indirect */
503 *tos = orig_eip + (*tos - copy_eip);
504 goto no_change;
505 case 0xff:
506 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
507 /*
508 * call absolute, indirect
509 * Fix return addr; eip is correct.
510 * But this is not boostable
511 */
512 *tos = orig_eip + (*tos - copy_eip);
513 goto no_change;
514 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
515 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
516 /* eip is correct. And this is boostable */
517 p->ainsn.boostable = 1;
518 goto no_change;
519 }
520 default:
521 break;
522 }
523
524 if (p->ainsn.boostable == 0) {
525 if ((regs->eip > copy_eip) &&
526 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
527 /*
528 * These instructions can be executed directly if it
529 * jumps back to correct address.
530 */
531 set_jmp_op((void *)regs->eip,
532 (void *)orig_eip + (regs->eip - copy_eip));
533 p->ainsn.boostable = 1;
534 } else {
535 p->ainsn.boostable = -1;
536 }
537 }
538
539 regs->eip = orig_eip + (regs->eip - copy_eip);
540
541 no_change:
542 return;
543 }
544
545 /*
546 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
547 * remain disabled thoroughout this function.
548 */
549 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
550 {
551 struct kprobe *cur = kprobe_running();
552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553
554 if (!cur)
555 return 0;
556
557 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
558 kcb->kprobe_status = KPROBE_HIT_SSDONE;
559 cur->post_handler(cur, regs, 0);
560 }
561
562 resume_execution(cur, regs, kcb);
563 regs->eflags |= kcb->kprobe_saved_eflags;
564
565 /*Restore back the original saved kprobes variables and continue. */
566 if (kcb->kprobe_status == KPROBE_REENTER) {
567 restore_previous_kprobe(kcb);
568 goto out;
569 }
570 reset_current_kprobe();
571 out:
572 preempt_enable_no_resched();
573
574 /*
575 * if somebody else is singlestepping across a probe point, eflags
576 * will have TF set, in which case, continue the remaining processing
577 * of do_debug, as if this is not a probe hit.
578 */
579 if (regs->eflags & TF_MASK)
580 return 0;
581
582 return 1;
583 }
584
585 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
586 {
587 struct kprobe *cur = kprobe_running();
588 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
589
590 switch(kcb->kprobe_status) {
591 case KPROBE_HIT_SS:
592 case KPROBE_REENTER:
593 /*
594 * We are here because the instruction being single
595 * stepped caused a page fault. We reset the current
596 * kprobe and the eip points back to the probe address
597 * and allow the page fault handler to continue as a
598 * normal page fault.
599 */
600 regs->eip = (unsigned long)cur->addr;
601 regs->eflags |= kcb->kprobe_old_eflags;
602 if (kcb->kprobe_status == KPROBE_REENTER)
603 restore_previous_kprobe(kcb);
604 else
605 reset_current_kprobe();
606 preempt_enable_no_resched();
607 break;
608 case KPROBE_HIT_ACTIVE:
609 case KPROBE_HIT_SSDONE:
610 /*
611 * We increment the nmissed count for accounting,
612 * we can also use npre/npostfault count for accouting
613 * these specific fault cases.
614 */
615 kprobes_inc_nmissed_count(cur);
616
617 /*
618 * We come here because instructions in the pre/post
619 * handler caused the page_fault, this could happen
620 * if handler tries to access user space by
621 * copy_from_user(), get_user() etc. Let the
622 * user-specified handler try to fix it first.
623 */
624 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
625 return 1;
626
627 /*
628 * In case the user-specified fault handler returned
629 * zero, try to fix up.
630 */
631 if (fixup_exception(regs))
632 return 1;
633
634 /*
635 * fixup_exception() could not handle it,
636 * Let do_page_fault() fix it.
637 */
638 break;
639 default:
640 break;
641 }
642 return 0;
643 }
644
645 /*
646 * Wrapper routine to for handling exceptions.
647 */
648 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
649 unsigned long val, void *data)
650 {
651 struct die_args *args = (struct die_args *)data;
652 int ret = NOTIFY_DONE;
653
654 if (args->regs && user_mode_vm(args->regs))
655 return ret;
656
657 switch (val) {
658 case DIE_INT3:
659 if (kprobe_handler(args->regs))
660 ret = NOTIFY_STOP;
661 break;
662 case DIE_DEBUG:
663 if (post_kprobe_handler(args->regs))
664 ret = NOTIFY_STOP;
665 break;
666 case DIE_GPF:
667 case DIE_PAGE_FAULT:
668 /* kprobe_running() needs smp_processor_id() */
669 preempt_disable();
670 if (kprobe_running() &&
671 kprobe_fault_handler(args->regs, args->trapnr))
672 ret = NOTIFY_STOP;
673 preempt_enable();
674 break;
675 default:
676 break;
677 }
678 return ret;
679 }
680
681 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
682 {
683 struct jprobe *jp = container_of(p, struct jprobe, kp);
684 unsigned long addr;
685 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
686
687 kcb->jprobe_saved_regs = *regs;
688 kcb->jprobe_saved_esp = &regs->esp;
689 addr = (unsigned long)(kcb->jprobe_saved_esp);
690
691 /*
692 * TBD: As Linus pointed out, gcc assumes that the callee
693 * owns the argument space and could overwrite it, e.g.
694 * tailcall optimization. So, to be absolutely safe
695 * we also save and restore enough stack bytes to cover
696 * the argument area.
697 */
698 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
699 MIN_STACK_SIZE(addr));
700 regs->eflags &= ~IF_MASK;
701 regs->eip = (unsigned long)(jp->entry);
702 return 1;
703 }
704
705 void __kprobes jprobe_return(void)
706 {
707 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
708
709 asm volatile (" xchgl %%ebx,%%esp \n"
710 " int3 \n"
711 " .globl jprobe_return_end \n"
712 " jprobe_return_end: \n"
713 " nop \n"::"b"
714 (kcb->jprobe_saved_esp):"memory");
715 }
716
717 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
718 {
719 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
720 u8 *addr = (u8 *) (regs->eip - 1);
721 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
722 struct jprobe *jp = container_of(p, struct jprobe, kp);
723
724 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
725 if (&regs->esp != kcb->jprobe_saved_esp) {
726 struct pt_regs *saved_regs =
727 container_of(kcb->jprobe_saved_esp,
728 struct pt_regs, esp);
729 printk("current esp %p does not match saved esp %p\n",
730 &regs->esp, kcb->jprobe_saved_esp);
731 printk("Saved registers for jprobe %p\n", jp);
732 show_registers(saved_regs);
733 printk("Current registers\n");
734 show_registers(regs);
735 BUG();
736 }
737 *regs = kcb->jprobe_saved_regs;
738 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
739 MIN_STACK_SIZE(stack_addr));
740 preempt_enable_no_resched();
741 return 1;
742 }
743 return 0;
744 }
745
746 int __init arch_init_kprobes(void)
747 {
748 return 0;
749 }