]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/i386/kernel/kprobes.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb
[mirror_ubuntu-jammy-kernel.git] / arch / i386 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
29 */
30
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/desc.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 /*
45 * returns non-zero if opcode modifies the interrupt flag.
46 */
47 static inline int is_IF_modifier(kprobe_opcode_t opcode)
48 {
49 switch (opcode) {
50 case 0xfa: /* cli */
51 case 0xfb: /* sti */
52 case 0xcf: /* iret/iretd */
53 case 0x9d: /* popf/popfd */
54 return 1;
55 }
56 return 0;
57 }
58
59 int __kprobes arch_prepare_kprobe(struct kprobe *p)
60 {
61 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
62 p->opcode = *p->addr;
63 return 0;
64 }
65
66 void __kprobes arch_arm_kprobe(struct kprobe *p)
67 {
68 *p->addr = BREAKPOINT_INSTRUCTION;
69 flush_icache_range((unsigned long) p->addr,
70 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
71 }
72
73 void __kprobes arch_disarm_kprobe(struct kprobe *p)
74 {
75 *p->addr = p->opcode;
76 flush_icache_range((unsigned long) p->addr,
77 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 }
79
80 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
81 {
82 kcb->prev_kprobe.kp = kprobe_running();
83 kcb->prev_kprobe.status = kcb->kprobe_status;
84 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
85 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
86 }
87
88 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
89 {
90 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
91 kcb->kprobe_status = kcb->prev_kprobe.status;
92 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
93 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
94 }
95
96 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
97 struct kprobe_ctlblk *kcb)
98 {
99 __get_cpu_var(current_kprobe) = p;
100 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
101 = (regs->eflags & (TF_MASK | IF_MASK));
102 if (is_IF_modifier(p->opcode))
103 kcb->kprobe_saved_eflags &= ~IF_MASK;
104 }
105
106 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
107 {
108 regs->eflags |= TF_MASK;
109 regs->eflags &= ~IF_MASK;
110 /*single step inline if the instruction is an int3*/
111 if (p->opcode == BREAKPOINT_INSTRUCTION)
112 regs->eip = (unsigned long)p->addr;
113 else
114 regs->eip = (unsigned long)&p->ainsn.insn;
115 }
116
117 /* Called with kretprobe_lock held */
118 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
119 struct pt_regs *regs)
120 {
121 unsigned long *sara = (unsigned long *)&regs->esp;
122 struct kretprobe_instance *ri;
123
124 if ((ri = get_free_rp_inst(rp)) != NULL) {
125 ri->rp = rp;
126 ri->task = current;
127 ri->ret_addr = (kprobe_opcode_t *) *sara;
128
129 /* Replace the return addr with trampoline addr */
130 *sara = (unsigned long) &kretprobe_trampoline;
131
132 add_rp_inst(ri);
133 } else {
134 rp->nmissed++;
135 }
136 }
137
138 /*
139 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
140 * remain disabled thorough out this function.
141 */
142 static int __kprobes kprobe_handler(struct pt_regs *regs)
143 {
144 struct kprobe *p;
145 int ret = 0;
146 kprobe_opcode_t *addr = NULL;
147 unsigned long *lp;
148 struct kprobe_ctlblk *kcb;
149
150 /*
151 * We don't want to be preempted for the entire
152 * duration of kprobe processing
153 */
154 preempt_disable();
155 kcb = get_kprobe_ctlblk();
156
157 /* Check if the application is using LDT entry for its code segment and
158 * calculate the address by reading the base address from the LDT entry.
159 */
160 if ((regs->xcs & 4) && (current->mm)) {
161 lp = (unsigned long *) ((unsigned long)((regs->xcs >> 3) * 8)
162 + (char *) current->mm->context.ldt);
163 addr = (kprobe_opcode_t *) (get_desc_base(lp) + regs->eip -
164 sizeof(kprobe_opcode_t));
165 } else {
166 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
167 }
168 /* Check we're not actually recursing */
169 if (kprobe_running()) {
170 p = get_kprobe(addr);
171 if (p) {
172 if (kcb->kprobe_status == KPROBE_HIT_SS &&
173 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
174 regs->eflags &= ~TF_MASK;
175 regs->eflags |= kcb->kprobe_saved_eflags;
176 goto no_kprobe;
177 }
178 /* We have reentered the kprobe_handler(), since
179 * another probe was hit while within the handler.
180 * We here save the original kprobes variables and
181 * just single step on the instruction of the new probe
182 * without calling any user handlers.
183 */
184 save_previous_kprobe(kcb);
185 set_current_kprobe(p, regs, kcb);
186 kprobes_inc_nmissed_count(p);
187 prepare_singlestep(p, regs);
188 kcb->kprobe_status = KPROBE_REENTER;
189 return 1;
190 } else {
191 if (regs->eflags & VM_MASK) {
192 /* We are in virtual-8086 mode. Return 0 */
193 goto no_kprobe;
194 }
195 if (*addr != BREAKPOINT_INSTRUCTION) {
196 /* The breakpoint instruction was removed by
197 * another cpu right after we hit, no further
198 * handling of this interrupt is appropriate
199 */
200 regs->eip -= sizeof(kprobe_opcode_t);
201 ret = 1;
202 goto no_kprobe;
203 }
204 p = __get_cpu_var(current_kprobe);
205 if (p->break_handler && p->break_handler(p, regs)) {
206 goto ss_probe;
207 }
208 }
209 goto no_kprobe;
210 }
211
212 p = get_kprobe(addr);
213 if (!p) {
214 if (regs->eflags & VM_MASK) {
215 /* We are in virtual-8086 mode. Return 0 */
216 goto no_kprobe;
217 }
218
219 if (*addr != BREAKPOINT_INSTRUCTION) {
220 /*
221 * The breakpoint instruction was removed right
222 * after we hit it. Another cpu has removed
223 * either a probepoint or a debugger breakpoint
224 * at this address. In either case, no further
225 * handling of this interrupt is appropriate.
226 * Back up over the (now missing) int3 and run
227 * the original instruction.
228 */
229 regs->eip -= sizeof(kprobe_opcode_t);
230 ret = 1;
231 }
232 /* Not one of ours: let kernel handle it */
233 goto no_kprobe;
234 }
235
236 set_current_kprobe(p, regs, kcb);
237 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
238
239 if (p->pre_handler && p->pre_handler(p, regs))
240 /* handler has already set things up, so skip ss setup */
241 return 1;
242
243 ss_probe:
244 prepare_singlestep(p, regs);
245 kcb->kprobe_status = KPROBE_HIT_SS;
246 return 1;
247
248 no_kprobe:
249 preempt_enable_no_resched();
250 return ret;
251 }
252
253 /*
254 * For function-return probes, init_kprobes() establishes a probepoint
255 * here. When a retprobed function returns, this probe is hit and
256 * trampoline_probe_handler() runs, calling the kretprobe's handler.
257 */
258 void kretprobe_trampoline_holder(void)
259 {
260 asm volatile ( ".global kretprobe_trampoline\n"
261 "kretprobe_trampoline: \n"
262 "nop\n");
263 }
264
265 /*
266 * Called when we hit the probe point at kretprobe_trampoline
267 */
268 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
269 {
270 struct kretprobe_instance *ri = NULL;
271 struct hlist_head *head;
272 struct hlist_node *node, *tmp;
273 unsigned long flags, orig_ret_address = 0;
274 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
275
276 spin_lock_irqsave(&kretprobe_lock, flags);
277 head = kretprobe_inst_table_head(current);
278
279 /*
280 * It is possible to have multiple instances associated with a given
281 * task either because an multiple functions in the call path
282 * have a return probe installed on them, and/or more then one return
283 * return probe was registered for a target function.
284 *
285 * We can handle this because:
286 * - instances are always inserted at the head of the list
287 * - when multiple return probes are registered for the same
288 * function, the first instance's ret_addr will point to the
289 * real return address, and all the rest will point to
290 * kretprobe_trampoline
291 */
292 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
293 if (ri->task != current)
294 /* another task is sharing our hash bucket */
295 continue;
296
297 if (ri->rp && ri->rp->handler)
298 ri->rp->handler(ri, regs);
299
300 orig_ret_address = (unsigned long)ri->ret_addr;
301 recycle_rp_inst(ri);
302
303 if (orig_ret_address != trampoline_address)
304 /*
305 * This is the real return address. Any other
306 * instances associated with this task are for
307 * other calls deeper on the call stack
308 */
309 break;
310 }
311
312 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
313 regs->eip = orig_ret_address;
314
315 reset_current_kprobe();
316 spin_unlock_irqrestore(&kretprobe_lock, flags);
317 preempt_enable_no_resched();
318
319 /*
320 * By returning a non-zero value, we are telling
321 * kprobe_handler() that we don't want the post_handler
322 * to run (and have re-enabled preemption)
323 */
324 return 1;
325 }
326
327 /*
328 * Called after single-stepping. p->addr is the address of the
329 * instruction whose first byte has been replaced by the "int 3"
330 * instruction. To avoid the SMP problems that can occur when we
331 * temporarily put back the original opcode to single-step, we
332 * single-stepped a copy of the instruction. The address of this
333 * copy is p->ainsn.insn.
334 *
335 * This function prepares to return from the post-single-step
336 * interrupt. We have to fix up the stack as follows:
337 *
338 * 0) Except in the case of absolute or indirect jump or call instructions,
339 * the new eip is relative to the copied instruction. We need to make
340 * it relative to the original instruction.
341 *
342 * 1) If the single-stepped instruction was pushfl, then the TF and IF
343 * flags are set in the just-pushed eflags, and may need to be cleared.
344 *
345 * 2) If the single-stepped instruction was a call, the return address
346 * that is atop the stack is the address following the copied instruction.
347 * We need to make it the address following the original instruction.
348 */
349 static void __kprobes resume_execution(struct kprobe *p,
350 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
351 {
352 unsigned long *tos = (unsigned long *)&regs->esp;
353 unsigned long next_eip = 0;
354 unsigned long copy_eip = (unsigned long)&p->ainsn.insn;
355 unsigned long orig_eip = (unsigned long)p->addr;
356
357 switch (p->ainsn.insn[0]) {
358 case 0x9c: /* pushfl */
359 *tos &= ~(TF_MASK | IF_MASK);
360 *tos |= kcb->kprobe_old_eflags;
361 break;
362 case 0xc3: /* ret/lret */
363 case 0xcb:
364 case 0xc2:
365 case 0xca:
366 regs->eflags &= ~TF_MASK;
367 /* eip is already adjusted, no more changes required*/
368 return;
369 case 0xe8: /* call relative - Fix return addr */
370 *tos = orig_eip + (*tos - copy_eip);
371 break;
372 case 0xff:
373 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
374 /* call absolute, indirect */
375 /* Fix return addr; eip is correct. */
376 next_eip = regs->eip;
377 *tos = orig_eip + (*tos - copy_eip);
378 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
379 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
380 /* eip is correct. */
381 next_eip = regs->eip;
382 }
383 break;
384 case 0xea: /* jmp absolute -- eip is correct */
385 next_eip = regs->eip;
386 break;
387 default:
388 break;
389 }
390
391 regs->eflags &= ~TF_MASK;
392 if (next_eip) {
393 regs->eip = next_eip;
394 } else {
395 regs->eip = orig_eip + (regs->eip - copy_eip);
396 }
397 }
398
399 /*
400 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
401 * remain disabled thoroughout this function.
402 */
403 static inline int post_kprobe_handler(struct pt_regs *regs)
404 {
405 struct kprobe *cur = kprobe_running();
406 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407
408 if (!cur)
409 return 0;
410
411 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
412 kcb->kprobe_status = KPROBE_HIT_SSDONE;
413 cur->post_handler(cur, regs, 0);
414 }
415
416 resume_execution(cur, regs, kcb);
417 regs->eflags |= kcb->kprobe_saved_eflags;
418
419 /*Restore back the original saved kprobes variables and continue. */
420 if (kcb->kprobe_status == KPROBE_REENTER) {
421 restore_previous_kprobe(kcb);
422 goto out;
423 }
424 reset_current_kprobe();
425 out:
426 preempt_enable_no_resched();
427
428 /*
429 * if somebody else is singlestepping across a probe point, eflags
430 * will have TF set, in which case, continue the remaining processing
431 * of do_debug, as if this is not a probe hit.
432 */
433 if (regs->eflags & TF_MASK)
434 return 0;
435
436 return 1;
437 }
438
439 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
440 {
441 struct kprobe *cur = kprobe_running();
442 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
443
444 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
445 return 1;
446
447 if (kcb->kprobe_status & KPROBE_HIT_SS) {
448 resume_execution(cur, regs, kcb);
449 regs->eflags |= kcb->kprobe_old_eflags;
450
451 reset_current_kprobe();
452 preempt_enable_no_resched();
453 }
454 return 0;
455 }
456
457 /*
458 * Wrapper routine to for handling exceptions.
459 */
460 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
461 unsigned long val, void *data)
462 {
463 struct die_args *args = (struct die_args *)data;
464 int ret = NOTIFY_DONE;
465
466 switch (val) {
467 case DIE_INT3:
468 if (kprobe_handler(args->regs))
469 ret = NOTIFY_STOP;
470 break;
471 case DIE_DEBUG:
472 if (post_kprobe_handler(args->regs))
473 ret = NOTIFY_STOP;
474 break;
475 case DIE_GPF:
476 case DIE_PAGE_FAULT:
477 /* kprobe_running() needs smp_processor_id() */
478 preempt_disable();
479 if (kprobe_running() &&
480 kprobe_fault_handler(args->regs, args->trapnr))
481 ret = NOTIFY_STOP;
482 preempt_enable();
483 break;
484 default:
485 break;
486 }
487 return ret;
488 }
489
490 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
491 {
492 struct jprobe *jp = container_of(p, struct jprobe, kp);
493 unsigned long addr;
494 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
495
496 kcb->jprobe_saved_regs = *regs;
497 kcb->jprobe_saved_esp = &regs->esp;
498 addr = (unsigned long)(kcb->jprobe_saved_esp);
499
500 /*
501 * TBD: As Linus pointed out, gcc assumes that the callee
502 * owns the argument space and could overwrite it, e.g.
503 * tailcall optimization. So, to be absolutely safe
504 * we also save and restore enough stack bytes to cover
505 * the argument area.
506 */
507 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
508 MIN_STACK_SIZE(addr));
509 regs->eflags &= ~IF_MASK;
510 regs->eip = (unsigned long)(jp->entry);
511 return 1;
512 }
513
514 void __kprobes jprobe_return(void)
515 {
516 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
517
518 asm volatile (" xchgl %%ebx,%%esp \n"
519 " int3 \n"
520 " .globl jprobe_return_end \n"
521 " jprobe_return_end: \n"
522 " nop \n"::"b"
523 (kcb->jprobe_saved_esp):"memory");
524 }
525
526 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
529 u8 *addr = (u8 *) (regs->eip - 1);
530 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
531 struct jprobe *jp = container_of(p, struct jprobe, kp);
532
533 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
534 if (&regs->esp != kcb->jprobe_saved_esp) {
535 struct pt_regs *saved_regs =
536 container_of(kcb->jprobe_saved_esp,
537 struct pt_regs, esp);
538 printk("current esp %p does not match saved esp %p\n",
539 &regs->esp, kcb->jprobe_saved_esp);
540 printk("Saved registers for jprobe %p\n", jp);
541 show_registers(saved_regs);
542 printk("Current registers\n");
543 show_registers(regs);
544 BUG();
545 }
546 *regs = kcb->jprobe_saved_regs;
547 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
548 MIN_STACK_SIZE(stack_addr));
549 preempt_enable_no_resched();
550 return 1;
551 }
552 return 0;
553 }
554
555 static struct kprobe trampoline_p = {
556 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
557 .pre_handler = trampoline_probe_handler
558 };
559
560 int __init arch_init_kprobes(void)
561 {
562 return register_kprobe(&trampoline_p);
563 }